SCHAEFFLER

Technical Pocket Guide

This Technical Pocket Guide has been prepared with a great deal of care and all data have been checked for their accuracy. Nevertheless, errors cannot be completely ruled out. The publisher and authors assume no legal responsibility or any liability whatsoever for any incorrect or incomplete data, or consequences associated with these.

The contents of this publication serve as information only and cannot replace technical advice on the use of rolling bearings in individual cases.

Any comments and references to errors will be gratefully received by the publisher and authors: Technisches.Taschenbuch@Schaeffler.com Wartzack@mfk.fau.de

Technical coordination

Prof. Dr.-Ing. Sandro Wartzack University of Erlangen-Nuremberg Chair for Engineering Design

Publisher

Schaeffler Technologies AG & Co. KG 91074 Herzogenaurach

Postal address

Industriestraße 1–3 91074 Herzogenaurach info@schaeffler.com

Overall coordination

Technical Documentation Bearings & Industrial Solutions

© Schaeffler Technologies AG & Co. KG 1st edition, March 2014 2nd, expanded edition, June 2018 3rd, revised edition, October 2021, available in PDF format only 4th, expanded edition, March 2025, available in PDF format only

This publication and all its constituent parts are protected by copyright. Any utilisation that is not explicitly permitted under the laws of copyright requires the prior agreement of the publisher. This applies in particular to any reprinting, duplication, translation, editing and any storage and processing in electronic systems.

The sale to third parties of copies of the Technical Pocket Guide STT that have been made available free of charge is prohibited. Full list of contents

Foreword

Preface

Company profile

Unit systems
Mathematics
Technical statistics74
Chemistry
Physics
Mechanics
Mechanical vibrations and acoustics148
Hydraulics and pneumatics172
Mechatronics
Strength of materials
Engineering materials
Product development
Technical drawing guideline
Tolerances and fits
Design elements
Subject index

Foreword

Schaeffler has always and on principle been committed to its responsibility for sustainable training and global transfer of knowledge. Even if the transition from an industry-based to a knowledge-based society was not so clearly defined in the mid-1980s, it was already clear to the attentive observer that education was becoming an extremely valuable commodity in which it was worth investing. From this notion came the idea for the INA Technical Pocket Guide ITT, which was produced under the technical direction of Prof. Dr.-Ing. Ernst-Günter Paland, presented for the first time at the Hannover Messe (English: Hanover Fair) in 1985 and contained 96 pages.

Over the years, this reference work with its equations and laws has been increased to 370 pages and published in several editions. More than 750 000 copies have been distributed since its initial publication. In addition to its function as a reference work, it has also proven itself as a work book for use in training and further education by designers, engineers, technicalars, and students of technical and scientific disciplines.

As confirmed by the high demand for this publication, it was completely revised by Schaeffler in 2013 and has been published since then under the name Schaeffler Technical Pocket Guide STT. For the purposes of technical coordination, it was possible to obtain the services of Prof. Dr.-Ing. Harald Meerkamm of the Friedrich-Alexander University of Erlangen-Nuremberg and formerly Head of the Chair for Engineering Design. Without his exceptional support, experience, diligence and patience, it would not have been possible to produce the Schaeffler Technical Pocket Guide in this form.

Since 2021, Prof. Dr.-Ing. Sandro Wartzack, Head of the Chair for Engineering Design at the Friedrich-Alexander University of Erlangen-Nuremberg, has been continuing to oversee the technical coordination of the Schaeffler Technical Pocket Guide and made valuable contributions towards its enhancement. As a product of our collaboration, we have added numerous new topics to this version and updated established topics. The current revised and expanded version imparts extensive, up-to-date knowledge over around 760 pages.

We would like to express our heartfelt gratitude to Prof. Dr.-Ing Sandro Wartzack and his highly motivated team of scientific personnel for their extraordinary commitment and the high level of trust they have demonstrated throughout our collaboration. We would also like to thank all of the readers who pointed out corrections and amendments.

We are delighted that the Schaeffler Technical Pocket Guide is so highly valued and that more than 500 000 copies have been requested from us to date. Interested parties can request copies of the new edition via \rightarrow http://www.schaeffler.de/std/1D50 in our Media Library or as a download in PDF format. The Schaeffler Technical Pocket Guide is also available as an app at \rightarrow apps.schaeffler.com. We are convinced that this new edition will meet with the same positive

Herzogenaurach, March 2025 The Publisher

response as the previous versions.

Preface

For over 25 years, the INA Technical Pocket Guide ITT from Schaeffler has been a standard work among apprentices in metal-processing and electrical engineering professions, as well as designers, technicians, engineers and also students involved in technical and scientific disciplines. With its brief, compact and concise layout, it successfully bridges the gap between comprehensive textbook and purely tabular work.

As a result of the huge demand for this guide – over three quarters of a million copies have been distributed since its initial publication more than two and a half decades ago – Schaeffler decided to produce a fully revised version and reissue this as the Schaeffler Technical Pocket Guide STT. The key priority in this process was to retain the former character of the guide as a reference work which provides rapid access to detailed information and to ensure scientific relevance, intelligibility, clarity and presentability, plus the addition of topical subjects. As a result, all of the contents have been updated, the data on standards, tolerances and fits have been brought up to date and the current subject of mechatronics has been added.

The chapter Design elements – which has been expanded to include rotatory and translatory bearings and examples of applications which use these products – has been completely reconfigured and significantly extended in accordance with the scientifically founded "function-oriented approach". The technical principles of rolling bearings, where were previously covered in two chapters of the guide, have been consolidated in this chapter. The "function-oriented approach" follows the concept of structuring the field of machine elements according to their respective function.

As it was not the intention to produce extensive descriptions of the subject areas in the manner found in textbooks, the statements have been kept deliberately concise, in the sense of a reference work, with the focus on fast, practical usability. This enables readers to quickly locate the required information in a condensed form and gain familiarity with the specialist knowledge. The layout of the chapters, the use of colour as a breakdown and control parameter, a reader-friendly typography, and well-structured tables and formulae all help to provide easy access to information.

As drawings are often involved in understanding technical and scientific relationships, the pictures in this work have been designed to make their content clearer and more readily accessible. This opens up new possibilities in the transfer of information involving diagrammatic elements, adhering to the principles of modern didactic textbook design and supporting the uptake of information.

I would like to thank the publisher's employees who have worked on this edition for their comments, suggestions, tips, amendments and corrections and for the trusting and stimulating working relationship we have shared, the excellent support they have provided and the conscientious, operative implementation of this project. I would also like to sincerely thank my STT Team at the Chair for Engineering Design, who have given me excellent support throughout all stages of this project.

Preface

I hope that this proven work book and reference work, in its new edition as the Schaeffler Technical Pocket Guide STT, will assist all readers in tackling their everyday tasks.

Erlangen, March 2014 Prof. Dr.-Ing. Harald Meerkamm Friedrich-Alexander University of Erlangen-Nuremberg

Preface to the 4th edition

Digitalisation in general and digital engineering in particular is assuming an increasingly important role in everyday engineering activities. In this new edition, we therefore give particular priority to the topics associated with this area. We have expanded the Mechatronics chapter to include the subchapters Sensors, Actuators, Modelling and simulation, and Condition monitoring of machines with rolling bearings by means of vibration analysis. The chapter on Product development is also a new addition, covering not only the methodical approach but also the use of CAx, knowledge-based engineering and knowledge discovery in databases/data mining. Additions were also necessary to the Technical statistics chapter, most notably on the subject of design of experiments. These new additions were accompanied by adjustments necessitated by changes to central standards and the introduction of new standards. As in every edition, we have also made any necessary corrections, as identified, not least, by the readers of this publication.

The Schaeffler Technical Pocket Guide continues to impress with its conciseness, which has been successfully maintained despite the wealth of material contained within its pages, and is excellently qualified as a support tool in everyday industrial engineering activities. I am also delighted to have received positive feedback from students, who prefer this Technical Pocket Guide to textbooks on account of its compact size and clearly arranged contents – features which have enabled it to bridge an important gap between tabular works and textbooks.

I am especially grateful for the ongoing excellent and trusting collaboration between Schaeffler and the STT team at the Chair for Engineering Design at the Friedrich-Alexander University of Erlangen-Nuremberg and would like to extend my particular thanks at this point to Dr.-Ing. Marcel Bartz, Dr.-Ing. Stefan Götz and Prof. Dr.-Ing. Benjamin Schleich.

I hope you find the Schaeffler Technical Pocket Guide an interesting read and a useful support tool in your daily technical work or studies.

Erlangen, March 2025 Prof. Dr.-Ing. Sandro Wartzack Friedrich-Alexander University of Erlangen-Nuremberg

Schaeffler – We pioneer motion

There is something that the legendary VW Beetle, the DTM Electric demo vehicle, the Airbus A380 (the world's largest passenger aircraft), wind turbines across the globe, cobots and robots, the "London Eye" Ferris wheel tourist attraction, artificial intelligence applications in production, and cars with electrified drives all have in common: they each rely on technology developed by Schaeffler.

As a leading global automotive and industrial supplier, the Schaeffler Group has been driving technological progress for over 75 years, delivering groundbreaking and marketable innovations to produce more efficient, intelligent and sustainable motion and mobility solutions. The technology company offers high-precision components, systems and services in the fields of electromobility, CO_2 -efficient drives, chassis applications, digitalisation and renewable energies as well as lifetime solutions and rolling and plain bearing solutions for a multitude of industrial applications. Schaeffler has been ranked among the most innovative companies in Germany by the German Patent and Trademark Office for many years.

Figure 1 Headquarters in Herzogenaurach

Shaping the transformation

The year 2020 marked a further development in the company's corporate strategy. Building on the strategic "Roadmap 2025", the company embraced its new corporate claim "We pioneer motion", which reflects Schaeffler's vision of becoming the preferred automotive and industrial supplier. As part of this quest, the company with its three divisions – Automotive Technologies, Automotive Aftermarket and Industrial – has five focus fields in its sight: CO₂-efficient drives (e-mobility and hydrogen technology), chassis applications, industrial machinery and equipment, renewable energies, and aftermarket and service solutions.

The four corporate values – "sustainability", "innovation", "excellence" and "passion" – form the pillars on which these focus fields are based. For Schaeffler, sustainable corporate success means assuming ecological and social responsibility – in its production processes, for the use of its products by customers, and in supplier engagement. As part of this commitment, the company has set itself the target, across all regions, of achieving CO₂-neutral production by 2030 and climate-neutral operations by 2040. The Schaeffler Group was named one of the 50 Sustainability & Climate Leaders by the United Nations in 2021.

The Divisions of the Schaeffler Group

Automotive Technologies

The Automotive Technologies Division develops and manufactures groundbreaking components and system solutions for vehicles with powertrains comprising internal combustion engines as well as for hybrid and electric vehicles, in which Schaeffler's traditional strengths – a high level of vertical integration and excellence in production – play a fundamental role. The company's portfolio ranges from drives for partially and fully electrified mobility solutions through to hydrogen fuel cell technologies. Complete systems such as the 4in1 e-axle are among the developments that will represent the future of full fleet electrification.

Electric mobility, chassis technologies and hydrogen power: Schaeffler continues to rely on innovative mobility solutions and consistently applied sustainability in its bid to maintain the position of preferred technology partner to the global automotive industry in the future.

Figure 2

Schaeffler develops components and systems for electric mobility

Figure 3

As a highly integrated and compact complete system, the 4in1 e-axle requires significantly less installation space than non-integrated solutions

Automotive The Automotive Aftermarket Division delivers components and comprehensive repair solutions for the automotive aftermarket worldwide. New technologies and systems in modern vehicles are presenting workshops with ever greater challenges, as repair work becomes more extensive and increasingly requires an understanding of the entire system. Thanks to comprehensive system knowledge and an extensive range of services, Schaeffler can support workshops in carrying out complex repairs. Whatever the requirement – whether innovative repair solutions for clutch and release systems or components for engines, gearboxes and chassis applications – Schaeffler can offer a full range of automotive aftermarket parts and associated services under the LUK, INA, FAG and REPXPERT brands.

Figure 4 Schaeffler Automotive Aftermarket – qualified partner to workshop customers

Figure 5 Replacing the belt in an auxiliary drive

Industrial The Industrial Division supplies rolling and plain bearings, linear and direct drive technology as well as maintenance products and monitoring systems to customers from a wide range of industrial sectors. both in the form of direct business and via a global network of certified sales partners. Schaeffler offers an extensive selection of bearing solutions for application areas including robotics, wind turbines, production and construction machinery, medical technology, and trains and planes. Engineers work closely with customers to develop optimum solutions tailored to the most diverse of requirements, while considering the entire system and the specific ambient influences and operating conditions associated with the application, to ensure reliable bearing performance even in extreme operating environments, such as cold, hot and stormy conditions, under exposure to permanent water or salt water, in desert climates, or even in space. Schaeffler offers industrial maintenance solutions from its Lifetime Solutions portfolio, such as condition monitoring systems and intelligent lubricators, which help to prolong the life of industrial systems, reduce operating costs and minimise the use of resources.

Figure 6 Deployment site on Mars: the research vehicle "Curiosity" containing Schaeffler technology

Figure 7 PSC-series precision planetary gearboxes for industrial robots

The path to entrepreneurship

It all started with two brothers – Dr. Wilhelm Schaeffler (1908–1981) and Dr.-Ing. E.h. Georg Schaeffler (1917–1996) – more than 75 years ago. In 1946, the two business graduates founded the company Industrie GmbH in Herzogenaurach, marking the start of the success story of a leading global supplier to the automotive and industrial sectors, which now employs more than 83 000 people at around 200 locations in more than 50 countries.

The invention of the cage-guided needle roller bearing by Georg Schaeffler, for which a patent was filed in 1950, marked the foundation of this success, with the company experiencing rapid growth in the 1950s. The sensational success of the INA needle roller bearing and the development of new products led to expansions in production capacity, the creation of new departments and the establishment of subsidiaries both at home and, soon after, abroad. The location in Herzogenaurach remains home to the company's headquarters to this day.

LuK became a member company of the Schaeffler Group in 1999, which was followed by the acquisition of FAG Kugelfischer Georg Schäfer AG in Schweinfurt in 2001, making the Schaeffler Group the world's second largest manufacturer of rolling bearings. The INA, LuK and FAG product brands continue to play an important role in sales today.

Figure 8

In 1950, Georg Schaeffler filed a patent application for his idea: a needle roller cage, in which the rolling elements are guided parallel to the axis. Over the course of 1950, this idea progressed from prototype to a rolling bearing ready for volume production

Since the death of Dr.-Ing E.h. Georg Schaeffler in 1996, his wife Maria-Elisabeth Schaeffler-Thumann and son Georg F. W. Schaeffler have maintained the family's ownership of the company as shareholders, successfully steering its growth alongside the management team.

In 2008, the Schaeffler family submitted a voluntary takeover bid to the shareholders of Continental AG and, with a stake of 46 percent, is now the majority shareholder. Schaeffler also became a stock corporation during this period. Schaeffler AG has been listed on the Frankfurt Stock Exchange since October 2015. All common shares and, with them, all voting rights belong to the family, ensuring that Schaeffler remains a family-owned company.

Figure 9 Schaefiler AG goes public in 2015. Georg F. W. Schaefiler, Jürgen R. Thumann, Maria-Elisabeth Schaefiler-Thumann and CEO Klaus Rosenfeld (f.l.t.r.) usher in a new era on 9th October in Frankfurt

r Wertpapierbörse – Bekanntmachungen vom O SHA015 SCHAEFFLER AG – ERSTER PREIS 13,50 SHA015 SCHAFFELEP AG

A little known fact

It is a little known fact today that, alongside the metal division, carpets remained the second mainstay of the business until the late 1980s. By the early 1960s, the company had, according to its own figures, become the largest carpet manufacturer in the Federal Republic of Germany. In late 1989, Georg Schaeffler and his son Georg F. W. Schaeffler found a purchaser, divested themselves of the carpet business and began to focus solely on their expertise as automotive and industrial suppliers.

For a detailed account of the Schaeffler Group's history, including numerous photos, videos and contemporary witness accounts, visit: www.schaeffler.com/history

Training and studying – Professional future at Schaeffler

Training and studying have a long tradition at Schaeffler and are regarded as a top priority. Every year, approximately 900 young people around the globe – from Herzogenaurach to Taicang in China, and from Port Elizabeth in South Africa to Fort Mill in the USA – embark on a training program to land their dream job at Schaeffler.

The training portfolio traditionally focusses on industrial/technical subjects, such as mechanical engineering, electronics and mechatronics, leading to a range of possible career opportunities, including positions for development engineers, IT experts and specialists in production or administration. With Schaeffler's ongoing transformation and emerging industry trends such as robotics and hydrogen technology, the range of training and study programs is constantly expanding.

Schaeffler currently offers around 30 training and study programs across 48 locations in 16 countries.

Each year in Germany – the largest training region – around 1000 apprentices complete their training with a certificate from the Chamber of Commerce and Industry (IHK) after two to three and a half years. Additionally, around 300 students complete a dual bachelor or master's degree course in three to four and a half years. In addition to the academic qualification, the degree course includes intensive practical experience at Schaeffler or an accompanying training course certified by the Chamber of Commerce and Industry ("Two in One" study program).

The Schaeffler Group makes major investments in training and advanced training and collaborates with numerous universities on practice-oriented degree programs.

As a global mobility supplier, the company offers a wide range of professional development and career planning opportunities – including international exchanges between different Schaeffler Group companies.

For further information, visit: www.schaeffler.com/careers

We pioneer motion

Create the future with us. No matter where that might be.

SCHAEFFLER

Technical Pocket Guide

Unit systems	International system of units SI	. 18
	Base units in SI	01 . 20
	Internationally defined prefixes for units of measurement	20 . 27
	Definitions of terms according to DIN 1305	. 21 20
	Demittons of terms according to Div 1909	. 20
	Unit systems no longer to be used	. 30
	The Physical System of Units	. 30
	The Technical System of Units	. 30
	Conversions into the International System of Units SI	. 31
	Anglo-American systems	. 31
	Units of temperature	. 33
	Roman numeral system	. 34
	Definition	. 34
	Conversion table	. 34
	Rules	. 34
	Alphabets	. 35
	Greek alphabet	. 35
Mathematics	General symbols, numbers, definitions	. 36
	Mathematical symbols	. 36
	Frequently used numbers	. 36
	Golden section	. 37
	Pythagorean numbers	. 37
	Prime numbers	. 38
	Binomial coefficients	. 39
	Arithmetic	. 40
	Laws and rules	. 40
	Algebra	. 41
	Algebraic equation of the 2nd degree	. 41
	Algebraic equation of the 1st degree	. 42
	Logarithms	. 42
	Complex numbers	. 44

Page

Sequences and progressions	45
Arithmetic sequence	45
Arithmetic progression	45
Geometric sequence	46
Geometric progression	46
Analysis	46
Derivatives and differentials	46
Integration of functions	47
Integrals of antiderivatives (basic integrals)	48
Geometry	49
Circular functions (trigonometric functions)	49
Plane triangle	51
Right-angled triangle	52
Arc lengths, arc heights, chord lengths, circular segments	53
Centre of gravity of lines	54
Calculating surfaces	55
Centre of gravity of plane surfaces	57
Calculating solids	59
Centre of gravity of homogeneous solids	61
Basic geometric constructions	63
Calculating interest	67
Compound interest	67
Set theory	68
Set theory symbols	68
Numerics – number systems in data processing	69
Code	69
Fixed-point number and floating-point number	69
Positional notation systems and representation	69
Conversion between number systems	71

Technical statistics	Functions and areas of application74 Functions
	Terms, values and definitions74Population74Random sample74Raw data list74
	Terms and values75
	Statistical evaluation (example) 76 Function 76 Solution 76 Note on the evaluation of measurement series 81
	Gaussian normal distribution 82 Frequency density function and cumulative function 82 Representation of the Gaussian normal distribution 82 Value frequency 83 Standard normal distribution 83 First approximation 84 Scatter in a process 84 Weibull distribution 85 Weibull cumulative function 85 Evaluation of a rating life test 86 Gaussian rating life 86
	Design of experiments 87
	Introduction to the design of experiments – terms 87 Types of statistical experimental designs 87 Planning of random experiments 90 Evaluation of experimental results 91
	Regression and correlation
	The role of regression 92 Theoretical regression function 92 The role of correlation 93

Page

Chemistry	Elements and values
	The periodic system of elements
	Physical properties: Chemical elements
	Physical properties: Liquids 100
	Physical properties: Solids 101
	Physical properties: Gases and vapours 102
	Melting point of salts 103
	Metal salts in water - solubility 103
	Series
	Electrolytic series 104
	Thermoelectric series 104
	Technically important chemical substances 105
	Commercial names and formulae 105
Dhusiss	Definitions values and constants 100
FILYSICS	Atomic building blocks
	Atomic and mass numbers nuclear and atomic radii 110
	Values used in nuclear physics and other fields
	Physical constants 112
	Flectromagnetic radiation 113
	Temperature points 115
	Thermal expansion of solids and gases
	Astronomical and terrestrial definitions and values
	Astronomical units
	Our Solar System 119
	The Earth – fundamental figures 119
	Interesting speeds
	Dimensionless characteristic values
	Dimensionless characteristic values 120

Mechanics	Definitions 122 Mechanics 122 Dynamics 122
	Values and units
	Motion equations124Fundamental law of accelerated motion124Dynamic equilibrium according to d'Alembert124Reduction to static equilibrium problem124Solving motion equations125
	Simple motion events
	Forces in kinetics (selection) 128 Forces in kinetics 128 Constraining or guiding forces 129 Kinetic reactions 129 Additional forces in the accelerated reference system 130
	Law of conservation of energy
	Forms of energy in kinetics (selection)
	Mass moments of inertia of homogeneous solids
	Principle of linear momentum 136 Definition of the principle of linear momentum 136
	Principle of angular momentum 136 Definition of the principle of angular momentum 136 Calculations involving the principles of linear momentum and angular momentum 138

Page

	Impact laws – central impulse	138
	Definition of impact and impulse	138
	Impact laws – angular impulse	140
	Unguided motion	140
	Guided motion	141
	Impact laws for solid bodies	142
	Direct, central impact	142
	Oblique, central impact	144
	Direct, eccentric impact	145
	Oblique, eccentric impact	147
Mechanical	General definitions	148
vibrations and	Description of vibration events	148
ucousiics	Quantities and units	150
	Free, undamped vibration	152
	Description of the energy approach	152
	Motion equation, formulation and solution	152
	Overview of motion equations and amplification function	159
	Free, undamped and damped vibration	159
	Undamped vibration caused by external excitation	160
	Damped vibration caused by external excitation	162
	Technical acoustics	168
	Sound, sound pressure and sound levels	168
	Quantities and units	170
	Normal equal-loudness-level contours	171

Hydraulics and pneumatics	Hydraulics172Hydraulic transmissions172Hydraulic pumps174Hydraulic stationary transmissions177Hydraulic oil systems179Pneumatics188
	Pneumatic systems 188
Mechatronics	Terms and definitions190Mechatronics190Mechatronic system192Cyber-physical system193
	Sensors 193 Main task 193 Working principles 193 Examples 194
	Information processing 195 Main task 195 Open loop control and closed loop control 195
	Actuators 196 Main task 196 Examples 197
	Development process
	Modelling and simulation200Main task200Theoretical modelling200Block diagrams201
	Motivation and indicators for use 205

	Pag	e
	Examples of mechatronic systems	5
	Magnet bearings 20	6
	Mechatronics in rolling bearings 20	7
	Functional expansion of rolling bearings 20	7
	Sensors in and on the bearing 20	8
	Actuator bearings 21	3
	Energy supply and data transmission21	5
	Development potential of mechatronic rolling bearings	5
	Condition monitoring of machines with rolling bearings	
	by means of vibration analysis21	6
	Vibration analysis 21	6
	Time domain and frequency domain 21	8
	Amplitude modulation and demodulation (envelope signal) 21	9
	Typical frequencies	2
Strenath of materials	Terms, values and definitions	4
	Strength theory	4
	Values and units 22	6
	Material characteristics 22	8
	Load types 23	0
	Load types 23	0
	Buckling of slender bars 23	6
	Uniaxial and multi-axial stress states	9
	Fracture forms 23	9
	Strength hypotheses	1
	Area moments and section moduli	2
	Axial area moments and section moduli 24	2
	Area moments for various reference axes 24	5
	Torsional area moments and torsional section moduli	7

Bending due to transverse force	249	
Shear centres of thin-walled profiles	249	
Flat support types	251	
Intermediate elements	252	
Bending due to transverse force for simple loaded beams	252	
Principle of passive deformation work	256	
Area of application	256	
Checking	256	
Example 1: Statically determinate system	256	
Example 2: Statically indeterminate system	257	
Tables of integrals	258	
Hertzian contact and pressure		
Hertzian contact and pressure	263	
Hertzian contact and pressure Calculating contact pairs	263 263	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces	263 263 265	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings	263 263 265 268	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings Stress state under Hertzian contact	263 263 265 268 269	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings Stress state under Hertzian contact Hardening depth	263 263 265 268 269 274	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings Stress state under Hertzian contact Hardening depth Material selection for rolling bearing raceways	263 265 268 269 274 275	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings Stress state under Hertzian contact Hardening depth Material selection for rolling bearing raceways Dynamic loading – geometrical stability	 263 265 268 269 274 275 276 	
Hertzian contact and pressure Calculating contact pairs Hertzian coefficients for curved surfaces Hertzian pressure in rolling bearings Stress state under Hertzian contact Hardening depth Material selection for rolling bearing raceways Dynamic loading – geometrical stability Component loading	 263 265 268 269 274 275 276 276 	

Page

Engineering materials	Steel
	Steel grades
	System of material designations 282
	Unalloyed structural steels
	Quenched and tempered steels
	Case hardening steels
	Stainless steels
	Rolling bearing steels
	Free-cutting steels
	Cast iron and cast steel 295
	Flake graphite cast iron 295
	Spheroidal graphite cast iron
	Cast steel for general applications
	Creep-resistant cast steel 302
	Malleable cast iron
	Heat treatment of steel 306
	Heat treatment processes – hardening 306
	Heat treatment processes – annealing
	Iron-carbon phase diagram 311
	Case hardening 313
	Heat treatment of rolling bearing steels
	Vickers hardness, Brinell hardness, Rockwell hardness,
	tensile strength
	Non-ferrous metals
	Non-ferrous metal grades
	Copper alloys
	Aluminium alloys
	Magnesium alloys 325
	Plastic
	Structure and properties 327
	Classification of plastics 329
	Strength characteristics and dimensional stability
	Processing and use
	Material selection

Product development	Introduction and principles
	Development and problem-solving methods
	Evaluation of technical products
	Design methodology process models
	Rationalisation in product development
	Modular system
	Platform
	Virtual product development and use of CAx
	Data exchange and management
	Knowledge-based engineering and knowledge processing
	Knowledge-based engineering (KBE)
	Knowledge discovery in databases and data mining
Technical drawing guideline	Representation of technical objects348Representation options348Technical product documentation (TPD)348Representation of technical objects348
	Projection methods 348 Orthogonal projection 348 Pictorial representation 352
	Indication of cuts and sections353Representation in accordance with DIN353Types of sections353Identification of the cutting plane355Example of a section and cut representation356

Page

Basic elements in drawings	357
Standard font	357
Preferred numbers and preferred number series	358
Line types and line groups	361
Sheet sizes	363
Scales	364
Dimensioning in accordance with standards	364
Dimension indications in accordance with standards	364
Elements of dimension indication	364
Methods of dimension indication	366
Arrangement of dimensions, dimensioning rules	367
Types of dimension indication	368
Dimensioning of features	369
Symbols for weld connections	375
Weld connections	375
Indication of surface texture and roughness parameters in drawings	381
Surface texture	381
Graphical symbols without indications	381
Tolerance acceptance rules	382
Indications with the symbol	382
Profile surface texture parameters	393
Roughness profile parameters	396
Achievable mean roughness values	402
Hardness indications in drawings	
in accordance with ISO 15787:2016	403

Geometrical Product Specification (ISO GPS)406Concept406Aspects of ISO GPS408ISO GPS in tolerance specifications for rolling bearings411Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes444Systems of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Indications in drawings451Indication of general tolerances468General tolerances in accordance with ISO 22081469General tolerances in accordance with DIN 2769469as an addition to ISO 22081469	Tolerances and fits	Tolerances – general definition 404 Allocation of tolerances 404
Concept406Aspects of ISO GPS406Advantages of ISO GPS408ISO GPS in tolerance specifications for rolling bearings411Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerance son linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts448Systems of fits444Systems of fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Indications of general tolerances468Application of general tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance via loso 22081469		Geometrical Product Specification (ISO GPS)
Aspects of ISO GPS406Advantages of ISO GPS408ISO GPS in tolerance specifications for rolling bearings411Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerance on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings451Indications in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance with ISO 22081469		Concept
Advantages of ISO GPS408ISO GPS in tolerance specifications for rolling bearings411Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for fits448Application of fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Indications of general tolerances468Application of general tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Aspects of ISO GPS 406
ISO GPS in tolerance specifications for rolling bearings – examples411Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for foles442Systems of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Indication of general tolerances468Application of general tolerances468Application of general tolerances468Historical standard ISO 22081469		Advantages of ISO GPS 408
Tolerances for linear and angular sizes412Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Tolerancing principle468Application of general tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		ISO GPS in tolerance specifications for rolling bearings – examples
Dimensional tolerances in technical drawings412Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for shafts448Application of fits444Systems of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Indications of general tolerances468Application of general tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		Tolerances for linear and angular sizes
Tolerance zones dimensional and position tolerances415Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle468Application of general tolerances468General tolerances in accordance with ISO 22081469General tolerance sin accordance with DIN 2769469General tolerance values in accordance with DIN 2769469		Dimensional tolerances in technical drawings
Measurement of components417Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of ISO fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle468Application of general tolerances468General tolerances in accordance with ISO 22081469General tolerance sin accordance with DIN 2769469General tolerance values in accordance with DIN 2769469		Tolerance zones dimensional and position tolerances
Sizes417ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of ISO fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Indication of general tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance sin accordance with DIN 2769469		Measurement of components
ISO tolerances and fits425Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerancing principle464General tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Sizes 417
Functions and areas of application425ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of ISO fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Tolerancing principle464General tolerances468Application of general tolerances468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		ISO tolerances and fits
ISO code system for tolerances on linear sizes426Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Tolerancing principle468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Functions and areas of application
Derivation of ISO tolerance classes or ISO tolerance zones427ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Mounting fits for rolling bearings451Indications in drawings451Tolerances of form, orientation, location and run-out in drawings451Tolerancing principle464General tolerances468Application of general tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		ISO code system for tolerances on linear sizes
ISO tolerances for shafts438ISO tolerances for holes442Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances in accordance with ISO 22081469General tolerance values in accordance with DIN 2769469		Derivation of ISO tolerance classes or ISO tolerance zones 427
ISO tolerances for holes442Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		ISO tolerances for shafts
Systems of fits446Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450for shafts and housings450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		ISO tolerances for holes
Calculation of fits448Application of ISO fits449Rolling bearing tolerances and ISO tolerances450for shafts and housings450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Systems of fits
Application of ISO fits449Rolling bearing tolerances and ISO tolerancesfor shafts and housings450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081469General tolerance values in accordance with DIN 2769469		Calculation of fits
Rolling bearing tolerances and ISO tolerances for shafts and housings 450 Mounting fits for rolling bearings 450 Tolerances of form, orientation, location and run-out in drawings 451 Indications in drawings 451 Tolerancing principle 464 General tolerances 468 Application of general tolerances 468 General tolerances in accordance with ISO 22081 469 General tolerance values in accordance with DIN 2769 469 as an addition to ISO 22081 469		Application of ISO fits
for shafts and housings450Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Rolling bearing tolerances and ISO tolerances
Mounting fits for rolling bearings450Tolerances of form, orientation, location and run-out in drawings451Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		for shafts and housings 450
Tolerances of form, orientation, location and run-out in drawingsIndications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469		Mounting fits for rolling bearings 450
Indications in drawings451Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		Tolerances of form, orientation, location and run-out in drawings 451
Tolerancing principle464General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		Indications in drawings451
General tolerances468Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		Tolerancing principle
Application of general tolerances468General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		General tolerances
General tolerances in accordance with ISO 22081468Historical standard ISO 2768-2469General tolerance values in accordance with DIN 2769469as an addition to ISO 22081469		Application of general tolerances 468
Historical standard ISO 2768-2 469 General tolerance values in accordance with DIN 2769 469 as an addition to ISO 22081 469		General tolerances in accordance with ISO 22081
General tolerance values in accordance with DIN 2769 as an addition to ISO 22081		Historical standard ISO 2768-2 469
		General tolerance values in accordance with DIN 2769 as an addition to ISO 22081
Indications in drawings 471		Indications in drawings

	Page
Design elements	Definitions and principal functions
	Connecting elements
	Form fit connections 476
	Frictional locking connections 484
	Screw connections 493
	Material closure connections 532
	Sealing
	Overview 533
	Generating force and motion 53/
	Overview 534
	Subdivision by operating principle
	Transmitting rotary motion
	Overview
	Couplings 536
	Brakes
	Gearboxes 539
	Collecting/storing/dispensing/converting energy
	Overview 542
	Springs 543
	Dampers 550
	Influencing friction and wear 551
	Overview 551
	Lubricants 551
	Coatings
	Introduction 553
	The component surface – an active area 553
	Surface loading 553
	Coatings as design elements – "Tailored Coatings"
	Available coatings
	Application examples

Switching/controlling/regulating functional operations	568 568
Guiding elements in a rotary direction – rolling bearings	568
Support and guidance function	568
Dimensioning and design of rolling bearing arrangements	570
Dimensioning – load carrying capacity and life	571
Rigidity	586
Friction and increases in temperature	588
Speeds	599
Noise	604
Lubrication	606
Bearing data	614
Design of bearing arrangements	625
Products – overview	646
Basic structure of rotary rolling bearings	650
Radial ball bearings	651
Radial roller bearings	658
Radial needle roller bearings	665
Combined needle roller bearings	668
Bearings for screw drives	669
Yoke type, stud type and ball bearing track rollers	672
Axial ball bearings	673
Axial roller bearings	675
Crossed roller bearings, dimension series 18	677
Swivel bearings (slewing rings)	678
Rotary table bearings (bearings for combined loads)	679
Guiding elements in a rotary direction – plain bearings Metal/polymer composite plain bearings	680 680
Guiding elements in a rotary direction – spherical plain bearings	682
Spherical plain bearings	682
Rod ends	683

Page	
------	--

	Guiding elements in a translational direction	24
	l inear rolling element guidance systems	~
	without rolling element recirculation	35
	Linear rolling element guidance systems	
	with rolling element recirculation	37
	Monorail guidance systems	38
	Track roller guidance systems70)0
	Shaft guidance systems, linear ball bearings)8
	Applications	16
	Examples of the design of bearing arrangements71	16
	Bearing arrangement for the rotor shaft in a threephase motor 71	18
	Bearing arrangement for the main spindle in a CNC lathe	21
	Bearing arrangement for radial support rollers in a rotary kiln 72	24
	Bearing arrangement for connecting rods	
	(crank pins) in piston compressors72	27
	Bearing arrangement for paper guide rolls	20
	Linear bearing arrangement in the main axes of machine tools 73	,0 12
	Rearing arrangement for a wheelset in rail vehicles	36
	Bearinx calculation software from Schaeffler	39 (0
	Customer version – Beamix-ontine Rotative	10 (1
	Cristian selected with Factor Fristian	+1 ()
	Friction calculation with Easy Friction	ŧΖ
	medias – knowledge database, electronic selection and	
	Digital product catalogue	14 (. /.
	Engineering tools	+4 6.7
	רוצוווככוווא נטטוס	+4
Subject index		¥6

Unit systems

Unit systems

International system of units SI

Base units in SI The "Law on Units of Measurement" of 2 July 1969 came into force in the Federal Republic of Germany on 5 July 1970. This law defined the legal units of measurement for commercial practice that were to be introduced no later than 31 December 1977. Furthermore, this law defined the base values and base units of the International System of Units (Système International d'Unités, abbreviated to SI).

Defining constants In 2018, a fundamental change to the International System of Units (SI) was adopted at the 26th General Conference on Weights and Measures¹⁾, which came into force in 2019 and includes seven "defining constants" that create the foundation on which the base units and other SI units are defined.

Name	Symbol	Value
Hyperfine transition frequency of the caesium atom	Δv_{Cs}	9192631770 s ⁻¹
Speed of light	с	$299792458 \mathrm{m s}^{-1}$
Planck's constant	h	$6{,}62607015\cdot10^{-34}kgm^2/s$
Elementary charge	e	1,602176634 · 10 ⁻¹⁹ A s
Boltzmann's constant	k	1,380 649 \cdot 10^{-23} kg m²/(s² K)
Avogadro's constant	N _A	$6{,}02214076\cdot10^{23}\text{mol}^{-1}$
Luminous efficacy of radiation	K _{cd}	683 cd sr s ³ /(kg m ²)

Source: Die gesetzlichen Einheiten in Deutschland, 2. Auflage 2020, Physikalisch-Technische Bundesanstalt, Nationales Metrologieinstitut.

CGPM: Conférence Génerale des Poids et Mesures (General Conference on Weights and Measures).
The following table shows the seven base values and base units of the SI.

Base value	Base unit		Definition
	Designation	Symbol	
Length	Metre	m	The metre, unit symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m/s, where the second is defined in terms of the caesium frequency $\Delta v_{CS}^{1)}$.
Mass	Kilogram	kg	The kilogram, unit symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6,626 07015 \cdot 10 ⁻³⁴ when expressed in the unit J s, which is equal to kg m ² s ⁻¹ , where the metre and the second are defined in terms of c and Δv_{Cs}^{-1} .
Time	Second	S	The second, unit symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency $\Delta v_{cs}^{1)}$ to be 9192 631 770 when expressed in the unit Hz, which is equal to s ⁻¹ .
Electric current	Ampere	A	The ampere, unit symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge et o be 1,602176634 \cdot 10 ⁻¹⁹ when expressed in the unit C, which is equal to As, where the second is defined in terms of Δv_{CS}^{-1} .
Thermo- dynamic temperature	Kelvin	К	The kelvin, unit symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1,380 649 · 10 ⁻²³ when expressed in the unit J K ⁻¹ , which is equal to kg m ² s ⁻² K ⁻¹ , where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs}^{-1} .

Continuation of table, see Page 20.

Source: Die gesetzlichen Einheiten in Deutschland, 2. Auflage 2020, Physikalisch-Technische Bundesanstalt, Nationales Metrologieinstitut

 $^{(1)}$ The caesium frequency Δv_{CS} is the unperturbed ground-state hyperfine transition frequency of the caesium atom 133, see also table Defining constants, Page 18.

Base value	Base unit		Definition
	Designation	Symbol	
Amount of substance	Mole	Mole	The mole, unit symbol mol, is the SI unit of amount of substance. One mole contains exactly $6,02214076 \cdot 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant NA when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.
Luminous intensity	Candela	cd	The candela, unit symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the photometric radiation equivalent K_{cd} of monochromatic radiation of frequency 540 $\cdot 10^{12}$ Hz to be 683 when expressed in the unit Im W ⁻¹ , which is equal to cd sr W ⁻¹ , or cd sr kg ⁻¹ m ⁻² s ³ , where the kilogram, metre and second are defined in terms of h, c and Δv_{cs}^{-1} .

Continuation of table, Base units in SI, from Page 19.

Source: Die gesetzlichen Einheiten in Deutschland, 2. Auflage 2020, Physikalisch-Technische Bundesanstalt, Nationales Metrologieinstitut

 $^{1)}$ The caesium frequency Δv_{CS} is the unperturbed ground-state hyperfine transition frequency of the caesium atom 133, see also table Defining constants, Page 18.

Derived units	Further SI units can be derived from the base units. If this derivation leads only to the numerical factor 1, the derived units are coherent relative to the base units. Coherent units form a system of units.
Derivation of the unit "Newton"	In accordance with Newton's basic law, force is a value derived from the base values of mass, time and length.
	 This coherent value has the unit name "Newton" and the unit symbol "N": force = mass ⋅ acceleration 1 N = 1 kg ⋅ 1 m/s²

Sl units and derived units The following table shows an excerpt of common Sl units and units derived therefrom (other derived values and units are given in the specific sections).

Value	Formula	Units ¹⁾	Units no longer			
	symbol ³⁾	Name		Symbol and	to be used ²⁾ and their conversion	
		SI unit	Derived unit	its conversion		
Length	1	Metre	-	m	Micron	
		-	Nautical mile	1 NM = 1852 m	$1 \mu = 1 \mu m = 10^{-6} m$	
Area	Α	Square metre	-	m ²	Ångström 1 Å – 10 ⁻¹⁰ m	
		-	Are	1 a = 100 m ²	1 A - 10 III	
		-	Hectare	$1 ha = 10^4 m^2$	X unit 1 xu = 10 ⁻¹³ m	
Volume	V	Cubic metre	-	m ³		
		-	Litre	$1 l = 10^{-3} m^3$		
Elongation	ϵ		-	m/m		
Plane angle	α	Radian	-	1 rad ⁴⁾ = 1 m/m	Right angle	
	β	-	Degree	1° = $\pi/180$ rad	$1 \perp = (\pi/2)$ rad	
	Ŷ	-	Minute	1' = $\pi/10800$ rad	Gradian	
		-	Second	$1'' = \pi/648000$ rad	1 g = 1 goii	
		-	Gon	1 gon = $\pi/200$ rad	Centigon 1' = 1 cgon	
Solid angle	Ω	Steradian	-	$1 \text{ sr} = 1 \text{ m}^2/\text{m}^2$	1 10300	
Mass	m	Kilogram	-	kg	Gamma	
		-	Gram	$1 \text{ g} = 10^{-3} \text{ kg}$	1 γ = 1 μg	
		-	Tonne	1 t = 10 ³ kg	Quintal	
Mass of precious stones		-	Metric carat	$1 \text{ Kt} = 0,2 \cdot 10^{-3} \text{ kg}$	1 uz – 100 kg	
Mass/length	<i>m'</i>		-	kg/m		
Mass of textile fibres	-	-	Tex	$1 \text{ tex} = 10^{-6} \text{ kg/m}$		
Mass/area	<i>m</i> ″		-	kg/m ²		

Continuation of table, see Page 22.

■ SI units without special unit names. The units are formed on the basis of the units pertaining to the base values.

- ¹⁾ Legal units as of 2 July 1970.
- ²⁾ Units that legally may no longer be used as of 1 January 1978.
- ³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.
- ⁴⁾ The unit rad can be replaced by "1" in calculation.

Value Formula		Units ¹⁾		Units no longer		
	symbol ³⁾	Name		Symbol and	to be used ²⁾ and their conversion	
		SI unit	Derived unit	its conversion		
Density	ρ		-	kg/m ³	The numerical value	
Specific volume	v	•	-	m ³ /kg	of the specific gravity in kp/m ³ is not always equal to the numerical value of the density, but is dependent on location, see also Equation 4, Page 30	
Time	t ⁴⁾	Second	-	5	-	
		-	Minute	1 min = 60 s		
		-	Hour	1 h = 3 600 s		
		-	Day	1 d = 86 400 s		
		-	Tropical year	1 a ≈ 365,24 d		
Rotational speed	n		-	1/s	rpm is still permissible, however it should be replaced by min ⁻¹	
		-	Revolution/ minute	1 rpm = 1 min ⁻¹		
Frequency	f	Hertz	-	1 Hz = 1/s	-	
Angular frequency	ω	-	1/s			
Velocity	v		-	m/s		
		-	Kilometre/ hour	1 km/h = (1/3,6) m/s		
		-	Knot	1 kn = 1 NM/h		
Acceleration	а			m/s ²		
Angular velocity	ω		-	rad/s		
Angular acceleration	ώ		-	rad/s ²		
Volume flow	ν̈́	•	-	m ³ /s		
Mass flow	ṁ		-	kg/s		

Continuation of table, SI units and derived units, from Page 21.

Continuation of table, see Page 23.

SI units without special unit names. The units are formed on the basis of the units pertaining to the base values.

The units are formed on the basis of the units pertaining to the ba

¹⁾ Legal units as of 2 July 1970.

²⁾ Units that legally may no longer be used as of 1 January 1978.

³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.

⁴⁾ The formula symbol *t* is also used for temperature.

Value	Formula	Units ¹⁾		Units no longer		
	symbol ⁵⁾	Name		Symbol and	to be used ²⁾ and their conversion	
		SI unit	Derived unit	its conversion		
Force	F	Newton	-	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$	Kilopond	
Impulse	р		-	kg⋅m/s	1 kp = 9,806 65 N	
Angular momentum	L		-	$kg\cdot m^2/s$	Technical atmosphere 1 at = 1 kp/cm ²	
Pressure	p	Pascal	-	$1 \text{ Pa} = 1 \text{ N/m}^2$	Physical atmosphere	
Stress	σ τ		Newton/ square millimetre	1 N/mm ² = 1 MPa	1 atm = 1,013 25 bar Water column 1 mm WC = 1 kp/m ²	
			Bar	1 bar = 10 ⁵ Pa	Mercury column 1 mm Hg = 1,333 2 hPa	
Work Energy	W E	Joule	-	1 J = 1 N · m	Kilopond metre 1 kpm = 9,81 J Horsepower hour 1 hp · h = 0,735 5 kW · h	
Heat quantity	Q	Watt second	-	$1 \text{ W} \cdot \text{s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$		
		-	Kilowatt hour	1 kW · h = 3,6 MJ	Kilocalorie 1 kcal = 4,1868 kJ	
Moment of force	М	Newton metre	-	N·m	Kilopond metre 1 kpm = 9,81 N · m	
Power, energy flow	Ρ	Watt	-	1 W = 1 J/s = 1 N · m/s	Horsepower 1 hp = 0,735 5 kW 1 kW = 1,36 PS	
Heat flow	Ż				1 kcal/s = 4,1868 kW	
Dynamic viscosity	η	Pascal second	-	$1 \text{ Pa} \cdot \text{s} = 1 \text{ N} \cdot \text{s/m}^2$	Poise 1 P = 0,1 Pa · s	
					Centipoise 1 cP = 1 mPa · s	
Kinematic viscosity	ν	•	-	m²/s	Stokes 1 St = 10^{-4} m ² /s	
					Centistokes 1 cSt = 1 mm ² /s	

Continuation of table, SI units and derived units, from Page 22.

Continuation of table, see Page 24.

SI units without special unit names. The units are formed on the basis of the units pertaining to the base values.

¹⁾ Legal units as of 2 July 1970.

²⁾ Units that legally may no longer be used as of 1 January 1978.

³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.

Value	Formula	Units ¹⁾		Units no longer		
	symbol ³⁾	Name		Symbol and	to be used ²⁹ and their conversion	
		SI unit	Derived unit	its conversion		
Electric current	I	Ampere	-	A	-	
Voltage (potential difference)	U	Volt	-	1 V = 1 W/A		
Electrical resistance	R	Ohm	-	1 Ω = 1 V/A		
Electrical conductance	G	Siemens	-	1 S = 1/ Ω		
Apparent power	S	-	Volt-ampere	1 W = 1 V · A		
Reactive power	Q	-	Var	1 var = 1 W		
Quantity of electricity,	Q	Coulomb	-	1 C = 1 A · s		
electrical charge	-	-	Ampere-hour	1 A · h = 3 600 C		
Electrical capacitance	С	Farad	-	1 F = 1 C/V		
Electrical flux	ψ	-	-	С		
Electrical flux density	D	-	-	C/m ²		
Electrical field strength	Ε	-	-	V/m		
Magnetic flux	Φ	Weber	-	1 Wb = 1 V · s	Maxwell 1 M = 10 ⁻⁸ Wb	
Magnetic flux density	В	Tesla	-	1 T = 1 Wb/m ²	Gauss 1 G = 10 ⁻⁴ T	
Magnetic field strength	Η	-	-	A/m	Oerstedt 1 Oe = $10^3/(4\pi) \text{ A/m}$ = 79,58 A/m	
Inductance	L	Henry	-	1 H = 1 Wb/A	-	

Continuation of table, SI units and derived units, from Page 23.

Continuation of table, see Page 25.

¹⁾ Legal units as of 2 July 1970.

²⁾ Units that legally may no longer be used as of 1 January 1978.

³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.

Value	Formula	Units ¹⁾		Units no longer		
	symbol	Name		Symbol and	to be used ²⁷ and their conversion	
		SI unit	61 unit Derived unit Its cor			
Temperature	Т, <i>Ө</i>	Kelvin	-	к	-	
Celsius temperature	t ⁴⁾ , ϑ, θ	-	Degree Celsius	1 °C = 1 K ⁵⁾		
Thermal diffusivity	а	-	-	m²/s		
Specific heat capacity	с	-	-	J/(kg · K)	1 kcal/(kg · grd) = 4,187 kJ/(kg · K)	
Entropy	S	-	-	J/kg	-	
Specific entropy	5	-	-	J/(kg · K)		
Enthalpy	Н	Joule	-	J		
Thermal conductivity	λ	-	-	W/(m · K)	1 kcal/(m · h · grd) = 1,163 W/(m · K)	
Heat transfer coefficient	α	-	-	$W/(m^2 \cdot K)$	-	
Heat transition coefficient	k	-	-	$W/(m^2 \cdot K)$		

Continuation of table, SI units and derived units, from Page 24.

Continuation of table, see Page 26.

1) Legal units as of 2 July 1970.

²⁾ Units that legally may no longer be used as of 1 January 1978.

³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.

⁴⁾ The formula symbol *t* is also used for time.

⁵⁾ The Celsius temperature *t* is the name for the particular difference between any thermodynamic temperature *T* and the temperature $T_0 = 273,15$ K. It is therefore $t = T - T_0 = T - 273,15$ K. The degree Celsius is the name for the unit Kelvin when specifying Celsius temperatures. In compound units, temperature differences must be specified in K, for example kJ/(m · s · K). Tolerances for Celsius temperatures are presented, for example, as $t = (50 \pm 2) \circ C$ or $t = 50 \circ C \pm 2 \circ C$ or $t = 50 \circ C \pm 2$ K.

Value Formula		Units ¹⁾		Units no longer		
	symbol ³⁾	Name		Symbol and	to be used ²⁾ and	
		Clunit	Darivad unit	its conversion	their conversion	
		Siunit	Derived unit			
Amount of substance	n	Mole	-	mol	-	
Atomic unit of mass	и	-	-	1,660 6 · 10 ⁻²⁷ kg		
Energy	W	Electron volt	-	$1 \text{ eV} = 1,6022 \cdot 10^{-19} \text{ J}$		
Activity of a radioactive substance	Α	Becquerel	-	1 Bq = 1/s	Curie 1 Ci = 3,7 · 10 ¹⁰ /s	
Absorbed dose	D	Gray	-	1 Gy = 1 J/kg	Rem 1 rem = 10^{-2} J/kg	
Energy dose rate	Ď	-	-	W/kg	-	
lon dose	J	-	-	C/kg	Röntgen 1 R = 258 · 10 ⁻⁶ C/kg	
Ion dose rate	j	-	-	A/kg	-	
Dose equivalent	Н	Sievert	-	1 Sv = 1 J/kg		
Luminous intensity	I	Candela	-	cd		
Luminance	L	-	-	cd/m ²	Stilb 1 sb = 10^4 cd/m ²	
					Apostilb 1 asb = (1/ π) cd/m ²	
Luminous flux	Φ	Lumen	-	$1 \text{ lm} = 1 \text{ cd} \cdot \text{sr}$	-	
Luminous energy	Q	-	-	1 lm · s		
Illuminance	Ε	Lux	-	$1 \text{ lx} = 1 \text{ lm/m}^2$		
Refractive power of lenses	D	-	Dioptre	1 dpt = 1/m		

Continuation of table, SI units and derived units, from Page 25.

Legal units as of 2 July 1970.
 ²⁾ Units that legally may no longer be used as of 1 January 1978.
 ³⁾ Formula symbol standardised in accordance with DIN 1304 and DIN EN ISO 80000-1.

Internationally defined prefixes for units of measurement

Decimal fractions or multiples of SI units are designated by prefixes before the names of the units or by prefix symbols before the unit symbols. This factor, by which the unit is multiplied, is generally a power of ten with a positive or negative exponent.

The prefix symbol is placed immediately in front of the unit symbol, without a space, to form a coherent unit, such as the millimetre (mm). Compound prefixes, such as millikilogram (mkg), must not be used.

Prefixes must not be used for the following units: the time units of the minute, hour, day, year; the temperature unit of the degree Celsius; the angular units of the degree, second, minute.

Power	Name		Prefix	Prefix	
of ten	Long scale (Western Europe etc.)	Short scale (USA etc.)		symbol	
10 ⁻³⁰	Quintillionth	Nonillionth	Quecto	q	
10 ⁻²⁷	Quadrilliardth	Octillionth	Ronto	r	
10 ⁻²⁴	Quadrillionth	Septillionth	Yocto	у	
10 ⁻²¹	Trilliardth	Sextillionth	Zepto	z	
10 ⁻¹⁸	Trillionth	Quintillionth	Atto	a	
10 ⁻¹⁵	Billiardth	Quadrillionth	Femto	f	
10 ⁻¹²	Billionth	Billionth	Pico	р	
10 ⁻⁹	Milliardth	Trillionth	Nano	n	
10 ⁻⁶	Millionth		Micro	μ	
10 ⁻³	Thousandth		Milli	m	
10 ⁻²	Hundredth		Centi	с	
10 ⁻¹	Tenth		Deci	d	

The following table shows a selection of the most important prefixes:

Continuation of table, see Page 28.

Continuation of table, Internationally defined prefixes for units of measurement, from Page 27.

Power	Name		Prefix	Prefix
of ten	Long scale (Western Europe etc.)	Short scale (USA etc.)		symbol
10 ¹	Ten		Deca	da
10 ²	Hundred		Hecto	h
10 ³	Thousand		Kilo	k
10 ⁶	Million		Mega	Μ
10 ⁹	Milliard	Billion	Giga	G
10 ¹²	Billion	Trillion	Tera	Т
10 ¹⁵	Billiard	Quadrillion	Peta	Р
10 ¹⁸	Trillion	Quintillion	Exa	E
10 ²¹	Trilliard	Sextillion	Zetta	Z
10 ²⁴	Quadrillion	Septillion	Yotta	Y
10 ²⁷	Quadrilliard	Octillion	Ronna	R
10 ³⁰	Quintillion	Nonillion	Quetta	Q

Definitions of terms According to DIN 1305:1988, the following definitions and terms according to DIN 1305 are specified:

- 1 This standard applies to the field of classical physics and its application **Scope** in engineering and economic usage.
- 2 The mass m describes the characteristic of a body, which manifests itself Mass in inertia effects in relation to a change in its motion state and also in its attraction for other bodies.

The mass of a body is decisive for its inertial behaviour. In Newton's law of forces, the inert mass m must therefore be used, while the associated forces are inertia forces. However, the mass is also simultaneously the cause of gravity (weight force). In this case, the heavy mass m must be used. These are, in terms of phenomena, differing characteristics of mass but are equivalent in all relationships.

3 Measured value of weight *Equation 1*

In the case of a weighing operation in a fluid (liquid or gas) of the density
$$\rho_{fl}$$
 the measured value of weight W is defined by the following relationship:

$$W = m \, \frac{1 - \frac{\rho_{fl}}{\rho}}{1 - \frac{\rho_{fl}}{\rho_G}} \label{eq:W}$$

where ρ is the density of the weighed bulk and ρ_{G} is the density of the units of weight.

4
Conventional
measured weight
value

The conventional measured weight value W_{std} is calculated on the basis of the equation from section 3 Measured value of weight with the standard conditions $\rho_{fl} = 1.2 \text{ kg/m}^3$ and $\rho_{fc} = 8000 \text{ kg/m}^3$. In this case, the density of the weighed bulk at +20 °C must be inserted for p.

5 The force F is the product of the mass m of a body and the acceleration a Force which it experiences or would experience as a result of the force F:

Eauation 2

 $F = m \cdot a$

6 Weight force Eauation 3 The weight force F_G of a body of mass m is the product of the mass m and the gravitational acceleration g:

 $F_G = m \cdot g$

7

The word "weight" is predominantly used in three different senses: Weight instead of "measured value of weight"

as a shortened form of "weight force"

If misunderstandings could arise, the word "weight" should be replaced by the relevant term "measured value of weight" or "weight force".

- 8 The word "load" is used in different senses in engineering
- Load (e.g. for power, force or for an object).

If misunderstandings could arise, the word "load" should be avoided.

Explanations We live and have weight resting on the base of an ocean of air. In weighing, a correction is hardly ever made for the buoyancy of the air, although this would actually be necessary. We almost always accept the uncorrected measured value, which is also the basis for settlement of accounts in commerce where goods are sold by weight. It is necessary, however, to distinguish between the mass and the result of a weighing operation in air, namely the measured value of weight. Where weighed items are of low density, as in the case of mineral oils, the relative difference between the mass and the measured value of weight is equivalent to approximately 1 per mil. It is smaller where weighed items are of high density. Air has a measured weight value of zero. Bodies of the same mass but of differing density will have different measured weight values. The measured weight value of a body will also change if there is a change in the density of the surrounding air. The measured weight value is also dependent on the weather.

Unit systems no longer to be used

The Physical Like the SI System of Units, the Physical System of Units used System of Units the base values of length, mass and time, but used the following base unit for these values.

Base value	Base unit				
	Designation	Symbol			
Length	Centimetre	cm			
Mass	Gram	g			
Time	Second	S			

System of Units base units:

The Technical The Technical System of Units used the following base values and

Base value	Base unit				
	Designation	Symbol			
Length	Metre	m			
Force	Kilopond	kp			
Time	Second	s			

In the Technical System of Units, force was defined as the base value with the unit name "kilopond" (kp). All forces were compared with the gravitational attraction of the Earth (weight). In contrast to mass, however, the acceleration of free fall (and therefore the weight) is dependent on the location.

The following definition was therefore given:

1 kilopond is the force with which the mass of 1 kilogram exerts pressure on its support surface at the location of the standard acceleration of free fall ($g_n = 9,80665 \text{ m/s}^2$).

Eauation 4

$$1 \text{ kp} = 1 \text{ kg} \cdot 9,80665 \text{ m/s}^2 = 9,80665 \frac{\text{kg m}}{\text{s}^2}$$

The relationship between the International System of Units SI and the Technical System of Units is given by virtue of the fact that, in the SI system, the derived, coherent quantity with the unit name "Newton" was defined for the force:

Equation 5

$$1 \text{ N} = 1 \frac{\text{kg m}}{\text{s}^2}$$

Therefore, 1 kp = 9,80665 N.

For technical conversions from one system to the other, it is normally sufficient to use 1 kp = 9,81 N.

Conversions into the International System of Units SI

Anglo-American systems

The Anglo-American units are based on older, English systems of units and are still in common use in the USA. They include the units of the fps system ("foot-pound-second").

Units The following table shows the conversion of the most significant units in the fps system and SI:

	fps system		SI (MKS)	
Length	1 ft	= (1/3) yd = 12 in	1 ft	= 0,304 8 m
Area	1 ft ²	= 144 in ²	1 ft ²	= 0,092 903 m ²
Volume	1 ft ³ 1 gal (US)	= 1728 in ³ = 6,228 2 gal (UK) = 0,832 68 gal (UK)	1 ft ³	= 0,028 316 9 m ³
Velocity	1 ft/s 1 knot	= 0,681818 mile/h = 1,687 7 ft/s	1 ft/s	= 0,304 8 m/s
Acceleration	1 ft/s ²		1 ft/s ²	$= 0,304 8 \text{ m/s}^2$
Mass	1 lb 1 slug	= cwt/112 = 32,174 lb	1 lb 1 slug	= 0,453 592 kg = 14,593 9 kg
Force	1 lbf 1 pdl	= 0,031081 lbf	1 lbf 1 pdl	= 4,448 22 N = 0,138 255 N
Work	1 ft · lb 1 btu	= 0,323 832 cal (IT) = 252 cal _{IT} = 778,21 ft · lb	1 ft · lb 1 btu	= 1,355 82 J = 1,055 06 kJ
Pressure	1 lb/ft ² 1 lb/in ² 1 atm	= $6,9444 \cdot 10^{-3}$ lb/in ² = 0,068 046 atm = 29,92 in Hg = 33,90 ft water	1 lb/ft ² 1 lb/in ² 1 atm	= 47,88 N/m ² = 6 894,76 N/m ² = 1,013 25 bar
Density	1 lb/ft ³ 1 lb/gal	= 5,787 04 \cdot 10 ⁻⁴ lb/in ³ = 6,228 2 lb/ft ³	1 lb/ft ³ 1 lb/gal	= 16,018 5 kg/m ³ = 99,763 3 kg/m ³
Temperature	32 °F 212 °F	= 0 °C = 100 °C	1 °F	= 0,555 6 °C
Power	1 ft · lb/s	= $1,8148 \cdot 10^{-3}$ hp = $1,28182 \cdot 10^{-3}$ btu/s	1 ft · lb/s	= 1,353 34 W
Specific heat capacity	1 btu/(lb · c	leg F)	1 btu/(lb · deg F)	= 4,186 8 kJ/(kg · K)
Coefficient of thermal conductivity	1 btu/(ft · h	· deg F)	1 btu/(ft · h · deg F)	= 1,730 6 W/(m · K)
Heat transfer (heat transition) coefficient	1 btu/(ft ² ·	h∙deg F)	1 btu/(ft ² · h · deg F)	$= 5,677 8 W/(m^2 \cdot K)$
Kinematic viscosity	1 ft ² /s		1 ft ² /s	= 0,092 903 m ² /s
Dynamic viscosity	$1 \text{ lb/(ft} \cdot \text{s})$		1 lb/(ft · s)	$= 1,48816 \text{ kg/(m} \cdot \text{s})$

Source: DIN 1301-3:2018.

Length, area and The following table shows the conversion from German to English dimensions for length, area and volume:

German	– English		English – German			
Length d	limensions					
1 mm	= 0,039 3701	4 inches	1 pt = 1/864 foot	= 1/72 inch	= 0,352 78 mm	
1 cm	= 0,393 7014	7 inches	1 inch		= 25,399 956 mm	
1 m	= 3,280 851 f	eet	1 foot	= 12 inches	= 304,799 472 mm	
1 m	= 1,093 616 y	vards			= 0,304 799 m	
1 m	= 0,546 808 f	athoms	1 yard	= 3 feet		
1 km	= 0,621 372 s	tatute miles		= 36 inches	= 0,914 398 m	
1 km	= 0,539 614 r	nautical miles	1 fathom	= 2 yards		
1 km	= 0,539 037 A	Admiralty miles		= 6 feet		
1 Germa	n statute mile	= 7,5 km		= 72 inches	= 1,828797 m	
1 Germa	n nautical mile	e = 1,852 km	1 stat. mile	= 880 fathoms		
1 geogra	phical mile	= 7,420 438 54 km		= 1760 yards		
		(15 miles = 1 degree of arc)		= 5 280 feet		
1 degree	e of arc	= 111,306 6 km		= 1 English mile	= 1,609 341 km	
1 degree	of meridian	= 111,120 6 km	1 common English mile	= 5 000 feet	= 1,523 995 km	
			1 nautical mile	= 6 080 feet	= 1,853178 km	
			1 Admiralty	= 6 086,5 feet	= 1,85516 km	
			mile	= 1/4 geographical mile		
				= 1/60 of degree	of arc	
Area dim	ensions					
1 mm ²	= 0,001 550 0	1 square inch (inch ²)	1 sq. inch		= 6,451578 cm ²	
1 cm ²	= 0,155 006 3	5 square inch (inch ²)	1 sq. foot	= 144 sq. inches	$= 929,027 2 \text{ cm}^2$	
1 m ²	= 10,763 983	28 square feet (foot ²)			= 0,092 903 m ²	
1 m ²	= 1,195 995 9	96 square yards	1 sq. yard	= 9 sq. feet	= 8 361,244 80 cm ²	
1 a	= 100 m ²	= 0,024 711 acres	1 acre	= 160 sq. poles		
1 ha	= 100 a	= 2,471063 acres		= 4 840 sq. yards		
1 km²	= 100 ha	= 0,386100 square miles		= 40,468 4 a	$= 4046,8425 \text{ m}^2$	
1 geogra	phical	= 55,062 91 km ²	1 sq. mile	= 640 acres	= 2,59 km ²	
square	e mile		1 sq. pole		= 25,298 676 m ²	
			1 circular inch	$=\pi/4$ sq. inches	$= 5,067057 \text{ cm}^2$	

Continuation of table, see Page 33.

Germa	n – English	English – German			
Volume	e dimensions				
1cm^3	= 0,061024 cubic inches (inch ³)	1 cub. inch		$= 16,386979 \text{ cm}^3$	
$1 dm^3$	= 0,035 315 cubic feet (foot ³)	1 cub. foot	= 1728 cub. inches	= 28,316700 dm ³	
	= 61,024 061 cubic inches	1 cub. yard	= 27 cub. feet	= 0,764 551 m ³	
1 m ³	= 1,307 957 cubic yards	1 reg. ton	= 100 cub. feet	= 2,831670 m ³	
	= 35,314 850 cubic feet	1 imperial	= 277,26 cub. inches= 4,543 454 l		
1 m ³	= 0,353148 register tons	gallon			
1 l	= 0,220 097 imperial gallons	1 bushel	= 8 gallons	= 36,347 632 l	
1 l	= 0,027 512 bushels	1 imperial	= 8 bushels	= 64 gallons	
1 l	= 0,003 439 imperial quarters	quarter	= 290,781056 l	= 2,907 811 hl	
1 hl	= 100 l				
	= 0,343 901 imperial quarters				

Continuation of table, Length, area and volume dimensions, from Page 32.

Units of temperature The following table shows the conversion into various units of temperature:

Τ _K	t _C	t _F	T _R
К	°C	°F	°R
Kelvin	Degree Celsius	Degree Fahrenheit	Degree Rankin
$T_{K} = 273,15 + t_{C}$	$t_{\rm C} = T_{\rm K} - 273,15$	$t_{F} = \frac{9}{5} \cdot T_{K} - 459,67$	$T_R = \frac{9}{5} \cdot T_K$
$T_{K} = 255,38 + \frac{5}{9} \cdot t_{F}$	$t_{C}=\frac{5}{9}\left(t_{F}-32\right)$	$t_F = 32 + \frac{9}{5} \cdot t_C$	$T_{R} = \frac{9}{5} (t_{C} + 273, 15)$
$T_{K} = \frac{5}{9} \cdot T_{R}$	$t_{\rm C} = \frac{5}{9} \left(T_{\rm R} - 273, 15 \right)$	$t_{\rm F} = T_{\rm R} - 459,67$	$T_{R} = 459,67 + t_{F}$
Conversion of some temper	atures		
0,00 +255.37	-273,15	-459,67	0,00 +459.67
+273,15	0,00	+32,00	+491,67
+300,00	+26,85	+80,33	+540,00
+310,94 +373,15	+37,78 +100,00	+100 +212	+559,67 +671,67
+400,00 +500,00	+126,85 +226,85	+260,33 +440,85	+720,00 +900,00

 $^{1)}$ The triple point of water is +0,01 °C.

This is the temperature point of pure water at which solid ice, liquid water and water vapour occur simultaneously in equilibrium (at 1013,25 hPa).

Temperature differential: 1 Kelvin = 1 degree Celsius = 1,8 degree Fahrenheit = 1,8 degree Rankin.

Roman numeral system

Definition In the Roman numeral system, a distinction is made between cardinal numbers and ordinal numbers:

Cardinal numbers			Ordinal numbers			
l = 1	X = 10	C = 100	M = 1000	V = 5	L = 50	D = 500

Conversion table The following table shows some conversion examples:

1	1	VII	7	XL	40	XCIX	99	DC	600
	2	VIII	8	L	50	С	100	DCC	700
	3	IX	9	LX	60	CC	200	DCCC	800
IV	4	Х	10	LXX	70	CCC	300	СМ	900
۷	5	XX	20	LXXX	80	CD	400	CMXCIX	999
VI	6	XXX	30	XC	90	D	500	Μ	1000

Rules In the formation of Roman numerals, the following rules apply:

- Notation starts from the left.
- Identical cardinal numbers are added consecutively. A maximum of 3 identical cardinal numbers may appear consecutively, while ordinal numbers are only written once: Permissible: III = 3; XX = 20 Not permissible: XXXX = 40; VV = 10
- Smaller numbers are added to the right of larger numbers: VI = 6. Smaller numbers are subtracted to the left of larger numbers: IV = 4.
- Ordinal numbers may be added but not subtracted: Permissible: LV = 55 Not permissible: VL = 45
- Cardinal numbers may only be subtracted from the next largest cardinal number or ordinal number: Permissible: IV = 4; XL = 40; CD = 400 Not permissible: IC = 99; XM = 990

Examples:

1673 = MDCLXXIII; 1891 = MDCCCXCI; 1981 = MCMLXXXI

Alphabets

Greek alphabet

nabet The Greek alphabet and some variant shapes of specific letters are shown:

Αα	Ββ	Γγ	$\Delta \delta$	Eε	Zζ
Alpha (a)	Beta (b)	Gamma (c)	Delta (d)	Epsilon (e)	Zeta (z)
Ηη	Θθ	Iι	Кк	Λλ	Μμ
Eta (e)	Theta (th)	lota (i)	Kappa (k)	Lambda (l)	Mu (m)
Νν	Ξξ	0 о	$\Pi \pi$	Ρρ	Σσ,ς
Nu (n)	Xi (x)	Omicron (o)	Pi (p)	Rho (r)	Sigma (s)
Ττ	Υυ	Φφ, φ	Χχ	Ψψ	Ωω
Tau (t)	Upsilon (ü)	Phi (f)	Chi (ch)	Psi (ps)	Omega (o)

Mathematics

General symbols, numbers, definitions

Mathematical symbols

The following table shows a selection of the most important mathematical symbols.

Symbol	Designation	Symbol	Designation
+	Plus		Root of $(\sqrt[n]{} = \text{nth root of})$
-	Minus	n!	n factorial (example: $3! = 1 \cdot 2 \cdot 3 = 6$)
· or x	Multiplied by	x	Absolute value of x
/ or :	Divided by	\rightarrow	Approaches
=	Equals	8	Infinity
+	Not equal to	iorj	Imaginary unit, $i^2 = -1$
<	Less than	\perp	Perpendicular to
≦I	Less than or equal to		Parallel to
>	Greater than	≯	Angle
≧	Greater than or equal to	Δ	Triangle
*	Approximately equal to	lim	Limit
«	Much less than	Δ	Delta (difference between two values)
≫	Much greater than	d	Total differential
≙	Corresponds to	Д	Partial differential
	And so forth, to	ſ	Integral
~	Proportional	log	Logarithm
0	Interlinking, composition	ln	Logarithm to base e, $e = 1 + 1/1! + 1/2! + 1/3! +$
Σ	Summation of	lg	Logarithm to base 10
П	Product		

Frequently used The following table shows a selection of numbers or constants which are frequently used in mathematics.

Symbol	Value	Symbol	Value	Symbol	Value
е	2,718 282	ln 10	2,302 585	π	3,141593
e ²	7,389056	1/(ln 10)	0,434 294	$\sqrt{\pi}$	1,772 454
1/e	0,367879	$\sqrt{2}$	1,414 214	$1/\pi$	0,318 310
lg e	0,434 294	1/√2	0,707 107	π^2	9,869604
√e	1,648721	$\sqrt{3}$	1,732051	180/π	57,295780
1/(lg e)	2,302 585			$\pi/180$	0,017 453

the ratio a/x, where:

Golden section

Equation 1

Figure 1 Golden section

 Division in extreme and mean ratio
 Construction, general formulation

The golden section (division in extreme and mean ratio) is defined as

Pythagorean numbers

Pythagorean numbers are integers x, y, z, to which the following equation applies:

Equation 2

 $x^2 + y^2 = z^2$

Triangles formed from the sides x, y, z in any unit of length are right-angled. If we apply:

Equation 3

x = 2pq $y = p^2 - q^2$ $z = p^2 + q^2$

and where p and q are random integers, this gives the Pythagorean numbers:

р	q	х	у	z	р	q	х	у	z
2	1	4	3	5	4	2	16	12	20
3	1	6	8	10	5	2	20	21	29
4	1	8	15	17	4	3	24	7	25
5	1	10	24	26	5	3	30	16	34
3	2	12	5	13	5	4	40	9	41

The following should apply:

Equation 4

0 < q < p	Natural numbers
p, q	Co-prime
p + q	Odd

Prime numbers The following table shows prime numbers and compound numbers that are not divisible by 2, 3 or 5, with their smallest factors. The numbers listed are below 1 000.

7		107		209	11	311		409		511	7	613		713	23	817	19	917	7
11		109		211		313		413	7	517	11	617		719		821		919	
13		113		217	7	317		419		521		619		721	7	823		923	13
17		119	7	221	13	319	11	421		523		623	7	727		827		929	
19		121	11	223		323	17	427	7	527	17	629	17	731	17	829		931	7
							_										_		
23		127		227		329	7	431		529	23	631		733		833	7	937	
29		131		229		331		433		533	13	637	7	737	11	839		941	
31		133	7	233		337		437	19	539	7	641		739		841	29	943	23
37		137		239		341	11	439		541		643		743		847	7	947	
41		139		241		343	7	443		547		647		749	7	851	23	949	13
4.2		142	11	2/7	12	247		440		F F 1	10	(10	11	751		052		052	
43		145	11	247	15	240		449	11	221	19	649	11	751		077		955	7
47	7	149		251	11	249		451	11	222	/	000		701		07/		959	21
49	/	151		200	11	252		457		557	12	009		701	7	0/2		901	21
22		157	7	257	7	202	10	401		559	15	001	22	703	12	000	11	907	
27		101	/	259	/	201	19	405		202		007	23	/0/	15	609	11	9/1	
61		163		263		367		467		569		671	11	769		871	13	973	7
67		167		269		371	7	469	7	571		673		773		877		977	,
71		169	13	271		373	,	473	11	577		677		779	19	881		979	11
73		173		277		377	13	479		581	7	679	7	781	11	883		983	
77	7	179		281		379		481	13	583	11	683	·	787		887		989	23
79		181		283		383		487		587		689	13	791	7	889	7	991	
83		187	11	287	7	389		491		589	19	691		793	13	893	19	997	
89		191		289	17	391	17	493	17	593		697	17	797		899	29		
91	7	193		293		397		497	7	599		701		799	17	901	17		
97		197		299	13	401		499		601		703	19	803	11	907			
101		199		301	7	403	13	503		607		707	7	809		911			
103		203	7	307		407	11	509		611	13	709		811		913	11		

Binomial coefficients

The binomial coefficient $\binom{n}{k}$ is defined as:

Equation 5

$\binom{n}{k} =$	$= \frac{n!}{k! (n-k)!} \qquad \qquad \text{where} n \ge k$							
n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	$\binom{n}{7}$
1 2 3 4 5	1 1 1 1	1 2 3 4 5	1 3 6 10	1 4 10	1 5	1		
6 7 8 9 10	1 1 1 1	6 7 8 9 10	15 21 28 36 45	20 35 56 84 120	15 35 70 126 210	6 21 56 126 252	1 7 28 84 210	1 8 36 120
11 12 13 14 15	1 1 1 1	11 12 13 14 15	55 66 78 91 105	165 220 286 364 455	330 495 715 1001 1365	462 792 1287 2002 3003	462 924 1716 3003 5005	330 792 1716 3432 6435
n	$\binom{n}{8}$	$\binom{n}{9}$	$\binom{n}{10}$	$\binom{n}{11}$	$\binom{n}{12}$	$\binom{n}{13}$	$\binom{n}{14}$	$\binom{n}{15}$
8 9 10	1 9 45	1 10	1					
11 12 13 14 15	165 495 1287 3003 6435	55 220 715 2002 5005	11 66 286 1001 3003	1 12 78 364 1365	1 13 91 455	1 14 105	1 15	1

Arithmetic

Laws and rules The following laws and rules are defined in arithmetic:

Rules of signs The following rules of signs apply:

Equation 6	a + (-b) = a - b	a - (-b) = a - (-b)	$-b$ $a \cdot (-b) = -ab$					
	$(-a) \cdot (-b) = a b$	$(-a) \cdot b = -a$	b $(-a)/b = -\frac{a}{b}$					
	$a/(-b) = -\frac{a}{b}$	(-a)/(-b) =	ab					
Commutative law	The commutative law of	addition and m	Iltiplication is:					
Equation 7	a+b=b+a	$a+b=b+a$ $a\cdot b=b\cdot a$						
Associative law	iplication is:							
Equation 8	$(a+b)+c = a+(b+c)$ $(ab) \cdot c = a \cdot (bc) = a \cdot b \cdot c$							
Binomials	The following equations binomial formulae.	The following equations give examples of products of algebraic sums and binomial formulae.						
Equation 9	$(a+b)\cdot(c+d) = ac$	+ad+bc+bd						
	$(a\pm b)^2 = a^2\pm 2 ab$	$b + b^2$						
	$(a+b)\cdot(a-b) = a^2 \cdot$	-b ²						
	$(a\pm b)^3 = a^3\pm 3a^2$	$b+3ab^2\pm b^3$						
	$(a\pm b)^n=\sum_{k=0}^n (\pm 1)^k$	$\binom{n}{k} a^k b^{n-k}$						
	$(a+b+c)^2 = a^2+b$	$^{2}+c^{2}+2 ab+$	2 a c + 2 b c					
Mean values	The arithmetic mean is:							
Equation 10	$\frac{a+b}{2} ; \frac{a+b+c}{3}$; A	$a_{n} = \frac{1}{n} (a_{1} + a_{2} + + a_{n})$					
	The geometric mean is:							
Equation 11	√a·b ;∛a·b·c	; G _r	$a_1 = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$					
	The harmonic mean is:							
Equation 12	$\frac{2 a b}{a+b} = 2 \left/ \left(\frac{1}{a} + \frac{1}{b}\right)\right.$	H _r	$r_{1} = \frac{n}{1/a_{1} + 1/a_{2} + \dots + 1/a_{n}}$					
	The following applies:							
Equation 13	$H_{n} \leqq G_{n} \leqq A_{n}$							

Powers Equation 14

The following equations give examples of how powers are formed:

$a^n \cdot a^m = a^{n+m}$	$\frac{a^m}{a^n} = a^{m-n}$	$a^n \cdot b^n = (ab)^n$
$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	$(a^m)^n = a^{m \cdot n}$	$a^{-n} = \frac{1}{a^n}$
$0^{n} = 0$	$a^0 = 1 (a \neq 0)$	

Roots

The following equations give examples of how roots are formed:

Eauation 15

0 1	0	
$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\left(\sqrt[n]{a}\right)^n = a$	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$
$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$	$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	$\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$
$\sqrt[m]{n/a} = \sqrt[m \cdot n]{a}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$	

Algebra

Algebraic equation An algebraic equation of the 2nd degree (referred to as a quadratic of the 2nd degree equation) is described below.

Quadratic equation Equation 16

The solutions to a guadratic equation are as follows:

Quadratic equation: $a x^2 + b x + c = 0$ $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}$ Solutions:

Discriminant If we define the discriminant Δ for general instances as:

$$\Delta = b^2 - 4 a c$$

Solutions:

we arrive at the following solutions:

Equation 18	$\Delta > 0$	2 different real solutions
	$\Delta = 0$	2 identical real solutions
	$\Delta < 0$	2 conjugate complex solutions

 $x^2 + px + q = 0$

Normal form Equation 19

Equation 17

The normal form of the quadratic equation is:

Normal form:

Algebraic equation Two equations of the 1st degree with 2 unknown quantities car of the 1st degree calculated with the aid of matrices:								
Equation 20	$a_{11} x_1 + a_{12} x_2 = k_1$							
	$a_{21}x_1 + a_{22}x_2 = k_2$							
Determinant	The equations give the corresponding determinant D and the counter determinants D_{x1} and D_{x2} :							
Equation 21	$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{21} a_{12}$							
	$D_{x1} = \begin{vmatrix} k_1 & a_{12} \\ k_2 & a_{22} \end{vmatrix} = k_1 a_{22} - k_2 a_{12}$							
	$D_{x2} = \begin{vmatrix} a_{11} & k_1 \\ a_{21} & k_2 \end{vmatrix} = a_{11} k_2 - a_{21} k_1$							
Solution For $D \neq 0$, this gives the clear solution:								
Equation 22	$x_1 = \frac{D_{x1}}{D} \qquad \qquad x_2 = \frac{D_{x2}}{D}$							
Logarithms	The general logarithm is defined as:							
Equation 23	$\log_b a = c$ and means that $b^c = a$ $a > 0, b > 1$							
	In this case, b denotes the base, a denotes the anti-logarithm and c denotes the logarithm.							
Logarithmic laws	The following relationships are regarded as logarithmic laws:							
Equation 24	$\log_{b}(a c) = \log_{b} a + \log_{b} c$							
	$\log_b \frac{a}{c} = \log_b a - \log_b c$							
	$\log_{b}(a^{n}) = n\log_{b}a$							
	$\log_b \sqrt[n]{a} = \frac{1}{n} \log_b a$							
	in addition to the following special cases:							
Equation 25	$\log_b 0 = -\infty$ $\log_b 1 = 0$ $\log_b b = 1$ $\log_b \infty = \infty$							

Natural logarithm	Logarithms to the base e = 2,718282 logarithms. These are written as In a instead of lo	128459 are called natural					
	The following relationships apply:						
Equation 26	$\ln(e^{\pm n}) = \pm n$						
	$\ln (a \cdot 10^{n}) = \ln a + \ln (10^{n})$	$\ln (a/10^{n}) = \ln a - \ln (10^{n})$					
F6i 27	The module M _b to base b is defined	as:					
Equation 27	$M_{b} = \log_{b} e = 1/\ln b$						
	$\log_b a = M_b \ln a$						
Common (Briggs') logarithm	Logarithms to the base 10 are called common or Briggs' logarithms. These are written as $\lg a$ instead of $\log_{10} a$.						
Equation 28	Equation 28 $I = (40^{\pm 0})$						
	$\log(10) = \pm 11$						
	$\lg(a\cdot 10^n) = \lg a + n$	$\lg (a/10^n) = \lg a - n$					
	The logarithmic laws which apply to the common logarithm are (see also Equation 24):						
Equation 29	$\lg (u \cdot v) = \lg u + \lg v$						
	$\lg \frac{u}{v} = \lg u - \lg v$	$\lg \frac{v}{u} = -\lg \frac{u}{v}$					
	$\lg u^n = n \cdot \lg u$	$\lg \sqrt[n]{u} = \frac{1}{n} \cdot \lg u$					
Conversion of logarithms	The following relationships apply between natural and common logarithms:						
Equation 30	$M_{10} = 0,4342944819 = lg e = 1/ln 10 = 1/2,3025850930$						
	ln x = ln 10 lg x = 2,3025850930 lg x						
	lg x = lg e ln x = 0,4342944819 ln x						
	ln 10 lg e = 1						

Complex numbers	A complex number z consists of a real and an imaginary part:					
Equation 31	z = x + iy					
Fauation 32	The following applies to the imaginary unit i:					
	$i = \sqrt{-1}$ $i^2 = -1$ $i^3 = -i$ $i^4 = 1$ $1/i = -i$					
Conjugation	The complex number conjugated to z is:					
Equation 33	z* = x - i y					
Absolute value	The absolute value of z is:					
Equation 34	$r = \sqrt{z \cdot z^*} = \sqrt{(x + iy) \cdot (x - iy)} = \sqrt{x^2 + y^2}$					
Argument	The argument of z is:					
Equation 35	$\varphi = \arctan(y/x)$					
Normal form	The normal form of z is:					
Equation 36	$z = x + i y = r (\cos \varphi + i \sin \varphi)$					
Exponential form	The following is defined for the exponential form of the complex number z:					
Equation 37	$e^{i\varphi} = \cos \varphi + i \sin \varphi$ Euler's equation					
	$z = r \cdot (\cos \varphi + i \sin \varphi) = r \cdot e^{i \varphi}$					
	$e^{-i\phi} = \cos \phi - i \sin \phi$					
	The trigonometric functions and their relationship with the complex exponential function are presented in the section Circular functions (trigonometric functions) from Page 49 to Page 51.					
Power	The power of z is:					
Equation 38	$z^n = r^n \cdot (\cos n\varphi + i \sin n\varphi)$					

Eauation 39

The following is an example of a calculation based on the graph:

z = 6+i4 where x = 6; y = 4

$$r = \sqrt{36+16} = \sqrt{52} \approx 7,2$$

 $\varphi = \arctan(y/x) = \arctan 0,667 \approx 33,7^{\circ}$
z = 7,2 · (cos 33,7° + i sin 33,7°)

Sequences and progressions

In the case of an arithmetic sequence, the difference d between two Arithmetic sequence consecutive terms is constant: Equation 40 a, a+d, a+2d, a+3d, ..., a+(n-1)dArithmetic In the case of an arithmetic progression, each term is the arithmetic mean progression of its two adjacent terms: Equation 41 a + (a + d) + (a + 2d) + (a + 3d) + ... + [a + (n - 1)d]This gives the following for the k-th term and the final term (n): Equation 42 $a_{k} = a + (k - 1) d$ $a_n = a + (n-1)d$ and for the sum: Equation 43]

$$S = \frac{n}{2} \cdot \left(a + a_n\right) = \frac{n}{2} \cdot \left[2a + (n-1)d\right]$$

sequence terms is constant: Eauation 44 $a_1, a_1 \cdot q, a_1 \cdot q^2, a_1 \cdot q^3, \dots, a_1 \cdot q^{n-1}$ Geometric In the case of a geometric progression, each term is the geometric mean progression of its two adjacent terms: Equation 45 $a_1 + a_1 \cdot q + a_1 \cdot q^2 + a_1 \cdot q^3 + \dots + a_1 \cdot q^{n-1}$ This gives the following for the k-th term and the final term (n): Eauation 46 $a_k = a_1 \cdot q^{k-1}$ $a_n = a_1 \cdot q^{n-1}$ and for the sum: Equation 47

In the case of a geometric sequence, the quotient q of two consecutive

Geometric

$S = \frac{a_1 - a_n q}{1 - q}$	where	q < 1
$S=\frac{a_1\left(1\!-\!q^n\right)}{1\!-\!q}$	where	q < 1
$S = \frac{a_n q - a_1}{q - 1}$	where	q>1
$S = \frac{a_1 \left(q^n - 1\right)}{q - 1}$	where	q > 1

Analysis

Derivatives and The differentiation rules specified below apply to the formation differentials of derivatives (differential quotients). Derivative of sum The following applies to the derivative of a sum or difference: or difference Eauation 48 $v = u(x) \pm v(x)$ $v' = u'(x) \pm v'(x)$

Derivative of product or auotient Equation 49 The following applies to the derivative of a product or quotient:

$$y = u(x) \cdot v(x) \qquad y' = v(x) \cdot u'(x) + u(x) \cdot v'(x)$$
$$y = \frac{u(x)}{v(x)} \qquad y' = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2}$$

Chain rule Equation 50

The following chain rule also applies:

 $v = u \circ v$

$$y'(x) = (u \circ v)'(x) = u'(v(x)) \cdot v'(x)$$

Differential forms of the basic functions

Function y(x)	1st derivative y'(x)	Function y(x)	1st derivative y'(x)	
y = a	y' = 0	y = sin x	y' = cos x	
y = x	y' = 1	y = sin(ax)	$y' = a \cdot cos(a x)$	
y = mx + b	y' = m	y = cos x	y' = -sin x	
$y = ax^n$	$y' = n \cdot a \cdot x^{n-1}$	y = tan x	$y' = 1/\cos^2 x$	
$y = \sqrt{x}$	$y' = 1/(2 \cdot \sqrt{x})$	y = cot x	$y' = -1/\sin^2 x$	
y = 1/x	$y' = -1/x^2$	y = ln sin x	y' = cot x	
$y = a^{X}$	y' = a ^x ·ln a	y = ln tan x	y' = 2/sin (2 x)	
y = e ^x	y' = e ^x	y = arcsin x	$y' = 1/\sqrt{1-x^2}$	
$y = e^{ax}$	$y' = a \cdot e^{ax}$	y = arccos x	$y' = -1/\sqrt{1\!-\!x^2}$	
$y = x^{X}$	$y' = x^{x} \cdot (1 + \ln x)$	y = arctan x	$y' = 1/\left(1+x^2\right)$	
$y = \log_a x$	$y' = \frac{1}{x} \cdot \log_a e$	y = arccot x	$y' = -1/(1+x^2)$	
y = ln x	$y' = \frac{1}{x}$	$y = \sinh x$	y' = cosh x	

of functions

Integration In contrast to differentiation, there are usually no general algorithms for solving the integrals in the integration of functions. The two methods "integration by substitution" and "integration by parts" provide a possible means of solution.

> The antiderivatives for a number of elementary functions are listed in the table Integrals of antiderivatives (basic integrals) on Page 48.

In integration by substitution, the following applies:

Integration by substitution Equation 51

$$\int_{a}^{b} u(v(t)) \cdot v'(t) dt = \int_{v(a)}^{v(b)} u(x) dx$$

Integration by parts Equation 52

In integration by parts, the following applies:

$$\int_{a}^{b} u'(x) \cdot v(x) \, dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) \, dx$$

Integrals of antiderivatives (basic integrals) Integration is the reverse of differentiation. A selection of basic integrals can be found b A selection of basic integrals can be found below:

-	
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \cosh x dx = \sinh x + C$
for $\left[n \neq -1\right]$	
$\int \frac{\mathrm{d}x}{\mathrm{x}} = \ln \mathrm{x} + \mathrm{C}$	$\int \frac{\mathrm{d}x}{\sinh^2 x} = -\coth x + C$
$\int e^{x} dx = e^{x} + C$	$\int \frac{dx}{\cosh^2 x} = -\tanh x + C$
$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C = -\arccos x + C$
$\int \ln x dx = x \ln x - x + C$	$\int \frac{\mathrm{d}x}{\sqrt{x^2 + 1}} = \operatorname{arcsinh} x + C$
	$= \ln\left(x + \sqrt{x^2 + 1}\right) + C$
$\int a^{bx} dx = \frac{1}{b \ln a} a^{bx} + C$	$\int \frac{dx}{\sqrt{x^2 - 1}} = \operatorname{arccosh} x + C$
	$= \ln \left(x + \sqrt{x^2 - 1} \right) + C$
$\int a^{x} \ln a dx = a^{x} + C$	$\int \frac{dx}{1+x^2} = \arctan x + C = -\operatorname{arccot} x + C$
$\int \sin x dx = -\cos x + C$	$\int \frac{\mathrm{d}x}{1-x^2} = \arctan x + C = \frac{1}{2} \ln \frac{1+x}{1-x} + C$
	for $[x^2 < 1]$
$\int \cos x dx = \sin x + C$	$\int \frac{dx}{1-x^2} = \operatorname{arccoth} x + C = \frac{1}{2} \ln \frac{x+1}{x-1} + C$
	for $[x^2 > 1]$
$\int \frac{dx}{\sin^2 x} = -\cot x + C$	$\int \frac{\sqrt{1+x}}{\sqrt{1-x}} dx = \arcsin x - \sqrt{1-x^2} + C$
$\int \frac{\mathrm{d}x}{\cos^2 x} = \tan x + C$	$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arccos \frac{1}{x} + C$
$\int \sinh x dx = \cosh x + C$	$\int \frac{dx}{x\sqrt{1\pm x^2}} = -\ln \frac{1+\sqrt{1\pm x^2}}{x} + C$

Geometry

Circular functions (trigonometric functions) Equation 53

This is represented on the unit circle as follows:

Circular or trigonometric functions are defined as:

Figure 4 Trigonometric functions on the unit circle

φ =	$\pm \alpha$	$90\pm\alpha$	$180\pm\alpha$	$270\pm\alpha$
$\sin \phi =$	$\pm \sin \alpha$	COS α	\mp sin α	-cos α
$\cos \phi =$	COS α	\mp sin α	-cos α	$\pm \sin \alpha$
tan φ =	$\pm tan \alpha$	\mp cot α	$\pm tan \alpha$	\mp cot α
$\cot \varphi =$	$\pm \cot \alpha$	\mp tan α	$\pm \cot \alpha$	\mp tan α

Conversion from degree size to arc size:

Equation 54

$$\widehat{\alpha} = \operatorname{arc} \alpha = \frac{\pi \cdot \alpha}{180^{\circ}} \operatorname{rad} = \frac{\alpha}{57, 3^{\circ}}$$

$$\widehat{1^{\circ}} = \operatorname{arc} 1^{\circ} = \frac{\pi}{180} = 0,017\,435$$

$$\operatorname{arc} 57, 3^{\circ} = 1$$

Relationships between trigonometric functions Equation 55 The relationships described below also apply between the trigonometric functions:

 $\cos^{2} \alpha + \sin^{2} \alpha = 1$ $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{\cot \alpha}$ $\sec \alpha = \frac{1}{\cos \alpha}$ $\cos 2\alpha = \frac{1}{\sin \alpha}$ $\sin 2\alpha = 2\sin \alpha \cos \alpha$ $\cos 2\alpha = \cos^{2} \alpha - \sin^{2} \alpha$ $\tan 2\alpha = \frac{2}{\cot \alpha - \tan \alpha}$ $\cos 2\alpha = \frac{\cot \alpha - \tan \alpha}{2}$ $\sin 3\alpha = 3\sin \alpha - 4\sin^{3} \alpha$ $\cos 3\alpha = 4\cos^{3} \alpha - 3\cos \alpha$ $\sin \frac{\alpha}{2} = \frac{1}{2} \cdot \sqrt{2 - 2\cos \alpha}$ $\cos \frac{\alpha}{2} = \frac{1}{2} \cdot \sqrt{2 + 2\cos \alpha}$

Addition theorems for trigonometric functions *Equation 56*

 $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$ $\cot (\alpha \pm \beta) = \frac{\cot \alpha \cdot \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}$ $\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$ $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$ $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$ $\tan \alpha \pm \tan \beta = \frac{\sin (\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}$ $\cot \alpha \pm \cot \beta = \frac{\sin (\beta \pm \alpha)}{\sin \alpha \cdot \sin \beta}$

The addition theorems for trigonometric functions are:

Right-angled triangle Figure 6 C Right-angled triangle β R a р С The following rules apply to right-angled triangles: Pythagorean theorem The Pythagorean theorem: Equation 63 $c = \sqrt{a^2 + b^2}$ $c^2 = a^2 + b^2$;

Altitude theorem Equation 64

The cathetus theorem:

The altitude theorem:

 $h^2 = p \cdot q$;

Cathetus theorem Equation 65

 $a^2 = p \cdot c$; $a = \sqrt{p \cdot c}$

Trigonometric functions

The following aspect ratios apply to the right-angled triangle:

$\sin \alpha = a:c$	Opposite side : hypotenuse	$\sin\beta=b:c$
$\cos \alpha = b : c$	Adjacent side : hypotenuse	$\cos \beta = a : c$
$\tan \alpha = a : b$	Opposite side : adjacent side	$\tan \beta = b:a$
$\cot \alpha = b : a$	Adjacent side : opposite side	$\cot \beta = a : b$

and

 $h = \sqrt{p \cdot q}$

 $b^2 = q \cdot c$;

 $b = \sqrt{q \cdot c}$

This gives the trigonometric functions:

Cathetus	a =	$\sqrt{c^2-b^2}$	$b\cdot tan\alpha$	$b\cdot \cot\beta$	$c\cdot sin\alpha$	$c\cdot cos\beta$
	b =	$\sqrt{c^2-a^2}$	$a\cdot tan\beta$	a·cotα	$c\cdot sin\beta$	$c\cdot cos\alpha$
Hypotenuse	c =	$\sqrt{a^2+b^2}$	$\frac{a}{\sin \alpha}$	$\frac{a}{\cos \beta}$	$\frac{b}{\sin\beta}$	$\frac{b}{\cos \alpha}$
Angle	α =	90° – β	$\sin \alpha = \frac{a}{c}$	$\tan \alpha = \frac{a}{b}$	$\cos \alpha = \frac{b}{c}$	$\cot \alpha = \frac{b}{a}$
	β=	90° – α	$\sin\beta = \frac{b}{c}$	$\tan \beta = \frac{b}{a}$	$\cos \beta = \frac{a}{c}$	$\cot \beta = \frac{a}{b}$
Area	A =	$\frac{a \cdot b}{2}$	$\frac{a \cdot c \cdot \sin \beta}{2}$	$\frac{a^2 \cdot tan \beta}{2}$	$\frac{b \cdot c \cdot \cos \beta}{2}$	$\frac{b^2 \cdot \cot \beta}{2}$
		$\frac{c^2 \cdot \sin \alpha \cdot \cos \alpha}{2}$	$\frac{b \cdot c \cdot \sin \alpha}{2}$	$\frac{b^2 \cdot tan \alpha}{2}$	$\frac{a \cdot c \cdot \cos \alpha}{2}$	$\frac{a^2 \cdot \cot \alpha}{2}$

The right-angled triangle is represented as follows:

If b = r, then $\alpha = 57^{\circ}17'44,86'' = 57,2957795^{\circ} = 206264,86'' = 1$ rad

eater and seater		
Square	a d A	$A = a^{2}$ $a = \sqrt{A}$ $d = a \sqrt{2}$
Rectangle	h d	$A = b h$ $d = \sqrt{b^2 + h^2}$
Parallelogram	h b	$A = b h$ $b = \frac{A}{h}$
Trapezoid		$m = \frac{b+c}{2}$ $A = mh$
Triangle	h	$A = \frac{b h}{2}$ $b = \frac{2 A}{h}$
Equilateral triangle	h	$A = \frac{a^2}{4}\sqrt{3}$ $h = \frac{a}{2}\sqrt{3}$
Regular hexagon	e a a s	$A = \frac{3 a^2 \sqrt{3}}{2}$ $e = 2 a \qquad e \approx 1,155 s$ $s = a\sqrt{3} = e\frac{\sqrt{3}}{2} \qquad s \approx 0,866 e$

Calculating surfaces Geometric surfaces are calculated using:

Continuation of table, see Page 56.

Circle	d = 2r	$A = \frac{d^2\pi}{4} = r^2\pi \approx 0.785 d^2$ $U = 2r\pi = d\pi$
Annulus		$A = \pi \left(R^2 - r^2 \right) = (2r + t)\pi t$ $t = R - r$
Circular sector		$A = r^{2}\pi \frac{\alpha}{360^{\circ}} = \frac{br}{2}$ $b = r \pi \frac{\alpha}{180^{\circ}}$
Circular segment	h s a	$A = r^{2}\pi \frac{\alpha}{360^{\circ}} - \frac{r^{2}}{2} \sin \alpha$ $\approx \frac{h}{6s} (3h^{2} + 4s^{2})$ $t = r - h \qquad r = \frac{h}{2} + \frac{s^{2}}{8h}$ $s = 2r \sin \frac{\alpha}{2} = \frac{r^{2}}{t} \sin \alpha$ $h = r \left(1 - \cos \frac{\alpha}{2}\right)$
Annular sector	R	$A = \frac{\pi \left(R^2 - r^2\right)\alpha}{360^\circ}$
Ellipse	b	$A = a b \pi$ $U \approx (a+b) \pi$
Polynomial surface	b A1 A2 a	$y = b(x/a)^{n}$ $A_{1} = \frac{n}{n+1}ab$ $A_{2} = \frac{1}{n+1}ab$

Continuation of table, Calculating surfaces, from Page 55.

Centre of gravity The centre of gravity of plane surfaces is calculated using: of plane surfaces

of plane surfaces		
Triangle	e os b	$y_{S} = \frac{b+e}{3}$ $z_{S} = \frac{h}{3}$
Right-angled triangle	z b	$y_{S} = \frac{b}{3}$ $z_{S} = \frac{h}{3}$
Parallelogram	z 50 h b e y	$y_{S} = \frac{b+e}{2}$ $z_{S} = \frac{h}{2}$
Trapezoid	z e os h h y	$y_{S} = \frac{b^{2} - c^{2} + e(b + 2c)}{3(b + c)}$ $z_{S} = \frac{h(b + 2c)}{3(b + c)}$
Semicircle	d = 2r y	$z_{S} = \frac{4r}{3\pi}$
Circular segment		$z_{S} = \frac{4 r \sin^{3}\left(\frac{\alpha}{2}\right)}{3 \left(\alpha - \sin \alpha\right)}$ \(\alpha\) in radians
Circular sector		$z_{S} = \frac{4 r \sin\left(\frac{\alpha}{2}\right)}{3 \alpha}$ \alpha in radians

Continuation of table, see Page 58.

Annular sector		$z_{S} = \frac{4(R^{3} - r^{3})\sin(\frac{\alpha}{2})}{3(R^{2} - r^{2})\alpha}$ \[\alpha\] in radians
Elliptical segment ① Ellipse	b r=b y	$z_{S} = \frac{4 r \sin^{3}\left(\frac{\alpha}{2}\right)}{3 \left(\alpha - \sin \alpha\right)}$ \(\alpha\) in radians
Parabola segment 1 ① Parabola	1 2 5 h	$z_{S} = \frac{3}{5}h$
Parabola segment 2 ① Parabola	$\begin{array}{c c} z & \hline \\ & & \\ &$	$y_{S_1} = \frac{3}{8}b$ $y_{S_2} = \frac{3}{4}b$ $z_{S_1} = \frac{3}{5}h$ $z_{S_2} = \frac{3}{10}h$
Cosine segment ① Cosine line	h os	$y_{S} = \left(1 - \frac{2}{\pi}\right)b$ $z_{S} = \frac{\pi}{8}h$
Hexagon half 1	z SS T	$z_{S} = \frac{4 r}{3 \pi} \cdot \frac{\alpha (3 + \cos \alpha)}{4 \sin \alpha}$ \alpha in radians
Hexagon half 2	z so r	$z_{S} = \frac{4 r}{3 \pi} \cdot \frac{\alpha}{2 \sin\left(\frac{\alpha}{2}\right)}$ \[\alpha\] in radians

Continuation of table, Centre of gravity of plane surfaces, from Page 57.

Calculating solids	The volume of solids (volume V, surface area O, lateral area M) is calculated using:		
Cube	a d a	$V = a^{3}$ $O = 6 a^{2}$ $d = a \sqrt{3}$	
Cuboid	d a	V = abc 0 = 2(ab+ac+bc) $d = \sqrt{a^2+b^2+c^2}$	
Oblique cuboid	h	V = A h (Cavalieri's principle)	
Pyramid	h	$V = \frac{Ah}{3}$	
Truncated pyramid	h A2	$V = \frac{h}{3} (A_1 + A_2 + \sqrt{A_1 A_2}) \approx h \frac{A_1 + A_2}{2}$	
Cylinder	h	$V = \frac{d^2\pi}{4}h$ $O = 2\pi r (r+h)$ $M = 2\pi r h$	
Cone	m r h	$V = \frac{r^2 \pi h}{3} \qquad m = \sqrt{h^2 + \left(\frac{d}{2}\right)^2}$ $O = \pi r (r+m)$ $M = \pi r m$	

Continuation of table, see Page 60.

Truncated cone		$V = \frac{\pi h}{12} \left(D^2 + D d + d^2 \right)$ $m = \sqrt{\left(\frac{D-d}{2}\right)^2 + h^2}$ $M = \frac{\pi m}{2} (D+d)$
Barrel		$V = \frac{h\pi}{12} \left(2D^2 + d^2 \right)$ (barrel)
Sphere	d	$V = \frac{4}{3} \pi r^{3} = \frac{1}{6} \pi d^{3} \approx 4,189 r^{3}$ $O = 4 \pi r^{2} = \pi d^{2}$
Spherical zone	h	$V = \frac{\pi h}{6} (3 a^2 + 3 b^2 + h^2)$ M = 2 \pi r h a = f(h)
Spherical segment	s h	$V = \frac{\pi h}{6} \left(\frac{3}{4} s^2 + h^2 \right) = \pi h^2 \left(r - \frac{h}{3} \right)$ $M = 2 \pi r h = \frac{\pi}{4} \left(s^2 + 4 h^2 \right)$
Spherical sector	s h	$V = \frac{2}{3} \pi r^2 h$ $O = \frac{\pi r}{2} (4 h + s)$
Circular torus (cylindrical ring)		$V = \frac{D \pi^2 d^2}{4}$ $O = D d \pi^2$

Continuation of table, Calculating solids, from Page 59.

Centre of gravity The centre of gravity of homogeneous solids is calculated using: of homogeneous solids

Cylinder with random cross section	h So Z ₅	$z_S = \frac{h}{2}$
Chamfered cylinder		$x_{S} = \frac{r^{2} \tan \alpha}{4 h}$ $z_{S} = \frac{h}{2} + \frac{r^{2} \tan^{2} \alpha}{8 h}$
Pyramid, cone	h	$z_{S} = \frac{h}{4}$
Truncated cone	R L L L L L L L L L L L L L L L L L L L	$z_{S} = \frac{h}{4} \cdot \frac{R^{2} + 2Rr + 3r^{2}}{R^{2} + Rr + r^{2}}$
Wedge	b a a	$z_{S} = \frac{h}{2} \cdot \frac{a+b}{2a+b}$
Truncated wedge	d c c c c c c c c c c c c c c c c c c h	$z_{S} = \frac{h}{2} \cdot \frac{ac+ad+bc+3bd}{2ac+ad+bc+2bd}$

Continuation of table, see Page 62.

Continuation of table, Centre of gravity of homogeneous solids, from Page 61.

Section of a cylinder	xs solution zs	$x_{S} = \frac{3 \pi r}{16}$ $z_{S} = \frac{3 \pi h}{32}$
Spherical segment	h	$z_{S} = \frac{3}{4} \cdot \frac{(2r-h)^{2}}{(3r-h)}$
Hemisphere	r S S Z S	$z_S = \frac{3}{8}r$
Spherical sector	h T T	$z_{5} = \frac{3r\left(1+\cos\frac{\alpha}{2}\right)}{8} = \frac{3\left(2r-h\right)}{8}$
Paraboloid	s t zs h	$z_{S} = \frac{h}{3}$
Ellipsoid	s zs h	$z_s = \frac{3}{8}h$

Basic geometric constructions

The following examples show the basic methods used in geometric construction.

	Calculating interest	
Compound interest	If b = the initial amount, p = the interest rate in % and b_n = the final amount after n years, the outcome for the interest factor q and the final amount b_n after n years at compound interest is:	
Equation 71	$q = 1 + \frac{p}{100}$ $b_n = b \cdot q^n = b \cdot \left(1 + \frac{p}{100}\right)^n$	
Sample calculation	What final amount will 30 000 € increase to in 5 years at an interest rate of 5,5%? Solution:	
Equation 72	$b_5 = 30000 \in \cdot \left(1 + \frac{5,5}{100}\right)^5 = 39209 \in$	
Growth	The growth of a basic amount b ₀ based on compound interest as the result of regular additional payments r at the end of any given year can be calculated as a final amount b _n after n years:	
Equation 73	$b_n = b_0 \cdot q^n + \frac{r(q^n - 1)}{q - 1}$	
Reduction	The reduction of a basic amount b_0 based on compound interest as the result of regular repayments r (e.g. pension) at the end of any given year can be calculated as a final amount b_n after n years:	
Equation 74	$b_n = b_0 \cdot q^n - \frac{r(q^n - 1)}{q - 1}$	
Repayment formula	The repayment formula for $b_n = 0$ is:	
Equation 75	$b_0 \cdot q^n = \frac{r\left(q^n - 1\right)}{q - 1}$	

Set theory

Set theory symbols

The following table shows a selection of the most important symbols used in set theory.

Symbol	Use	Definition
E	$x \in M$	x is an element of M
∉	x∉M	x is not an element of M
	$\{x_1,,x_n\} \in A$	x ₁ ,, x _n are elements of A
{ }	$\{x \phi\}$	The set (class) of all x with $\boldsymbol{\phi}$
{,,}	{x ₁ ,, x _n }	The set with the elements $x_1,, x_n$
⊆	$A \subseteq B$	A is the subset of B, A sub B, B is the superset of A (contains A = B)
С	$A \subset B$	A is properly contained in B (with A \pm B)
Π	$A\capB$	A intersected with B, A intersection B
U	$A \cup B$	A united with B, A union B
С	Ā or C A or A ^C	Complement of A
\ or [A \ B or C _A B	A minus B, A reduced by B, difference between sets A and B, relative complement of B with respect to A
Δ	$A\DeltaB$	Symmetrical difference of A and B
Ø	$A \cap B = \emptyset$	Empty set, A and B are disjoint
< ,>	<x, y=""></x,>	Pair of x and y
{, }	$\{x,y\big \;\phi\}$	Relationship between x, y with $\boldsymbol{\phi}$
х	AxB	Cartesian product of A and B, A cross B
-1	R ⁻¹	Inverse relation of R, inverse relation to R
0	R∘S	Relation product of R and S, R linked to S
D	D (f)	Definition range of f
W	W (f)	Value range of f
	f A	Restriction of f to A
equ	A equ B	A is equivalent to B
card	card A	Cardinal number of A
ℕ or N		Set of natural numbers
$\mathbb Z$ or Z		Set of integers
$\mathbb Q$ or $\mathsf Q$		Set of rational numbers
\mathbb{R} or R		Set of real numbers
$\mathbb C$ or C		Set of complex numbers

Numerics - number systems in data processing

Numeric and alphanumeric data and commands are represented by a combination of binary characters in digital computers. These are generally condensed into words of fixed length, producing standard word lengths of 4, 8, 16, 32, 48 and 64 bits.

Code Alphanumeric data are usually strung together, character by character, in coded form and in one word. The most frequently used code is composed of 8 bits = 1 byte.

Fixed-point number and floating-point number

Numeric data can be represented in positional (fixed-point number) or floating-point (floating-point number) notation:

Fixed-point representation:

	Sign	2 ⁿ⁻¹	2 ⁿ⁻²		2 ²	2 ¹	2 ⁰
	Floating-point representation:						
	Sign	Expone	nt		Mantiss	sa	
	In the case of fixed-point notation, the highest representable value in terms of its amount is limited by the word length. In the case of a computer in 16-bit format for example, this is $2^{15} - 1 = 32767$. Double words can be formed if a larger number range is required.						
	In the case of a floating-point number, the number of bits of the mantissa defines the relative accuracy of the number and those of the exponent define the magnitude of the number range.						
Positional notation systems and representation	The characteristics of a nu repertoire and the position depends on its position wi system).	mber sy nal nota ithin the	stem ar tion. He row of	e characi re, the va digits (po	terised alue of t ositiona	by the d he digit I notatio	igit Z on
Integers Positive integers N _B can be represented on select (base number) in the following general form:				n selecti m:	ng a bas	se B	
Equation 76	$N_{B} = \sum_{i=0}^{n-1} Z_i \cdot B^i = Z_{n-1}$	₁ · B ^{n−1}	++Z	$a_1 \cdot B^1 +$	Z ₀ ∙B ⁰		

with Z_i from {0, 1, 2, ..., (B – 1)} as the digit repertoire for base B.

Decimal system	For the decimal system with digit repertoire $Z_i = 0, 1, 2,, 9$ and digit number $n = 3$, the representation is:
Equation 77	$N_{10} = 257 = 2 \cdot 10^2 + 5 \cdot 10^1 + 7 \cdot 10^0$
Binary system	For the binary system with digit repertoire $Z_i = 0, 1$ and digit number $n = 5$, the representation is:
Equation 78	$N_2 = 10101 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
Hexadecimal system	As the decimal digits from 0 to 9 do not suffice in the hexadecimal system, the missing digits from 10 to 15 are replaced by the capital letters A to F.

Equation 79

Fractional numbers The general representation of fractional numbers is:

$$R_{B} = \sum_{i=0}^{m} Z_{i} \cdot B^{-i} = Z_{1} \cdot B^{-1} + Z_{2} \cdot B^{-2} + \dots + Z_{m} \cdot B^{-m}$$

Number systems

Table:The following table shows examples of number systemsvstemswith various bases.

Deci- mal system	Hexa- deci- mal system	Octal system	Binary system	Tetrad rep- resen- tation	BCD represen- tation	Excess-3 or Stibitz code	Aiken code	1 out of 10 code
0	0	0	0	0 000	0 0 0 0	0011	0 0 0 0	0 000 000 001
1	1	1	1	0 001	0 001	0100	0 0 0 1	0 000 000 010
2	2	2	10	0 0 1 0	0 0 1 0	0101	0010	0 000 000 100
3	3	3	11	0 0 1 1	0 0 1 1	0110	0011	0 000 001 000
4	4	4	100	0100	0100	0111	0100	0 000 010 000
5	5	5	101	0101	0101	1000	1011	0 000 100 000
6	6	6	110	0110	0110	1001	1100	0 001 000 000
7	7	7	111	0111	0111	1010	1101	0 010 000 000
8	8	10	1000	1000	1000	1011	1110	010000000
9	9	11	1001	1001	1001	1100	1111	1 000 000 000
10	A	12	1010	1010	00 01 0 000	01000011	00010000	00000000100000000001
11	В	13	1011	1011	00 01 0 00 1	01000100	00010001	00000000100000000010
12	C	14	1100	1100	00 01 0 01 0	01000101	00010010	00000000100000000100
13	D	15	1101	1101	00 01 0 01 1	01000110	00010011	00 000 000 100 000 001 000
14	E	16	1110	1110	00010100	01000111	00010100	00000000100000010000
15	F	17	1111	1111	00010101	01001000	00011011	00000000100000100000

Conversion between number systems	Numbers can be converted from one number system (source system N_Q) to another (target system N_2).					
· · · · · · · · · · · · · · · · · · ·	The following always	applies:				
Equation 80	$N_Q = N_Z$					
	The following method system:	ls are used f	or convertir	ng to a different nu	mber	
Division method	The division method works with numbers from the source notation only. It is based on the division of the number belonging to the source system N_Q by the largest possible powers of the target base while simultaneously splitting the relevant integral quotient that is generated in the division step. The remainder is divided by the next lowest power. This continues until the zero power has been obtained.					
Equation 01	This means:					
Equation 81	$N_Q = N_Z$					
	$N_Q = Z_{n-1} \cdot B_Z^{n-1} + Z_{n-2} \cdot B_Z^{n-2} + \ldots + Z_1 \cdot B_Z^{1} + Z_0 \cdot B_Z^{0}$					
	1st step:					
Equation 82	$N_Q/B_Z^{n-1} = Z_{n-1} + \text{Remainder}_1$ $Z_{n-1} = 1\text{st digit of }N_Z$					
	2nd step:					
Equation 83	Remainder ₁ /B ₂ ⁿ⁻² = Z _{n-2} + Remainder ₂					
	$Z_{n-2} = 2nd \text{ digit of } N_Z$					
	etc.					
	Example					
	The decimal number 6 345 ₁₀ is to be converted to an octal number:					
	6345:8 ⁴ =	1		Remainder	2 249	
	2 249 : 8 ³ =	4	•	Remainder	201	
	201 : 8 ² =	3	Y	Remainder	9	
	9:81 =	1		Remainder	1	
	1:80 =	1		Remainder	0	

The required octal number is 14311_8 ($6345_{10} = 14311_8$).

Summand method The summand method is based on a source number
with summands of the form
$$\sum_{i=1}^{n-1} Z_i \cdot B_Z^i$$
, each of which contains B_Z
as the factor:
 $N_Q = N_Z$
 $N_Q = \sum_{i=0}^{n-1} Z_i \cdot B_Z^i = \sum_{i=1}^{n-1} Z_1 \cdot B_Z^i + Z_0 \cdot B_Z^0$ where $B_Z^0 = 1$

This gives the following:

$$N_Q = B_Z \cdot \sum_{i=1}^{n-1} Z_1 \cdot B_Z^{i-1} + Z_0$$

If we divide N_0 by B_Z , we arrive at the integral share:

Equation 86

$$N_i = \sum_{i = 1}^{n-1} Z_i \cdot B_Z^{i-1} + \text{Remainder } Z_0 \qquad \text{where } Z_0 = \text{last digit} \\ \text{of } N_Z$$

The integral share can now be represented as:

Equation 87

$$N_1 = \sum_{i=2}^{n-1} Z_i \cdot B_Z^{i-1} + Z_1 \cdot B_Z^0$$
 where $B_Z^0 = 1$

If we divide again by B_2 , we again arrive at an integral share N_2 and the remainder Z_1 (penultimate digit of the number in the target system) etc.

Example

The decimal number 6 345₁₀ is to be converted to an octal number:

6345:8=	793	Remainder	1	
793:8=	99	Remainder	1	
99:8=	12	Remainder	3	
12:8=	1	Remainder	4	▲
1:8=	0	Remainder	1	

The required octal number is 14311_8 ($6345_{10} = 14311_8$).

This conversion method is particularly suitable for a computing program.

Conversion of binary numbers

For number systems to base 2n, for example number notations based on 2, 8, 16, simpler methods of conversion exist between them. These are based on the fact that the source and target bases are related in a ratio of powers of two. The digit repertoire of the octal system is covered by a three-digit binary number, while that of the hexadecimal system is covered by a four-digit binary number. Conversion of a binary number to an octal or a hexadecimal number is achieved easily by combining groups of three or four of the binary number.

Example

Converting the binary number 110101111 $_2$ to an octal or a hexadecimal number:

Fundamental The following arithmetic rules apply to the arithmetic operations arithmetic operations of addition, subtraction and multiplication: in the binary system

Addition	Result	Carry (bit)	Sub- traction	Result	Carry (bit)	Multi- plication	Result	Carry (bit)
0 + 0	0	0	0 - 0	0	0	0.0	0	0
0 + 1	1	0	0 - 1	1	-1 ¹⁾	0 · 1	0	0
1+0	1	0	1 - 0	1	0	1.0	0	0
1 + 1	0	+1 ¹⁾	1 – 1	0	0	1 · 1	1	0

Source: Koch, G.; Reinhold, U.: Einführung in die Informatik für Ingenieure und Naturwissenschaftler, Teil 1, München: Hanser-Verlag 1977.

 If, when applying the operations to multiple-digit numbers, the carry amount ("borrowing") is included in the calculation, the same rules apply as in the decimal system.

Technical statistics

Functions and areas of application

Functions The function of technical statistics is to describe sets of elements of the same type having different attribute values by means of statistical parameters. As a result, it is then possible to make objective comparisons and assessments.

In addition, it provides estimates of the statistical parameters of larger sets (the population) through the evaluation of a relatively small number of individual data (random samples).

Areas of application The most important areas of application of technical statistics are:

- statistical quality control
- evaluation of test results
- calculation of errors

Terms, values and definitions

Population The population is the set comprising all the units or events that are to be considered in statistical analysis (measurement, observation).

The attribute value that is of interest is described by means of statistical parameters.

- Random sample A random sample is a set taken from the population for the purpose of determining certain attribute values. Evaluation of this sample facilitates estimates of statistical parameters of the population.
 - Raw data list The raw data list is the term for the original attribute values (for example measurement values) from a random sample.

Terms and values	The following table gives descriptions of some important terms and values
	in statistics.

Value	Definition	Explanations, relationships
N	Population size	The size of the total population is also designated simply as the population
n	Number of attribute values in the random sample	Attribute values are recorded in the raw data list
x _i	Individual attribute value, such as a measurement value	Ordinal number of the attribute values i = 1, 2, 3,, n
x	Arithmetic mean value of the attribute values in the random sample	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
R	Range of the attribute values	$R = x_{max} - x_{min}$
k	Number of classes into which R is subdivided	$ \begin{array}{ll} \mbox{Guide value} & k = \sqrt{n} \\ & k \geqq 10 \mbox{ for } n \leqq 100 \\ & k \geqq 20 \mbox{ for } n \leqq 10^5 \\ \end{array} $
Δx	Class interval	$\Delta x = R/k$
x _j	Values of the class midpoints, arithmetic mean value of the class limits	Ordinal number of the classes j = 1, 2, 3,, k
nj	Population density of the individual classes, absolute frequency	The population density n_j indicates how many values in the raw data list fall into the j-th class: $\sum_{j=1}^k n_j = n$
hj	Relative frequency in the j-th class	$h_j = \frac{n_j}{n} \qquad \qquad \sum_{j=1}^k h_j = 1$
f	Relative frequency density	$f=h_{j}/\Delta x$ The relative frequency density corresponds to the relative frequency divided by the class width
Gj	Cumulative population density	G_{j} is the population density added up to the j-th class: $G_{j} = \sum_{i = 1}^{j} n_{i}$
Нj	Cumulative frequency	$H_j = \frac{G_j}{n} = \sum_{i=1}^j h_i$
x ₀	Reference value of the population	Normally the approximated, rounded mean value or midpoint of class with the greatest frequency:
		$x_0 \approx \overline{x}$ $d_i = x_i - x_0$
		$\overline{x} = x_0 + \frac{1}{n} \sum_{i=1}^{n} (x_i - x_0) \qquad \overline{x} = x_0 + \overline{d}$

Continuation of table, see Page 76.

Value	Definition	Explanations, relationships
s ²	Variance of the random sample (mean square deviation)	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - x_{0})^{2}$
		$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} d_{i}^{2}$
		$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - x_{0} \sum_{i=1}^{n} x_{i} \right)$
5	Standard deviation of the random sample (scatter), square root of variance	$S = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - x_0 \sum_{i=1}^{n} x_i \right)}$ s approximates σ for high values of n
μ	Mean value of the population, expected value	The arithmetic mean value \overline{x} of the random sample is an estimated value true to expectancy for the expected value μ of the population
σ	Standard deviation of the population	A measure of the variation of the individual values about the mean value
u	Scatter factor	Certain ranges $\mu \pm u \cdot \sigma$ can be defined in which P% of the measurement values lie
F(x)	Distribution function, cumulative (distribution) function	The distribution function describes the relationship between the random variables x and the cumulative frequency or probability for values $\leq x$, while in empirical distributions it corresponds to the cumulative curve
f(x)	Frequency density function	$f(x) = \frac{dF(x)}{dx}$
		As a continuous function, the frequency density function corresponds to the representation of the relative frequency density of the random sample by means of a stepped curve (histogram)
R(x)	Reliability function	R(x) = 1 - F(x) The reliability function is sometimes also referred to as the survival function

Continuation of table, Terms and values, from Page 75.

Statistical evaluation (example)

- Function The nominal diameter D of 8 mm and the deviations from this value is to be checked for a batch of rolling bearing balls (the population).
- Solution A random sample of 200 balls is taken from the batch. It is assumed that the sample will give a sufficiently accurate representation of the population. The diameter x (the attribute value) is measured to an accuracy of 0,001 mm.

The data obtained from this study of a particular investigation feature are initially present unsorted in the so-called raw data list.

Determining the mean value

Within the measurement accuracy, the random sample mean value determined from the raw data list of 200 measurement values is the nominal value:

Equation 1

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \frac{1}{200} \sum_{i=1}^{200} \mathbf{x}_{i} = 8,000 \text{ mm}$$

Of the 200 measured values, the largest diameter x_{max} = 8,013 mm and the smallest diameter x_{min} = 7,987 mm.

As a result, the range of the attribute values is:

Equation 2

$$R = x_{max} - x_{min} = 0,026 \text{ mm}$$

The attribute values are divided into k = 13 classes with a class interval Δx = 0,002 mm.

Based on the raw data list of 200 measurements, classification can be carried out and presented in tabular form. The relative frequencies and the cumulative frequency H_j are also determined, as defined in the table Terms and values, Page 75.

Classification and frequency classification and the values for the relative frequencies and the cumulative frequency H_i are determined.

j	Classification		x _j	n _j	hj	Hj
	x _{lower} to under	x _{upper}				
	mm	mm	mm			
1	7,987	7,989	7,988	1	0,005	0,005
2	7,989	7,991	7,990	5	0,025	0,030
3	7,991	7,993	7,992	7	0,035	0,065
4	7,993	7,995	7,994	16	0,080	0,145
5	7,995	7,997	7,996	25	0,125	0,270
6	7,997	7,999	7,998	29	0,145	0,415
7	7,999	8,001	8,000	34	0,170	0,585
8	8,001	8,003	8,002	32	0,160	0,745
9	8,003	8,005	8,004	22	0,110	0,855
10	8,005	8,007	8,006	14	0,070	0,925
11	8,007	8,009	8,008	9	0,045	0,970
12	8,009	8,011	8,010	4	0,020	0,990
13	8,011	8,013	8,012	2	0,010	1,000
				Σ 200	Σ 1,000	

Confirmation of the mean value

In order to confirm the mean value \overline{x} where the class interval is identical, the class midpoints x_j are multiplied by their frequencies h_j as weighting factors:

Equation 3

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{j=1}^{k} \mathbf{n}_j \cdot \mathbf{x}_j = \sum_{j=1}^{k} \mathbf{h}_j \cdot \mathbf{x}_j$$
$$\overline{\mathbf{x}} = 8,000 \text{ mm}$$

Representation of relative frequency

The relative frequency as a function of the class midpoints is represented by means of a bar chart showing the frequency density of the random sample (frequency diagram). The relative frequency density f corresponds to the relative frequency divided by the class width.

This representation of the frequency diagram is also known as a histogram, see Figure 1, ①. It provides a representation of the frequency distribution as an approximation for the distribution function.

In the representation of the cumulative frequency as a function of the class midpoints, the staircase curve shows the so-called cumulative curve or empirical distribution function, see Figure 1, (2).

In comparison with the frequency diagram, the cumulative curve has the advantage that it is possible to easily read off the percentage of the measurements that lie within any interval.

Figure 1 Histogram and cumulative curve

 Histogram/frequency diagram
 Cumulative curve

Variance and standard deviation *Equation 4*

The variance s² of the random sample is determined as follows:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \sum_{j=1}^{k} n_{j} \cdot (x_{j} - \overline{x})^{2}$$

This can be used to determine the standard deviation s of the random sample:

Equation 5

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{n-1} \sum_{j=1}^{k} n_j \cdot (x_j - \bar{x})^2}$$

The calculation scheme for the standard deviation can be used to determine the variance:

j	x _j	n _i	$x_j - \overline{x}$	$n_{j}\left(x_{j}\!-\!\overline{x}\right)^{2}$
1	7,988	1	-0,012	0,000144
2	7,990	5	-0,010	0,000500
3	7,992	7	-0,008	0,000448
4	7,994	16	-0,006	0,000576
5	7,996	25	-0,004	0,004000
6	7,998	29	-0,002	0,000116
7	8,000	34	0,000	0,0
8	8,002	32	+0,002	0,000128
9	8,004	22	+0,004	0,000352
10	8,006	14	+0,006	0,000504
11	8,008	9	+0,008	0,000576
12	8,010	4	+0,010	0,000400
13	8,012	2	+0,012	0,000288
		Σ 200		Σ 0,004432

This gives the random sample variance s² as follows:

Equation 6

$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{k} n_{j} (x_{j} - \overline{x})^{2}$$
$$s^{2} = \frac{1}{199} \cdot 0,004432 = 22,27 \cdot 10^{-6}$$

The variance ultimately gives the standard deviation s = 0,0047 mm.

Representation in a probability plot

The values of the cumulative frequency H_j are entered in the probability plot as ordinates against the upper class limits. If a normal distribution is present, the ordinates of the cumulative frequency in the probability plot are distorted such that the S-shaped cumulative curve becomes a straight line, see Figure 2.

The following values can be derived from this representation:

mean value \overline{x} at 50% of the cumulative frequency:

Equation 7

 $\overline{x} = 8,000 \text{ mm}$

and the standard deviation s, determined as double the standard deviation from the abscissa values at 16% and 84% of the cumulative frequency:

Equation 8

$$2s = x_{(H = 0.84)} - x_{(H = 0.16)}$$

2s = 8,005 mm - 7,995 mm = 0,010 mm
s = 0,005 mm

Within the scope of the reading accuracy, this value shows good agreement with the calculated value. The coefficient of variation indicates the standard deviation related to the mean value:

Equation 9

$$V_x = \frac{s}{\overline{x}}$$

 $V_x = \frac{0,005 \text{ mm}}{8,000 \text{ mm}} = 0,000 \text{ 63}$

Note on the evaluation of measurement series (confidence interval) If a large number of random samples each comprising n values is taken from one and the same population with the mean value μ and the standard deviation σ , the mean values $\overline{x}_1; \overline{x}_2; \ldots$ of the random samples will show scatter about the true value of μ :

Equation 10

$$\overline{x} = \mu \pm u \!\cdot\! \frac{\sigma}{\sqrt{n}}$$

The values for the factor u are listed in the table Value frequency, Page 83.

If only the values $\overline{\mathbf{x}}$ and s of a random sample are known and a statement is to be made about the true mean value μ of the population, a so-called confidence interval can be indicated.

The mean value μ should lie within the confidence interval with P% probability:

Equation 11

$$u = \overline{x} \pm t \cdot \frac{s}{\sqrt{n}}$$

ł

The values for the factor t are given in the following table.

n		2	3	5	10	20	50	
t values for P =	90%	6,31	2,92	2,13	1,83	1,73	1,68	1,65
	95%	12,7	4,30	2,78	2,26	2,09	2,01	1,96
	99 %	63,7	9,92	4,60	3,25	2,86	2,68	2,58

The true mean value μ of the population, at a probability of 90%, is:

$$\mu = 8,000 \,\text{mm} \pm 1,65 \, \frac{0,0047 \,\text{mm}}{\sqrt{200}}$$

$$\mu=\text{8,000}\,\text{mm}\pm\text{0,0005}\,\text{mm}$$

Gaussian normal distribution

A Gaussian normal distribution generally occurs when a large number of random influences that are independent of each other act on a single attribute value of a population (collective) while none of the influences plays a dominant role.

If a normal distribution is present, this results in a straight line for the cumulative frequency in the probability plot, see Figure 2, Page 80.

 Frequency density function and cumulative function
 The staircase curves shown in Figure 1, Page 78, and Figure 2, Page 80, for the relative frequency density and cumulative frequency are incorporated in this case in the continuous trends of the frequency density function f(x) and the cumulative function F(x) with a mean value μ and standard deviation σ.

The frequency density function f(x) is described as follows:

Equation 12

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}$$

The cumulative function F(x) is determined as follows:

Equation 13

$$F(x; \mu, \sigma) = \int_{-\infty}^{x} f(x; \mu, \sigma) dx$$

Representation of the Gaussian normal distribution

The normal distribution is symmetrical to the mean value μ of the population and shows an inflection point in each case at $x = \mu \pm \sigma$. The greater the value σ , the greater the distance between these two points. This starts at $x = -\infty$ and ends at $x = +\infty$. The total area under this "bell curve" corresponds to 1 = 100%.

Multiple values for the standard deviation can be used to define intervals $x = \mu \pm u \cdot \sigma$ in which P% of the x values lie. It can be seen from the table of value frequency that 99,73% of all values lie in the interval $\pm 3 \cdot \sigma$.

The frequency density function f(x) and the cumulative function F(x) are clearly defined by the mean value μ and the standard deviation σ of the distribution.

(1) Function F(x) (2) Function $\Phi^*(x)$

The complete area under the bell curve is defined as:

Equation 16

 $F(x = +\infty) = 1$

The standard normal distribution is symmetrical to the mean value μ = 0. It is then sufficient to present the function $\Phi^*(x)$ in tabular form for positive values of x only.

The cumulative frequency between the values $\pm x$ is then:

Equation 17

$$\int_{-x}^{+x} F(x; 0, 1) dx = 2 \cdot \Phi^{*}(x)$$

First approximation

If the size of the random sample n taken is very large in relation to the population N, the following simplification is permitted:

- mean value \overline{x} of the random sample = estimated and approximately actual parameter for mean value μ
- standard deviation s of the random sample = parameter for standard deviation σ of the population

 $\begin{array}{ll} \mbox{Scatter} & \mbox{If the standard deviation σ is known, this can also be used to determine} \\ \mbox{in a process} & \mbox{the natural scatter in a process, in other words to define an interval} \\ \mbox{that contains almost the complete distribution.} \\ \mbox{In practice, the value frequently selected in this case is $\mu \pm 3\sigma$ (99,73\%).} \end{array}$

Weibull distribution

The Weibull distribution has proved effective in practice for evaluation of the lifetime of engineering products. It has been applied as a standard procedure in rolling bearing technology.

Weibull cumulative function Equation 18 The Weibull cumulative function is as follows:

 $F(t) = 1 - e^{-(t/\eta)^{\beta}}$

The associated reliability function R(t) is also known as the survival function and is determined as follows:

Equation 19

R(t) = 1 - F(t)	 (t) = cumulative function probability that a specimen fro sample or a collective will fail 	om a random by the time t
	(t) = survival function; reliability function	
	= attribute value, failure time	
	B = measure of the scatter of the failure gradient	ailure times,
	 characteristic rating life; the time by which 63,2% of the in a test procedure have failed 	e specimens

The characteristic rating life η is determined by using t = η in the Weibull cumulative function:

Equation 20

$$F(\eta) = 1 - e^{-1^{\beta}} = 1 - \frac{1}{e}$$
$$F(\eta) = 0.632 \triangleq 63.2\%$$

Evaluation For evaluation of tests, a linear representation of the cumulative function of a rating life test is not suitable.

Double logarithmisation gives the following:

Equation 21

$$\left(\frac{t}{\eta}\right)^{\beta} = \ln \frac{1}{1 - F(t)}$$

$$\beta \left(\lg t - \lg \eta \right) = \lg \ln \frac{1}{1 - F(t)}$$

This relationship appears in the Weibull paper with an abscissa graduation lg t and an ordinate graduation lg ln 1/(1 - F(t)) as a straight line for F(t).

Cumulative failure frequency For the evaluation of a rating life test comprising n tests, the cumulative frequency H_i is plotted against the rating life values t arranged according to magnitude in accordance with the median ranking method:

Equation 22

$H_i = \frac{i - 0,3}{n + 0,4}$	i = ordinal number of the failure times of the specimens

In order to achieve both statistical authoritativeness of test results and an acceptable test duration, it is necessary to carry out a rating life test with a large random sample n up to a cumulative failure frequency of at least $H_i = 0.5$.

 η and β are random values, on a similar basis to \overline{x} and s in the Gaussian normal distribution.

For random samples $n \ge 50$, the following relationship gives confidence intervals for the values to be expected of the population:

Equation 23

$$\eta \pm \left(\frac{u}{\sqrt{n}}\right) \cdot 1,052 \cdot \left(\frac{\eta}{\beta}\right)$$
$$\beta \pm \left(\frac{u}{\sqrt{n}}\right) \cdot 0,78 \cdot \beta$$

The values for u are given in the table Value frequency, Page 83.

Basic rating life In rolling bearing technology, the definition states that 10% of the bearings in a large collective are permitted to have failed by the time the basic rating life is reached. A relationship is obtained between η and L_{10} if the values $t = L_{10}$ and F(t) = 0,10 are used in the Weibull cumulative function:

Equation 24

$$L_{10} = \eta \cdot ln \left(\frac{1}{1 - 0, 1}\right)^{\frac{1}{\beta}} = \eta \cdot 0,10536^{\frac{1}{\beta}}$$

Design of experiments

Introduction to the design of experiments – terms Design of experiments is an approach used in the targeted planning and evaluation of experimental or simulation tests, which aims to identify the impact of various influencing factors on one or more target values or quality characteristics of a defined system, resulting in the following relationships:

- The system boundaries correspond to the investigation boundaries.
- The quality characteristics correspond to the object of the investigation.
- The parameters correspond to the set of all input variables.
- The factors correspond to the reproducible parameters taken into account in the experimental design (often differentiated into categorical and numerical factors).
- The factor levels correspond to the factor settings.
- The effect corresponds to the quantifiable effect of a factor on the system.

Conflict is typically encountered in the design of experiments when it comes to choosing the number of experiments: A large number of experiments permits more precise statements about the effects of the various factors on the quality characteristics. A smaller number of experiments allows the experimental procedure to be carried out more quickly and cost-effectively.

as Plackett-Burman design of experiments, are suitable for screening.

Types of statistical experimental designs	A distinction is often made in the design of experiments between screenin designs and designs for detailed experiments.					
Screening design of experiments	Screening designs are used to examine a larger number of factors and obtain a general overview of the relevant factors. In full factorial designs, all possible combinations of the various factor levels are tested. In most cases, each factor has two levels. Generally speaking, the level spacing of a factor can have a bearing on the magnitude of the identified effect. By contrast, in fractional factorial designs, only a subset of a full factorial design is used in order to identify the most influential factors with minimal experimental work. As a result, these designs, in the same way					

Α	0	1	0	1	0	1	0	1	
В	0	0	1	1	0	0	1	1	
C	0	0	0	0	1	1	1	1	
Y	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	

The following example shows a full factorial design with three factors (A, B, C), each with two levels:

Figure 5 Full factorial design with three factors (A, B, C), each with two levels

Response surface design of experiments

In contrast to screening designs, response surface designs allow a more precise analysis of the effects of individual factors, taking into account non-linear relationships and interactions with other factors. Examples of response surface designs include the central composite design and the Box-Behnken design.

Figure 6

Central composite design for three factors (A, B, C)

OFAT design of experiments

A popular design of experiments used in practice for investigating simple relationships and the effects of individual factors is the OFAT (one-factor-at-a-time) design. With this design, the factors are varied one at a time in succession while holding all other factors constant at their initial value. Interactions between the individual factors cannot, however, be identified using this method.

The following example shows an OFAT design for three factors and a sample visualisation of the effects:

Α	+	-	0	0	0	0
В	0	0	+	-	0	0
С	0	0	0	0	+	-
Y	Y1	Y2	Y3	Y4	Y5	Y6

The selection of a suitable design of experiments is normally dependent on the number of factors to be investigated and the maximum number of possible experiments. The maximum number of possible experiments may be limited, however, for reasons of time or cost constraints governing experimentation.

Pseudo-random numbers are then taken as samples from these distributions and used as input variables for the relevant (computer) experiment.
Technical statistics

Monte Carlo method In this context, the Monte Carlo method is a simple sampling method in which realisations are determined on the basis of distribution parameters for random input parameters. The major disadvantage of this method, however, lies in the weak convergence, which means that a relatively large number of calculation runs have to be carried out in order to obtain reliable information about the statistics of the system response. The reason for this is that rare input parameters are only considered statistically when samples are relatively large.

Latin Hypercube sampling

In contrast to the traditional Monte Carlo method, Latin Hypercube sampling divides the distributions of the input variables into N classes with equal probability mass, where N corresponds to the specified sample size and the probability mass corresponds to a proportional stratification. The random values of the input variables generated by this method are linked to each other by a Latin square.

Figure 8

Latin Hypercube sampling visualisation of two normally distributed factors and sample size N = 5

Evaluation of experimental results

In addition to its use in the planning of experimental and simulation studies, design of experiments is also applied in the evaluation of experimental results.

In this context, assuming the simple variation of only one factor with only two levels, the effect of factor variations can be evaluated in a very simple way by dividing the difference between the two factor levels by the difference between the corresponding results of the upper and lower factor level.

By contrast, particularly in detailed studies, the experimental results are commonly evaluated using regression and correlation analyses, in which the regression or correlation coefficients can be interpreted as effects of the factors.

Technical statistics

	Regression and correlation
The role of regression	The regression calculation aims to determine the relationship between an independent variable x and a dependent variable y from the value pairs (x_i, y_i) where $i = 1, 2,, n$ of a random sample of size n. The precondition is that the value pairs were each determined on the same i-th element.
Theoretical regression function	For the theoretical regression function, a polynomial of a k-th degree is generally selected whose coefficients α_j with $j = 0,1,, k$ are to be determined:
Equation 25	$f(x) = \alpha_k \cdot x^k + \alpha_{k-1} \cdot x^{k-1} + + \alpha_j \cdot x^j + + \alpha_1 \cdot x^1 + \alpha_0 \cdot x^0$
Determining the coefficients Equation 26	If there is a linear relationship between x and f(x), the regression line gives a good approximation. The coefficients α_j are determined according to the Gaussian method of least squares: $\sum_{i=1}^{n} (y_i - f(x_j))^2 = \sum_{j=1}^{n} \left(y_i - \sum_{j=0}^{k} \alpha_j \cdot x_i^{\ j} \right)^2 = g$
	with $(\alpha_0, \alpha_1,, \alpha_n) = \text{minimum}$.
Linear approach	The partial derivations $dg/d\alpha_j = 0$ give (k + 1) linear equations that can be solved using the methods for linear equation systems.
Equation 27	For the linear case: $y = \alpha_0 + \alpha_1 \cdot x$
Equation 28	and with the mean values: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$
Equation 29	the relationship is as follows:
,	$\alpha_0 = y - \alpha_1 \cdot x$

Technical statistics

If the following is used:

Equation 30

$$y - \overline{y} = \alpha_1 (x - \overline{x})$$

the relationship is as follows:

Eauation 31

$$\boldsymbol{\alpha}_{1} = \frac{\left(\sum \boldsymbol{x}_{i}\,\boldsymbol{y}_{i} - \boldsymbol{n}\overline{\boldsymbol{x}}\,\overline{\boldsymbol{y}}\right)}{\left(\sum \boldsymbol{x}_{i}^{2} - \boldsymbol{n}\overline{\boldsymbol{x}}^{2}\right)}$$

Variances Eauation 32 The variances s² of the random sample are determined as follows:

$$\begin{split} s_x^2 &= \frac{1}{n-1} \bigg[\sum x_i^2 - \left(\left(\sum x_i \right)^2 \cdot \frac{1}{n} \right) \bigg] \\ s_y^2 &= \frac{1}{n-1} \bigg[\sum y_i^2 - \left(\left(\sum y_i \right)^2 \cdot \frac{1}{n} \right) \bigg] \end{split}$$

The covariance s of the random sample is determined as follows:

Equation 33

 $s_{xy} = \frac{1}{n-1} \sum (x_i - \overline{x}) (y_i - \overline{y}) = \frac{1}{n-1} \sum (x_i y_i - n\overline{x} \overline{y})$

Coefficient Eauation 34

The coefficient α_1 is determined as:

$$\alpha_1 = \frac{s_{xy}}{s_x^2}$$

If all the measurement points lie on the straight line, the variances s² are as follows:

Equation 35

$$s_{xy}^2 = s_x^2 \cdot s_y^2$$

The role of correlation If there are no recognisable reasons for a functional dependence of the random variables y on the independently applied variables x, the correlation calculation (correlation interdependence) is used to check the quality of a subordinate relationship.

> A linear dependence can be stated using the correlation coefficient r_{vv}. This is in the following relationship with the values determined in the section Theoretical regression function, Page 92:

Eauation 36

$$\begin{split} r_{xy} &= \frac{s_{xy}}{\sqrt{s_x^2 \cdot s_y^2}} \\ -1 &\leq r_{xy} &\leq 1 \end{split}$$

If r_{xv} < 0 this is known as a negative correlation: large values for x are associated with small values for y and vice versa.

The value $B = r_{xv}^2$ is known as the coefficient of determination.

Chemistry

Elements and values

The periodic system of elements

In the periodic system, chemical elements are arranged according to their atomic weight. The atomic number, symbol, name and relative atomic mass (or rather the atomic mass of the most stable isotope in []) is displayed in each case.

Peri-	Group										
od	Main group	os	Subgroups	;							
	1	2	3	4	5	6	7	8	9		
1	1 H Hydrogen										
	1,0079										
2	3 Li Lithium	4 Be Beryllium									
	6,941	9,0122									
3	11 Na Sodium	12 Mg Mag- nesium									
	22,99	24,305									
4	19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manga- nese	26 Fe Iron	27 Co Cobalt		
	39,098	40,078	44,956	47,867	50,942	51,996	54,938	55,845	58,933		
5	37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molyb- denum	43 Tc Tech- netium	44 Ru Ru- thenium	45 Rh Rhodium		
	05,400	07,02	00,900	91,224	92,900	95,94	[97,907]	101,07	102,906		
6	55 Cs Caesium	56 Ba Barium	57 – 71 Lantha- nides, see	72 Hf Hafnium	73 Ia Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	// Ir Iridium		
	132,905	137,327	Page 96	178,49	180,948	183,84	186,207	190,23	192,217		
7	87 Fr Francium	88 Ra Radium	89 – 103 Actinides, see Page	104 Rf Ruther- fordium	105 Db Dubnium	106 Sg Sea- borgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitner- ium [278]		
	[22],02]	[220,07]	<i>_</i>	[207]	[2/0]	[207]	[2/0]	[4//]	[270]		

			Main group	s				
10	11	12	13	14	15	16	17	18
								2 He Helium
								4,0026
			5 B Boron	6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon
			10,811	12,011	14,007	15,999	18,998	20,18
			13 Al Aluminium	14 Si Silicon	15 P Phos- phorus	16 S Sulphur	17 Cl Chlorine	18 Ar Argon
			26,982	28,086	30,974	32,065	35,453	39,948
28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Ger- manium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
58,693	63,546	65,38	69,723	72,64	74,922	78,96	79,904	83,798
46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 I Iodine	54 Xe Xenon
106,42	107,868	112,411	114,818	118,71	121,76	127,6	126,9	131,293
78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
195,078	196,967	200,59	204,383	207,2	208,98	[208,98]	[209,99]	[222,02]
110 Ds Darm- stadtium [281]	111 Rg Roentge- nium [282]	112 Cn Coper- nicium [285]	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Mosco- vium [289]	116 Lv Liver- morium [293]	117 Ts Tennes- sine [294]	118 Og Oganes- son [294]

Lanthanides Addition of lanthanides to table, The periodic system of elements, from Page 94.

57 La Lantha- num 138,905	58 Ce Cerium 140,116	59 Pr Praseo- dymium 140,908	60 Nd Neodymium 144,242	61 Pm Promethium [144,91]	62 Sm Samarium 150,36	63 Eu Europium 151,964	64 Gd Gadolinium 157,25
	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	158,925	162,5	164 , 93	167,259	168,934	173,04	174,967

Actinides Addition of actinides to table, The periodic system of elements, from Page 94.

89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium
[227,03]	[232,04]	[231,04]	[238,03]	[237,05]	[244,06]	[243,06]	[247,07]
	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	[247,07]	[251,08]	[252,08]	[257,1]	[258,1]	[259,1]	[262,11]

 Physical properties:
 The physical properties of the chemical elements are listed in the following table.

Element	Symbol	Atomic number	Relative atomic mass	Density ρ	Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
				kg/dm ^{3 1)}	°C	°C	W/(m·K)	kJ/(kg⋅K)
Actinium Aluminium Americium Antimony Argon	Ac Al Am Sb Ar	89 13 95 51 18	(227) 26,98 (243) 121,75 39,95	- 2,70 11,7 6,68 1,40 ¹⁾	1050 660 >850 631 -189	3 200 2 450 2 600 1 380 -186	- 238 - 19 0,02	0,12 0,88 0,14 0,21 0,52
Arsenic Astatine Barium Berkelium Beryllium	As At Ba Bk Be	33 85 56 97 4	74,92 (209,99) 137,34 (247) 9,01	5,72 - 3,50 - 1,85	817 ²⁾ 302 714 - 1280	613 335 1640 - 2480	- - - 168	0,33 0,14 0,29 - 1,02
Bismuth Boron Bromine Cadmium Caesium	Bi B Br Cd Cs	83 5 35 48 55	208,98 10,81 79,90 112,40 132,91	9,8 2,34 3,12 8,65 1,87	271 (2 030) -7 321 29	1560 3900 58 765 690	8,1 - 96 -	0,12 1,04 0,45 0,23 0,22

Continuation of table, see Page 97.

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

¹⁾ Gas: density in kg/m³ (at +25 °C and 1013 hPa).

²⁾ In sealed tube at 27,5 bar.

Element	Symbol	Atomic number	Relative atomic mass	Density ρ	Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
				$kg/dm^{3 \ 1}$	°C	°C	W/(m · K)	kJ/(kg⋅K)
Calcium	Ca	20	40,08	1,55	838	1490	130	0,66
Californium	Cf	98	(251)	-	-	-	-	-
Carbon	C	6	12,01	2,26	3730	4830	168	0,65
Cerium	Ce	58	140,12	6,78	795	3470	10,9	0,18
Chlorine	Cl	17	35,45	1,56 ¹⁾	-101	-35	0,008	0,47
Chromium	Cr	24	52,00	7,19	1900	2 642	69	0,44
Cobalt	Co	27	58,93	8,90	1490	2 900	96	0,43
Copper	Cu	29	63,55	8,96	1083	2 600	398	0,38
Curium	Cm	96	(247)	7	-	-	-	-
Dysprosium	Dy	66	162,50	8,54	1410	2 600	10	0,17
Einsteinium	Es	99	(254)	-	-	-	-	-
Erbium	Er	68	167,26	9,05	1500	2 900	9,6	0,17
Europium	Eu	63	151,96	5,26	826	1 440	-	0,17
Fermium	Fm	100	(257)	-	-	-	-	-
Fluorine	F	9	19,00	1,51 ¹⁾	-220	-188	0,02	0,83
Francium	Fr	87	(223,02)	-	(27)	(680)	-	0,14
Gadolinium	Gd	64	157,25	7,89	1310	3 000	8,8	0,23
Gallium	Ga	31	69,72	5,91	30	2 400	40	0,37
Germanium	Ge	32	72,59	5,32	937	2 830	62	0,31
Gold	Au	79	196,97	19,3	1063	2 970	314	0,13
Hafnium	Hf	72	178,49	13,1	2 000	5 400	93	0,14
Helium	He	2	4,003	0,15 ¹⁾	-270	-269	0,16	5,23
Holmium	Ho	67	164,93	8,80	1460	2 600	-	0,16
Hydrogen	H	1	1,008	0,07 ¹⁾	-259	-253	0,17	14,14
Indium	In	49	114,82	7,31	156	2 000	24	0,23
lodine	l	53	126,90	4,94	114	183	0,43	0,22
Iridium	Ir	77	192,22	22,5	2 450	4 500	58	0,13
Iron	Fe	26	55,85	7,86	1 540	3 000	72	0,44
Krypton	Kr	36	83,80	2,16 ¹⁾	-157	-152	0,01	0,25
Lanthanum	La	57	138,91	6,17	920	3 470	13,8	0,20

Continuation of table, Physical properties: Chemical elements, from Page 96.

Continuation of table, see Page 98.

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

¹⁾ Gas: density in kg/m³ (at +25 °C and 1013 hPa).

Continuation of table, Physical properties: Chemical elements	,
from Page 97.	

Element	Symbol	Atomic number	Relative atomic mass	Density ρ	Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
				kg/dm ^{3 1)}	°C	°C	W/(m · K)	kJ/(kg⋅K)
Lawrencium	Lr	103	(256)	-	-	-	-	-
Lead	Pb	82	207,2	11,4	327	1740	35	0,13
Lithium	Li	3	6,94	0,53	180	1330	71	3,6
Lutetium	Lu	71	174,97	9,84	1 650	3330	-	-
Magnesium	Mg	12	24,31	1,74	650	1110	171	1,01
Manganese	Mn	25	54,94	7,43	1 250	2100	30	0,47
Mendelevium	Md	101	(258)	-	-	-	-	-
Mercury	Hg	80	200,59	13,53	-39	357	8,1	0,14
Molybdenum	Mo	42	95,94	10,2	2 610	5560	142	0,24
Neodymium	Nd	60	144,24	7,00	1020	3030	16	0,19
Neon	Ne	10	20,18	1,20 ¹⁾	-249	-246	0,05	1,03
Neptunium	Np	93	237,05	20,4	640	-	57	-
Nickel	Ni	28	58,71	8,90	1450	2730	61	0,43
Niobium	Nb	41	92,91	8,55	2420	4900	52	0,27
Nitrogen	N	7	14,01	0,81 ¹⁾	-210	-196	0,02	1,04
Nobelium Osmium Oxygen Palladium Phosphorus	No Os Pd P	102 76 8 46 15	(256) 190,2 16,00 106,4 30,97	- 22,4 1,15 ¹⁾ 12,0 1,82	- 3 000 -219 1 550 44	- 5 500 -183 3125 280	- 87 0,03 69 -	- 0,13 0,92 0,25 0,67
Platinum	Pt	78	195,09	21,4	1770	3 825	71	0,13
Plutonium	Pu	94	(244)	19,8	640	3 230	9	-
Polonium	Po	84	(208,98)	9,4	254	962	-	0,13
Potassium	K	19	39,10	0,86	64	760	97	0,76
Praseodymium	Pr	59	140,91	6,77	935	3130	12	0,19
Promethium Protactinium Radium Radon Rhenium	Pm Pa Ra Rn Re	61 91 88 86 75	(145) 231,04 226,03 (222,02) 186,2	- 15,4 5 4,4 ¹⁾ 21,0	(1030) (1230) 700 -71 3180	(2730) - 1530 -62 5630	- - - 48	0,19 0,12 0,12 0,09 0,14

Continuation of table, see Page 99.

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

 $^{1)}$ Gas: density in kg/m 3 (at +25 °C and 1013 hPa).

Element	Symbol	Atomic number	Relative atomic mass	Density ρ	Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
				kg/dm ^{3 1)}	°C	°C	W/(m · K)	kJ/(kg⋅K)
Rhodium	Rh	45	102,91	12,4	1970	3730	88	0,24
Rubidium	Rb	37	85,47	1,53	39	688	58	0,33
Ruthenium	Ru	44	101,07	12,2	2300	3900	106	0,25
Samarium	Sm	62	150,4	7,54	1070	1900	-	0,20
Scandium	Sc	21	44,96	3,0	1540	2730	63	0,56
Selenium	Se	34	78,96	4,80	217	685	0,2	0,33
Silicon	Si	14	28,09	2,33	1410	2680	80	0,68
Silver	Ag	47	107,87	10,5	961	2210	418	0,23
Sodium	Na	11	22,99	0,97	98	892	138	1,22
Strontium	Sr	38	87,62	2,6	770	1380	-	0,29
Sulphur	S	16	32,06	2,07	113	-	0,26	0,68
Tantalum	Ta	73	180,95	16,6	3 000	5 430	55	0,12
Technetium	Tc	43	97,907	11,5	2140	(4 600)	-	0,25
Tellurium	Te	52	127,60	6,24	450	1 390	1,2	0,21
Terbium	Tb	65	158,93	8,27	1 360	2 800	-	0,18
Thallium	Tl	81	204,37	11,85	303	1460	50	0,13
Thorium	Th	90	232,04	11,7	1700	4200	38	0,14
Thulium	Tm	69	168,93	9,33	1550	1730	-	0,16
Tin	Sn	50	118,69	7,30	232	2270	63	0,22
Titanium	Ti	22	47,90	4,50	1670	3260	16	0,24
Tungsten	W	74	183,85	19,3	3 410	5930	130	0,14
Uranium	U	92	238,03	18,90	1130	3820	24	0,12
Vanadium	V	23	50,94	5,8	1900	3450	32	0,51
Xenon	Xe	54	131,30	3,5 ¹⁾	-112	-108	0,005	0,16
Ytterbium	Yb	70	173,04	6,98	824	1430	-	0,14
Yttrium	Y	39	88,91	4,5	1500	2 930	14	0,29
Zinc	Zn	30	65,37	7,14	419	906	113	0,39
Zirconium	Zr	40	91,22	6,49	1850	3 580	21	0,28

Continuation of table, Physical properties: Chemical elements, from Page 98.

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

¹⁾ $\overline{\text{Gas: density in kg/m}^3}$ (at +25 °C and 1013 hPa).

Physical properties: The following table shows the physical properties for a selection of (pure and anhydrous) liquids.

Density ρ kg/dm ³ at °C		Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
0,791	20	-95,35	56,35	0,16	1,21
1,05	20	16,7	118	-	2,03
1,05	15	-20	270 400	0,47	1,33
0,83	15	5,4	80	0,14	1,7
1,598	18	-22,8	46,3	-	0,845
0,83	15	-30	210 380	0,15	2,05
0,72	20	-116	35	0,14	2,3
0,975	20	-83,6	77,1	-	2,0
0,80	15	-114	78,5	0,17 23	2,33
0,92	15	-139	12,5	0,16	1,79
1,114	20	-17,4	197,2	0,25	2,4
1,26	20	19	290	0,29	2,43
<0,86	20	-10	>175	0,14	2,07
1,05	15	-14	102	0,50	3,14
0,93	20	-15	316	0,17	1,88
0,91	15	-5	380 400	0,125	1,80
13,55	15	-38,9	357,25	10	0,14
0,80	15	-98	65	0,211	2,55
1,335	20	-97	40,1	-	-
1,51	15	-41,3	86	0,26	1,72
0,81	15	-70	150 300	0,13	2,1
0,72 0,73	15	-2050	40 200	0,13	2,1
0,66	20	-160	40 70	0,138	1,76
0,79	20	-88	83	0,26	2,49
0,91	20	0	300	0,17	1,97
0,811	20	-90	78	0,16	2,43
0,96	20	-20	150 300	0,15	-
0,94	20	-	-	0,22	1,09
1,84	15	10,5	338	0,47	1,42
1,15	15	-18	108,8	0,59	3,43
1,2	20	-15	300	0,19	1,58
0,87	15	-97	110	0,14	1,48
0,87	15	-5	170	0,13	1,88
1,47	18	-83	86,8	-	0,95
0,87	15	-10	160	0,10	1,80
	Density ρ kg/dm³ 0.791 1,05 1,05 1,05 0,83 1,598 0,83 0,72 0,975 0,80 0,92 1,114 1,26 <0,86	Density ρ at °C kg/dm³ at °C 0,791 20 1,05 20 1,05 15 0,83 15 1,598 18 0,83 15 0,77 20 0,83 15 0,72 20 0,80 15 0,92 15 1,114 20 1,26 20 <0,86	Density ρ Melting point kg/dm ³ at °C °C 0,791 20 -95,35 1,05 15 -20 0,83 15 5,4 1,598 18 -22,8 0,83 15 -30 0,72 20 -116 0,975 20 -114 0,92 15 -139 1,114 20 -17,4 1,26 20 19 <0,86	Density ρ Melting point Boiling point kg/dm³ at °C °C °C 0,791 20 -95,35 56,35 1,05 15 -20 270400 0,83 15 5,4 80 1,598 18 -22,8 46,3 0,83 15 -30 210380 0,77 20 -116 35 0,72 20 -114 78,5 0,975 20 -83,6 77,1 0,80 15 -114 78,5 0,92 15 -139 12,5 1,114 20 -17,4 197,2 1,05 15 -38,9 357,25 0,80 15 -98 65 1,355 15 -38,9 357,25 0,80 15 -98 65 1,355 15 -38,9 357,25 0,80 15 -98 65 1,	Density p Melting point Boiling point Thermal conductivity λ kg/dm ³ at °C °C °C W/(m · K) 0,791 20 -95,35 56,35 0,16 1,05 15 -20 270400 0,47 0,83 15 5,4 80 0,14 1,598 18 -22,8 46,3 - 0,83 15 -30 210380 0,15 0,72 20 -116 35 0,14 0,975 20 -83,6 77,1 - 0,80 15 -114 78,5 0,17 .23 0,92 15 -139 12,5 0,16 1,114 20 -17,4 197,2 0,29 0,93 20 -15 316 0,17 0,91 15 -5 380400 0,125 1,35 15 -38,9 357,25 10 0,80 15 -97

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

1) Ethyl alcohol, denatured.

 Physical properties:
 The following table shows the physical properties for a selection of solids.

Substance	Density ρ	Melting point	Boiling point	Thermal conductivity λ	Thermal capacity c _p
	kg/dm ³	°C	°C	W/(m · K)	kJ/(kg⋅K)
Agate Asphalt Barium chloride (BaCl ₂) Basalt Boiler scale	2,5 2,8 1,1 1,5 3,10 2,9 ≈ 2,5	≈ 1600 80 100 956 - ≈ 1200	≈ 2 590 ≈ 300 1830 - -	10,68 0,69 - 1,67 0,12 2,3	0,79 0,92 0,37 0,86 0,79
Borax, anhydrous Brass (63 Cu, 37 Zn) Bronze (94 Cu, 6 Sn) Charcoal Chromium(III) oxide (Cr ₂ O ₃)	1,72 8,5 8,73 0,3 0,5 5,22	741 900 910 - 2 330	_ 2 300 ≈ 3 540 _	- 116 64 0,08 0,4 (powder)	0,99 0,38 0,37 1,0 0,75
Coke Concrete Corundum (Al ₂ O ₃) Diamond Flake graphite cast iron	1,6 1,9 1,8 2,45 3,9 4,0 3,51 7,25	_ 2 050 _ 1150 1250	- 2 700 - 2 500	0,183 0,8 1,4 12 23 ~ ≈ 52	0,84 0,87 0,96 0,52 ≈ 0,5
Glass fibre mats Glass (window) Granite Graphite, pure Greases	0,03 0,2 2,4 2,7 2,6 2,8 2,26 0,92 0,94	≈ 700 ≈ 700 - ≈ 3 830 30 175	- - ≈ 4 200 ≈ 300	0,04 0,58 1,0 3,5 168 0,2	0,84 0,84 0,82 0,71 0,62 0,79
Gypsum (CaSO ₄) Hard metal K20 Heat conducting alloy (80 Ni, 20 Cr) Hydrated ferric oxide (rust) Ice	2,3 14,8 8,3 5,1 0,92	1200 ≈ 2000 1400 1565 -	- ≈ 4 000 2 300 - 100	0,34 0,46 81,4 14,6 0,58 (powder) 2,3	1,1 0,80 0,50 0,67 2,1
Leather, dry Limestone (CaCO ₂) Litharge (lead monoxide) Magnesium alloys Marble (CaCO ₃)	0,85 1,02 2,6 2,8 9,53 ≈ 1,8 2,6 1,8	_ decomposes into 888 ≈ 630 1 290	– CaO & CO ₂ 1580 1500 decomposes	≈ 0,17 2,2 - 46 140 2,1 3,5	≈ 1,5 0,91 0,21 - 0,88
Mica Monel metal Porcelain Quartz Red bronze (CuSn ₅ ZnPb)	2,6 3,2 8,8 2,3 2,5 2,5 2,8 8,8		≈ 700 - 2 230 2 300	0,34 19,7 0,8 1,0 9,9 38	0,87 0,43 0,80 0,80 0,67
Sand, dry Sandstone Soot Steel (18 Cr, 8 Ni) Steel (18 W)	1,2 1,6 2,2 2,5 1,7 1,8 7,9 8,7	1480 ≈1500 - 1450 1450	2 230 - - - -	0,6 2,3 0,07 14 26	0,80 0,71 0,84 0,51 0,42
Steel, low alloy Table salt (NaCl) Wood	7,8 7,86 2,15 0,5 0,8	1450 1530 802 -	2 500 1 440 -	46 58 - 0,17 0,34	0,49 0,92 2,1 2,9

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

Physical properties:The following table shows the physical properties for a selectionGases and vapoursof gases and vapours.

Substance	Density ρ kg/m ³	Relative density η_{rel} (air = 1)	Boiling point °C	Thermal conductivity λ W/(m · K)	Thermal capacity c _p kJ/(kg · K)	$\kappa = c_p/c_x$
Acetylene (ethine)	1,17	0,91	-81	0,019	1,68	1,26
Air	1,29	1	-192	0,026	1,00	1,40
Ammonia	0,77	0,60	-33,4	0,024	2,22	1,32
Blast furnace gas	1,28	0,99	-170	0,023	1,05	1,40
Carbon dioxide	1,98	1,52	-78,5	0,015 3	0,88	1,30
Carbon disulphide	3,41	2,64	46	0,007 2	0,67	1,19
Carbon monoxide	1,25	0,97	-191	0,024	1,05	1,40
Cyanogen (CN) ₂	2,33	1,80	-21,2	-	1,72	1,27
Ethane	1,356	1,049	-88	0,021	-	1,13
Ethyl alcohol vapour	2,07	1,60	78,5	0,032	-	1,13
Ethylene, ethene	1,26	0,98	-102	0,037	1,55	1,25
Freon 12 (Cl ₂ F ₂)	5,08	3,93	-30	-	-	1,14
Generator gas	1,22	0,94	-170	0,023	1,05	1,40
Hydrogen chloride	1,939	1,27	-85	0,014	0,79	1,41
Hydrogen fluoride	0,893	0,713	19,5	-	-	-
Hydrogen sulphide	1,539	1,191	-60,2		1,34	-
Isobutane	2,67	2,06	-10		-	1,11
Methyl choride	1,545	1,2	-24,0		0,74	1,20
Natural gas (methane)	0,718	0,64	-162		-	-
n-butane	2,703	2,09	1		-	-
Ozone Propane Propylene (propene) Sulphur dioxide Town gas (illuminating gas)	2,14 2,019 1,915 2,93 0,56 0,61	1,65 1,562 1,481 2,26 0,47	-112 -45 -47 -10 -210	- - 0,010 0,064	- - 0,63 2,13	1,29 1,14 - 1,40 1,40
Water vapour at 100 °C	0,598	0,62	100	0,0191	2,00	1,32

Source: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH.

Melting point of salts The following table lists the melting points of a number of salts for salt baths.

Salt	Melting point	Salt	Melting point
	°C		°C
Aluminium chloride	192	Potassium chloride	770
Ferric chloride	304	Calcium chloride	772
Potassium nitrate	308	Sodium chloride (table salt)	800
Sodium nitrate	310	Lithium fluoride	848
Zinc chloride	313	Sodium carbonate (soda)	852
Cuprous chloride	432	Potassium fluoride	857
Lithium carbonate	461	Potassium carbonate	897
Lead chloride	498	Barium chloride	955
Lithium chloride	614	Sodium fluoride	992
Cupric chloride	630	Calcium fluoride	1392

Metal salts in water The solubility of inorganic salts in water is stated in g/100 g of water - solubility (in extracts).

Compound	Formula	At 0 °C	At 20 °C	At 100 °C
Cadmium sulphate	CdSO ₄	75,4	76,6	60,8
Calcium bicarbonate	Ca(HCO ₃) ₂	16,1	16,6	18,4
Ferrous chloride	FeCl ₂	49,7	62,5	94,9
Potassium ferrocyanide	K ₄ Fe(CN) ₆	14,3	28,2	74,2
Copper(II) sulphate pentahydrate	CuSO ₄ 5H ₂ O	23,1	32	114
Magnesium formate	Mg(HCO ₂) ₂	14	14,4	22,9
Sodium dichromate	Na ₂ Cr ₂ O ₇	163	183	415
Nickel(II) bromide	NiBr ₂	113	131	155
Mercury(II) bromide	HgBr ₂	0,3	0,56	4,9
Silver nitrate	AgNO ₃	122	216	733
Zinc chloride	ZnCl ₂	342	395	614

Source: Internetchemie.info, updated 06.07.2022, viewed 14.07.2023, https://www.internetchemie.info/chemie-lexikon/daten/l/loeslichkeitsprodukte.php.

Series

Electrolytic series

If two metals come into contact in the presence of water, acids, bases or salts, electrolytic decomposition of the less noble metal will occur. The less noble metal (has a lower position in the electrolytic series) corrodes and the more noble metal is protected.

Substance	Voltage	Substance	Voltage
	v		v
Gold	+1,50	Indium, thallium	-0,34
Chlorine	+1,36	Cadmium	-0,40
Bromine	+1,09	Iron	-0,40
Platinum	+0,87	Chromium	-0,56
Mercury	+0,86	Zinc	-0,76
Silver	+0,80	Aluminium, oxidised	-0,70 1,3
lodine	+0,58	Manganese	-1,1
Copper	+0,51	Aluminium, bright	-1,45
Arsenic	+0,30	Magnesium	-1,55
Bismuth	+0,23	Beryllium	-1,96
Antimony	+0,20	Calcium	-2,50
Hydrogen	0,00	Sodium	-2,72
Lead	-0,13	Barium	-2,80
Tin	-0,15	Potassium	-2,95
Nickel	-0,22	Lithium	-3,02
Cobalt	-0,29	Fluorine	-4,0

Voltage values are stated against a hydrogen electrode.

Thermoelectric series Voltage values for a temperature difference of +100 °C are stated against copper as a reference material (0 °C).

Substance	Voltage	Substance	Voltage
	mV		mV
Chrome nickel	+1,44	Manganin	-0,04
Iron	+1,04	Aluminium	-0,36
Tungsten	+0,05	Platinum	-0,76
Copper	0,00	Nickel	-2,26
Silver	-0,04	Constantan	-4,16

Technically important chemical substances

Commercial names and formulae The following table shows a selection of technically important, chemical substances with the corresponding commercial names and formulae.

Commercial name	Chemical designation	Formula
Acetone	Acetone (propanone)	(CH ₃) ₂ · CO
Acetylene	Acetylene	C ₂ H ₂
Alum	Potassium aluminium sulphate	$KAI(SO_4)_2 \cdot 12H_2O$
Alumina	Aluminium oxide	Al ₂ O ₃
Ammonia	Ammonia	NH ₃
Ammonia solution	Ammonia in aqueous solution	NH ₃ in H ₂ O
Aqua fortis	(see Nitric acid)	
Bauxite	Aluminium hydroxide	$Al_2O_3 \cdot 2H_2O$
Benzene	Benzene	C ₆ H ₆
Blue vitriol	Copper(II) sulphate	CuSO ₄ · 5H ₂ O
Borax	Sodium tetraborate	$Na_2B_4O_7 \cdot 10H_2O$
Boric acid	Boric acid	H ₃ BO ₃
Brownstone	Manganese dioxide	MnO ₂
Calcined soda	Sodium carbonate, anhydrous	Na ₂ CO ₃
Calcium carbide	Calcium carbide	CaC ₂
Calcium chloride	Calcium chloride	CaCl ₂
Carbon dioxide	Carbon dioxide	CO ₂
Carbon monoxide	Carbon monoxide	CO
Carborundum	Silicon carbide	SiC
Caustic lime	Calcium hydroxide	Ca(OH) ₂
Caustic potash	Potassium hydroxide	КОН
Caustic potash solution	Potassium hydroxide in aqueous solution	КОН
Caustic soda	Sodium hydroxide	NaOH
Chalk	Calcium carbonate	CaCO ₃
Chile saltpetre	Sodium nitrate	NaNO ₃

Continuation of table, see Page 106.

Source: Mortimer, C. E., Müller, U., Chemie, Stuttgart, Thieme 12. Auflage 2015. Hollemann, A. F., Wiberg, N., Lehrbuch der Anorganischen Chemie, Berlin, Walter de Gruyter 102. Auflage 2007.

Commercial name	Chemical designation	Formula
China clay	Kaolin	$\text{Al}_2\text{O}_3\cdot 2\text{SiO}_2\cdot 2\text{H}_2\text{O}$
Chlorinated lime	Chlorinated lime	CaCl(OCl)
Cinnabar	Mercury sulphide	HgS
Corundum (emery)	Aluminium oxide	Al ₂ O ₃
Dolomite	Calcium magnesium carbonate	CaMg(CO ₃) ₂
Emery	(see Corundum)	
English red	Iron oxide	Fe ₂ O ₃
Epsom salt	Magnesium sulphate	$MgSO_4 \cdot 7H_2O$
Ether	Ethyl ether (diethyl ether)	(C ₂ H ₃) ₂ O
Fixing salt	Sodium thiosulphate	$Na_2S_2O_3 \cdot 5H_2O$
Glauber's salt	Sodium sulphate	Na ₂ SO ₄
Glycerine	Propanetriol	C ₃ H ₈ O ₃
Green vitriol	Iron(II) sulphate	FeSO ₄
Gypsum	Calcium sulphate	CaSO ₄ · 2H ₂ O
Hydrochloric acid	Hydrochloric acid	HCI
Hydrogen sulphide	Hydrogen sulphide	H ₂ S
Iron oxide	Iron oxide	Fe ₂ O ₃
Lime, burnt	Calcium oxide	CaO
Lime, slaked	(see Caustic lime)	
Lime, with phosphoric acid	Calcium phosphate	Ca ₃ (PO ₄) ₂
Limestone	Calcium carbonate	CaCO ₃
Litharge	Lead monoxide	PbO
Lithopone	Mixture of zinc sulphide and barium sulphate	ZnS and BaSO ₄
Lye	(see Caustic soda)	
Magnesia	Magnesium oxide	MgO
Marble	(see Limestone)	
Mine gas	Methane	CH ₄
Minium	(see Red lead)	
Nitric acid	Nitric acid	HNO3
Oil of vitriol	Concentrated sulphuric acid	H ₂ SO ₄

Continuation of table, Commercial names and formulae, from Page 105.

Continuation of table, see Page 107.

Source: Mortimer, C. E., Müller, U., Chemie, Stuttgart, Thieme 12. Auflage 2015. Hollemann, A. F., Wiberg, N., Lehrbuch der Anorganischen Chemie, Berlin, Walter de Gruyter 102. Auflage 2007.

Commercial name	Chemical designation	Formula
Petrol	Petrol	(C _n H _{2 n + 2})
Phosphoric lime	Calcium phosphate	Ca ₃ (PO ₄) ₂
Potash	Potassium carbonate	K ₂ CO ₃
Prussiate of potash, red	Potassium ferricyanide	K ₃ Fe(CN) ₆
Prussiate of potash, yellow	Potassium ferrocyanide	K ₄ Fe(CN) ₆
Red lead	Red lead	Pb ₃ O ₄
Rust	Hydrated ferric oxide	$Fe_2O_3 \cdot xH_2O$
Sal ammoniac	Ammonium chloride	NH ₄ Cl
Silver bromide	Silver bromide	AgBr
Soda, crystalline	Sodium carbonate, anhydrous	Na ₂ CO ₃
Soda lye	Sodium hydroxide in aqueous solution	NaOH
Sodium bicarbonate	Sodium hydrogen carbonate	NaHCO ₃
Soldering flux	Aqueous solution of zinc chloride	ZnCl ₂
Sulphuric acid	Sulphuric acid	H ₂ SO ₄
Sulphurous acid	Dihydrogen sulphite	H ₂ SO ₃
Table salt	Sodium chloride	NaCl
Tetra	Tetrachloromethane	CCI ₄
Tin chloride	Tin(IV) chloride	SnCl ₄
Trilene	Trichloroethylene	C ₂ HCl ₃
Vinegar	Acetic acid	C ₂ H ₄ O ₂
Water glass	Sodium silicate or potassium silicate in aqueous solution	Na_4SiO_4 or Na_2SiO_2 K_4SiO_4 or K_2SiO_3
White lead	Basic lead carbonate	Pb(OH) ₂ · 2PbCO ₃
Zinc, with hydrochloric acid	Zinc chloride	ZnCl ₂

Continuation of table, Commercial names and formulae, from Page 106.

Source: Mortimer, C. E., Müller, U., Chemie, Stuttgart, Thieme 12. Auflage 2015. Hollemann, A. F., Wiberg, N., Lehrbuch der Anorganischen Chemie, Berlin, Walter de Gruyter 102. Auflage 2007.

Physics

Definitions, values and constants

Atomic building	A number of important atomic building blocks of matter are described
blocks	as follows:

Name		Explanation						
Atom		Smallest, chemically uniform particle of an element, consisting of a nucleus and an electron shell; order of magnitude of the diameter 10 ⁻¹⁰ m; the atomic nuclei are smaller by a factor of 10 ⁴ to 10 ⁵ ; the principal mass of the atom is located in the nucleus (density approximately 10 ¹⁴ g/cm ³); all chemical processes (as well as many electrical, magnetic and optical processes) take place in the atomic shell; atoms consist of elementary particles, around 300 are known						
Elementary particles		Elementary particles are the smallest known building blocks of matter. The particles included in the standard model of particle physics are: 6 quarks, 6 leptons, gauge bosons (mediators) and the Higgs boson						
	Fermions	Particles with a half	integral spin					
		Generations I Generations II Gen			Generations III			
		Quarks	Up Down	Charm Strange	Top Bottom			
		Leptons	Electron Electron neutrino	Muon Muon neutrino	Tau Tau neutrino			
	Bosons (interactions)	Particles with integr	al spin					
	(interactions)	Gauge bosons	e bosons Gluon Photon Z boson W boson					
		Scalar bosons	Higgs					
Composite		Particles composed	of elementary particle	25				
particles	Hadrons	Subatomic particles held together by the strong interaction						
		Baryons (for exampl	e nucleons), also refe	r to table entry on Pag	ge 109			
		Mesons (for example	e pion, kaon), also ref	er to table entry on Pa	Mesons (for example pion, kaon), also refer to table entry on Page 109			

Continuation of table, see Page 109.

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum,

7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010.

Demtröder, W., Experimentalphysik 4 – Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

Name		Explanation
Photons		Quanta of the electromagnetic radiation field
	Light quantum	Charge = 0 Mass = 0 Half-life = ∞
Leptons		Particles extraneous to the nucleus with a half-integral spin $(l = 1/2)$
	Electron neutrino	Mass, theoretical = 0 (<0,2 keV) Charge = 0 Half-life = ∞
	Electron	Smallest elementary particle with negative charge Charge = $-e$ Rest mass = 9,109 382 6 \cdot 10 ⁻³¹ kg Half-life = ∞
	Positron	Smallest elementary particle with positive charge Charge = +e Mass = 9,109 382 $6 \cdot 10^{-31}$ kg
Baryons		Nuclear-active particles with a half-integral spin $(l = 1/2, 3/2,)$
	Nucleons	Collective term for protons and neutrons, which are constantly transforming into one another in the atomic nucleus; at the same time, the π -meson field produces the charge transfer
	Proton	Positively charged nuclear building block Charge = +e Rest mass = 1,67262171 \cdot 10 ⁻²⁷ kg \approx 1840 electron masses
	Neutron	Uncharged nuclear building block Charge = 0 Rest mass = 1,674 927 498 \cdot 10 ⁻²⁷ kg
Mesons		Nuclear-active particles with integral spin ($l = 0, 1, 2,$); example: π - and K-mesons
Molecule		Two or polyatomic particles; composed of atoms, held together by chemical bonds

Continuation of table, Atomic building blocks, from Page 108.

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum, 7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010.

Demtröder, W., Experimentalphysik 4 - Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

Atomic and mass numbers, nuclear and atomic radii

The following table lists the atomic numbers, mass numbers, nuclear radii and atomic radii, complete with corresponding ratios, for a number of selected elements.

Element	Atomic number Z	Mass number M (most common isotope)	Nuclear radius r _K 10 ⁻¹⁵ m	Atomic radius r _A 10 ⁻¹⁰ m	Radii ratio r _A /r _K
Li	3	7	2,3	1,5	65 217
Ne	10	20	3,3	0,5	15152
Na	11	23	3,4	1,8	52941
Ar	18	40	4,1	0,9	21951
К	19	39	4,1	2,2	53659
Kr	36	84	5,3	1,1	20755
Rb	37	85	5,3	2,4	45 283
Хе	54	132	6,1	1,3	21311
Cs	55	133	6,2	2,6	41935
Rn	86	222	7,3	1,9	26027

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure,

Heidelberg Springer Spektrum, 7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010. Demtröder, W., Experimentalphysik 4 – Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

Values used The following table shows a selection of values used in nuclear physics and other fields.

Name	Unit	Relationship/ formula symbols	Definition
Atomic mass	u = 1,660 538 86 · 10 ⁻²⁷ kg	$u = m_{C12}/M_{C12} = 1/N_A$	The relative mass of the nuclide ¹² C is the unit
	Particle number	$N = \frac{m}{M} N_A$	M = molar mass
Half-life	s, min, d, a	$T_{1/2} = \ln 2/\lambda$ (λ = decay constant)	Time required for half of the original quantity of atoms to decay
Atomic energy	Electron volt 1 eV = 1,602176634 \cdot 10 ⁻¹⁹ J 1 MeV = 10 ⁶ eV	W = e U	The energy gained by an electron on travelling through a potential of 1 V is the unit

Continuation of table, see Page 111.

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum,

7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010.

Demtröder, W., Experimentalphysik 4 – Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

Continuation of table, Values used in nuclear physics and other fields, from Page 110.

Name	Unit	Relationship/ formula symbols	Definition
Mass	1 MeV	$m = \frac{E}{c_0^2}$ $m = \frac{m_0}{\sqrt{c_0^2 + c_0^2}}$	From the equivalence of energy and mass (according to Einstein)
		$\sqrt{1-(c/c_0)^2}$	
Absorbed dose	Gray ¹⁾ 1 Gy = 1 J/kg	D = W/m	Energy absorbed per unit mass of irradiated material; 1 rem = 10^{-2} Gy (obsolete)
Activity of a radioactive substance	Becquerel 1 Bq = 1/s	A	A measure of the intensity of radioactive radiation; 1 Ci (Curie) = $3,7 \cdot 10^{10}$ Bq
Dose equivalent	Sievert ¹⁾ 1 Sv = 1 J/kg	H = D w _R	A measure of the relative biological effectiveness of the radiation effect; the energy absorbed in the human body as a result of exposure to a specific type of radiation; radiation weighting factor $w_R = 1$ (γ -radiation up to 20, α -radiation, hard neutron radiation)
Energy dose rate	W/kg	Ď	-
lon dose	C/kg	J = Q/m	Charge/mass; 1 R (Roentgen) = 258 · 10 ⁻⁶ C/kg (obsolete)
lon dose rate	A/kg	$j = \frac{l}{m} = \frac{Q}{m \cdot t}$	Current/mass or charge/(mass · time)
Effective cross-section	m ²	σ	A measure of the yield of nuclear reactions; imaginary cross-section through the irradiated atoms
Amount of substance	Mole	$n = N/N_A = m/M$	Amount of substance = particle number/Avogadro's constant

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum, 7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010.

Demtröder, W., Experimentalphysik 4 - Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

¹⁾ The units Gray (Gy) and Sievert (Sv) are both equivalent to the unit J/kg. Gy is used to express the pure (physical) absorbed dose of radiation. Sv is used if a factor has been included to take account of the biological effectiveness of the absorbed dose. Until 1985, the unit rem was used to measure dose equivalent; today, the unit Sv is used.

Physical constants A selection of important physical constants is described below.

Name	Value	Explanation
Gravitational constant	$G = 6,674 \ 28 \cdot 10^{-11} \ m^3/(kg \cdot s^2)$	Force in N which attracts 2 bodies weighing 1 kg each and set 1 m apart
Standard gravitational acceleration	$g_n = 9,80665 \text{ m/s}^2$	Standard value defined by the 3rd General Conference on Measures and Weights in 1901
Molar gas constant	R = 8,314 472 J/(mol · K)	The work that must be done to heat 1 mol of an ideal gas by 1 K under constant pressure; same value for all sufficiently ideal gases
Standard molar volume	$V_{\rm m} = 22,413996 \cdot 10^{-3}{\rm m}^3/{ m mol}$	Volume occupied by 1 mol of an ideal gas under standard conditions
Avogadro's constant	$N_A = 6,0221415 \cdot 10^{23} \text{ mol}^{-1}$	Number of atoms or molecules in 1 mol of a substance
Loschmidt's constant	$N_{\rm L} = 2,686 8 \cdot 10^{25} {\rm m}^{-3}$	Number of atoms or molecules in 1 m ³ of a gas under standard conditions (0 °C and 1013,25 hPa)
Boltzmann's constant	$ k = R/N_A = 1,3806505 \cdot 10^{-23} J/K $	Average energy increase of a molecule or atom when heated by 1 K
Faraday's constant	$F = N_A \cdot e = 9,64853383 \cdot 10^4 \text{ C/mol}$	The charge quantity transported by 1 mol of singly charged ions
Elementary charge	$e = F/N_A$ = 1,60217653 \cdot 10^{-19} C	The smallest possible charge (charge of an electron)
Permittivity of free space (electric constant)	$\begin{split} \varepsilon_0 &= \frac{1}{\mu_0 \cdot c^2} \\ &= 8,8542 \cdot 10^{-12} \text{F/m} \end{split}$	Proportionality factor between the charge density and the electric field strength
Permeability of free space (magnetic constant)		Proportionality factor between the induction and the magnetic field strength
Speed of light in a vacuum	$c_0 = 2,9979 \cdot 10^8 \text{ m/s}$	Propagation rate of electromagnetic waves
Planck's constant (action quantum)	h = 6,626 \cdot 10 ⁻³⁴ J \cdot s	Combines the energy and frequency of a light quantum as a proportionality factor
Characteristic impedance of a vacuum (impedance of free space)	$Z_0 = 376,730 \Omega$	Propagation resistance for electromagnetic waves in a vacuum
Stefan-Boltzmann's constant	$\sigma = 5,\overline{67040\cdot10^{-8}W/(m^2\cdot K^4)}$	Combines the radiation energy and temperature of a radiating body

Continuation of table, see Page 113.

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum,

7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010.

Demtröder, W., Experimentalphysik 4 - Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3. Auflage 2010.

Name	Value	Explanation
Planck's radiation constants	$ \begin{array}{ll} c_1 &= 3,74177138 \cdot 10^{-16} \ W \cdot m^2 \\ c_2 &= 1,4387752 \cdot 10^{-2} \ m \cdot K \end{array} $	Constants of Planck's radiation law in the original wavelength-dependent formulation
Wien's constant	$K = 2,897 8 \cdot 10^{-3} \text{ m} \cdot \text{K}$	Combines the wavelength of the radiation maximum with the absolute temperature of a radiating body
Rydberg's constant	$R_{\infty} = 1,097 \ 37 \cdot 10^7 \ m^{-1}$	Fundamental, nuclear physical constant occurring in standard formulae for spectral lines
Rest mass of an electron	$m_e = 9,1093826 \cdot 10^{-31} \text{ kg}$	Mass of a stationary electron
Electron radius	$r_e = 2,817940325 \cdot 10^{-15}m$	Radius of an electron (spherical formation)
Bohr's radius	$r_1 = 5,291772108 \cdot 10^{-11} \text{ m}$	Radius of the innermost electron path in Bohr's atom model
Atomic unit of mass	u = 1,660 538 86 \cdot 10 ⁻²⁷ kg	Unified atomic mass unit (one twelfth of the mass of an atom of the nuclide ¹² C)
Unit of mass	1 UM = 931,494 MeV/c ² 1)	Used for energy conversions
Solar constant	$S \approx 1365 \text{ J/m}^2 \text{s} = 1365 \text{ W/m}^2$	Radiation energy of the Sun which arrives vertically at the upper limits of the Earth's atmosphere

Continuation of table, Physical constants, from Page 112.

Source: Tipler, Paul Allen, Physik für Wissenschaftler und Ingenieure, Heidelberg Springer Spektrum, 7. Auflage 2015.

Tipler, Paul Allen, Moderne Physik, München, Oldenbourg, 2. Auflage 2010. Demtröder, W., Experimentalphysik 4 – Kern-, Teilchen- und Astrophysik, Berlin, Springer, 3, Auflage 2010.

¹⁾ Electron volt (eV) and mega electron volt (MeV) are measures of energy in nuclear physics. 1 eV is the energy gained by an electron when it is accelerated in an electrical field of 1 volt $(1 \text{ eV} = 1,60217653 \cdot 10^{-19} \text{ J}).$

- **Electromagnetic** The characteristics of electromagnetic radiation are: **radiation** propagation at the speed of light
 - wave nature
 - no deflection by electric or magnetic fields
 - wavelength $\lambda = c/f = c \cdot T$
 - $c = speed of light = 2,997 92 \cdot 10^8 m/s$ (in a vacuum)
 - f = frequency in Hz
 - T = period of oscillation in s

Other definitions and values used in relation to electromagnetic radiation are described as follows:

Radiation type Wavelength λ		Occurs in the event of energy changes in	Is generated by	Is absorbed by (examples)	
Cosmic ra	Cosmic rays				
0,000 2 0,02 pm		Nucleons (nuclear building blocks)	High-energy nuclear reactions	Around 10 cm of lead	
Gamma r	ays				
0,5 27	pm	Atomic nuclei	Atomic nuclear reactions and radioactive decay	Around 1 cm of lead	
X-radiati	on				
Hard 5,7 80 pm (0,057 0,8 Å)		Internal electron shells	High-vacuum and gas- discharge tubes at high	Around 3 0,04 cm of aluminium	
Soft 0,08 2 nm (0,8 20 Å)			operating voltages	Around 400 1 μm of aluminium, bone, glass	
Ultrasoft 2 37,5 nm (20 375 Å)				Less than 1 μm of aluminium, air	
Light ray	s				
Ultraviole 0,014	et (short-wave) 0,18 μm	External electron shells	Spark, arc, glow discharge in vacuum, quartz lamp etc.	Air	
Ultraviolet (long-wave) 0,18 0,36 µm				Quartz ($\lambda <$ 0,15 $\mu m)$ Glass ($\lambda <$ 0,31 $\mu m)$	
Violet Blue Green Yellow Red	0,36 0,42 μm 0,42 0,49 μm 0,49 0,53 μm 0,53 0,65 μm 0,65 0,81 μm		Sun, glowing substances etc.	Opaque substances	
Infrared (heat rays) 0,81 400 μm			Heated bodies ¹⁾	Glass	

Continuation of table, see Page 115.

¹⁾ The following applies to "black body" radiation: average wavelength λ (in μ m) = 2 898/(absolute temperature in K). Example: at +20 °C (= 293 K) λ = 9,89 μ m, i.e. at +20 °C the maximum heat radiation intensity is at λ = 9,89 μ m. Source: Krist, Handbuch für Techniker und Ingenieure.

Continuation of table, Electromagnetic radiation, from Page 114.

Radiation type Wavelength λ		Occurs in the event of energy changes in	Is generated by	Is absorbed by (examples)	
Hertzian wav	es				
0,01 30 cm		Atoms or molecules	Spark transmitters, velocity-modulated tubes	Metals	
Broadcasting waves					
Ultrashort	0,3 10 m	Resonant circuits	Transistor senders	Metals	
Short	10 100 m	with capacitance and inductance	Propagation of these waves is no longer ray-like and		
Medium	100 600 m	this is why there are no "wave shadows" in valleys			
Long	.ong 600 3000 m		waves are diffracted on the Heaviside layer (ionosphere)		
Telegraphic waves	3 30 km		and deflected back to Earth; with increasing wavelength, the space wave steps behind the ground wave		

Temperature points General, important temperature points are:

Triple point ¹⁾ of water	+0,01 °C
Boiling point ²⁾ of water	+100,00 °C
Boiling point ²⁾ of oxygen	–182,97 °C
Boiling point ²⁾ of nitrogen	-196,00 °C
Boiling point ²⁾ of air	-191,0 °C
Boiling point ²⁾ of sulphur	+444,6 °C
Freezing point of silver	+960,8 °C
Freezing point of gold	+1063,0 °C

1) At 611.657 Pa.

²⁾ At normal pressure (1013,25 hPa).

Thermal expansion Almost all solids expand when their temperature is increased and of solids and gases shrink when the temperature decreases. Water does not follow this rule. It exhibits its greatest density at +4 °C and expands irrespective of whether it rises above or falls below this temperature.

> Homogeneous solids expand uniformly in all directions (volume expansion). In many cases, we are only interested in expansion in a specific direction (superficial or linear expansion). If a solid's linear expansion or volume change is impeded in the event of a temperature change, stresses occur within the solid.

Linear thermal expansion coefficient In the case of solids, the linear thermal expansion coefficient (coefficient of linear expansion) is the relative change in length per degree of temperature increase.

Thus, the change in length Δl of a solid is described in terms of:

Equation 1

$\Delta l = l_0 \cdot \alpha \cdot \Delta T$	$\Delta l = length change$
Ŭ	l ₀ = initial length
	α = coefficient of linear thermal expansion
	ΔT = temperature increase

A temperature increase ΔT produces the following in the solid:

Equation 2

$$\begin{split} \varepsilon_{\Delta T} &= \frac{\Delta l}{l_0} = \alpha \cdot \Delta T & \text{in the case of unimpeded expansion} \\ \sigma_{\Delta T} &= E \cdot \varepsilon_{\Delta T} = E \cdot \alpha \cdot \Delta T & \text{in the case of impeded expansion} \end{split}$$

The following diagram shows the influence of temperature on the coefficient of linear expansion α .

Figure 1

Influence of temperature on α in the case of steels and non-ferrous metals

> T = temperature α = coefficient of linear thermal expansion Mg = magnesium Al = aluminium Cu = copper

 $\begin{array}{c} (1) \ 18\% \ Cr + \ 9\% \ Ni \ steel \\ (2) \ 0,4\% \ Mo \ steel \\ (3) \ Cr \ Mo \ steel \\ (4) \ Unalloyed \ steel : \\ (0,2 - 0,6\% \ C) \\ (5) \ 13\% \ Cr \ steel \\ (6) \ Cast \ iron \end{array}$

Material	α	Material	α	Material	α
	10 ⁻⁶ /K		10 ⁻⁶ /K		10 ⁻⁶ /K
Cast iron	9 10	Copper	16 17	Thermoplastics	70 250
Unalloyed steel	11 12	Aluminium	23 24	Brickwork	58
Cr-Mo steel	12 13	Magnesium	25,5	Rubble	3
Cr-Ni steel	16 17	Thermosets	1080	Glass	8 10

The following table lists examples of values for coefficients of linear thermal expansion α at +20 °C.

of cubical expansion

Coefficient The coefficient of cubical expansion (volume expansion coefficient) of a solid, liquid or gaseous body is the relative volume change per degree of temperature increase.

Thus, the change in volume ΔV is described in terms of: Eauation 3

$\Delta V = V_0 \cdot \beta \cdot \Delta T$	$\Delta V = volume change$
	V ₀ = initial volume
	β = coefficient of thermal volume expansion
	ΔT = temperature increase

In the case of homogeneous, solid bodies:

Eauation 4

 $\beta = 3 \cdot \alpha$

In the case of ideal gases, the coefficient of cubical expansion is the same value for all gases and temperatures at constant pressure and relative to the volume V_0 at 0 °C:

Equation 5

$$\beta = \frac{1}{V_0} \cdot \frac{\Delta V}{\Delta T} = \frac{1}{273,15} \frac{1}{K}$$

Coefficient of superficial thermal expansion Equation 6

Superficial thermal expansion can be described by the thermal volume expansion coefficient:

$\Delta A = A_0 \cdot \frac{2}{3} \cdot \beta \cdot \Delta T$	ΔA = surface change A ₀ = initial surface
	β = coefficient of thermal volume expansion
	ΔT = temperature increase

Astronomical and terrestrial definitions and values

Astronomical units

s The following table shows a selection of important astronomical units.

Name	Value	Explanation
Speed of light in a vacuum	$c_0 = 2,9979 \cdot 10^8 \text{ m/s}$	Propagation rate of electromagnetic waves
Light-year	$L_y = 9,46073 \cdot 10^{15} \text{ m}$	Distance covered by electromagnetic waves in space in 1 year
Sidereal year (stellar year)	S _y = 365,2564 mean solar days = 365 d 6 h 9 min 9,54 s	The sidereal year is based on the position of the Sun relative to the fixed stars ¹⁾ . However, this period is not constant. The stated value corresponds to the reference point of 01.01.2000.
Tropical year (solar year)	T _y = 365,242 2 mean solar days = 365 d 5 h 48 min 45 s	The mean vernal equinox is the reference point
Sidereal month (stellar month)	S _m = 27,32166 d mean solar time = 27 d 7 h 43 min 11,5 s	-
Tropical month (solar month)	T _m = 27,32158 d mean solar time = 27 d 7 h 43 min 4,7 s	-
Synodic month (lunar month)	S _{ym} = 29,530 59 d mean solar time = 29 d 12 h 44 min 2,9 s	Time between two identical moon phases: new moon to new moon
Orbital period of the Moon around the Earth	t _{M sid} = 27,32166 d t _{M tro} = 27,32158 d	Sidereal year Tropical year
Sidereal day	d _{Sy} = 0,997 269 6 mean solar days = 23 h 56 min 4,091 s	-
Mean solar day	d _{Ty} = 1,0027379 sidereal days	-
Day	d = 24 h = 1440 min = 86 400 s	The day is 3 min 56 s longer than the sidereal day
Astronomical unit	AU = $1,496 \cdot 10^{11}$ m	Mean distance between the Earth and the Sun

 Time interval between two successive passages of the Sun through the same point along the apparent trajectory of the Sun (ecliptic).

The point of the ecliptic is measured in relation to a fixed star. Average obliquity of the ecliptic is currently $\approx 23^{\circ} 27' 15''$.

Solar planets	Equator diameter	Mass (Earth = 1 ¹⁾)	Mean density	Sidere	eal ro	otation	Distance from the Sun	Sidereal orbital period
	km		kg/m ³				10 ⁶ km	years
Sun Earth	1391016 12742	333 062 1,000	1409 5513,4	25,2	3 d	5,52 h 23,93 h	- 149,60	- 1,00
Moon ²⁾	3 475	0,012	3 344	27	d	7,1 h	0,384 00 (from the Earth)
Mercury Venus Mars Jupiter Saturn Uranus Neptune	4 879 12104 6 779 139 822 116 464 50 724 49 244	0,055 0,815 0,107 317,828 95,161 14,536 17,148	5 428,9 5 243,0 3 934,0 1 326,2 687,1 1 270 1 638	58 243 1	d d d	15,51 d 0,43 d 0,62 h 9,92 h 10,66 h 17,24 h 16,11 h	58 108 228 778 1428 2872 4498	0,24 0,62 1,88 11,86 29,46 84,02 164,79
Pluto ³⁾	2 3 7 7	0,0022	-	6	d	9,29 d	5910	249,17

Our Solar System A number of interesting values relating to our Solar System are:

Source: Solar System Dynamics, Jet Propulsion Laboratory, California Institute of Technology, December 2019 and Solar System Exploration Website, NASA: Sun data October 2021, moon data December 2019, https://ssd.jpl.nasa.gov/ and https://solarsystem.nasa.gov/

¹⁾ Earth's mass = $5,97217 \cdot 10^{24}$ kg, volume of the globe = 1083 206,9 million km³,

average density of the Earth = 5513.4 kg/m^3 , circumference of the Earth's trajectory = 939120000 km.

²⁾ Satellite of the Earth.

³⁾ Reclassified as a dwarf planet in 2006 on the orders of the International Astronomical Union.

- fundamental figures (rounded values):

The Earth A number of important, fundamental figures relating to our Earth are

Earth's surface	510,1 million km ²
Of which total surface area of land	147,9 million km ² (29%)
Of which total surface area of water	362,2 million km ² (71%)
Length of the Equator ¹⁾	40 076 km
Equatorial radius a	6 378 km
Length of the meridian ²⁾	40 000 km
Polar radius b	6 356 km
Length of the tropic	36 778 km
Length of a polar circle	15 996 km
Flattening (a – b)/a	1:297
Mean longitude between two great circles at a distance of 1°	111,120 km (corresponds to 60 nautical miles)

1) The Equator is the largest circle of latitude (great circle). Circles of latitude run parallel to the Equator in an east-west direction.

²⁾ Meridians, also known as lines of longitude, are great circles, which run in a north-south direction and intersect at the poles.

Legend

а	m	b	m
Equatorial	radius	Polar r	adius.

Interesting speeds

The following table shows a number of interesting speeds (rounded values).

Name	Speed	
	m/s	km/h
Gulf Stream	1,8 2,5	6,5 9
Wind force 6 (strong breeze)	11 14	39 49
Wind force 12 (hurricane)	>32	>118
Sound in air (at +20 °C)	340	1 200
Point on the Equator	464	1670
Earthquake waves	3 000 7 000	180 420
Orbital speed of a satellite	7 800 (LEO ¹⁾) 3 000 (GEO ²⁾)	28 080 (LEO ¹⁾) 10 800 (GEO ²⁾)
Speed required to leave the Earth's gravitational field (point on the Equator)	11200	40 320
Speed required to leave the Solar System (directly from the Sun)	617 400	2 222 640
Mean orbital path of the Earth around the Sun	29 800	107 280
Lightening (approx. 1/10 1/3 of the speed of light)	30 000 000 100 000 000	108 000 000 360 000 000
Cathode rays (electrons, 50 kV)	100 000 000	360 000 000
Light in a vacuum	299792458 ³⁾	1079 252 849

1) Low Earth Orbit, from an altitude of around 200 km.

²⁾ Geostationary Orbit, at an altitude of 35 786 km.

³⁾ Also refer to Table Astronomical units, Page 118.

Dimensionless characteristic values

Dimensionless The definitions for similarity characteristics are described characteristic values in the following table.

Type of similarity	Scale factors (invariant)	Name of characteristic	Definition	Similarity of physical subject matter
Geometric Length	$\phi_L = \frac{L_1}{L_0}$	-	L.	All lengths are similar if the scale is the same (pantograph)
Kinematic Length Time	φ _L , φ _t	Mach	$Ma = \frac{V}{C_s}$	Relationship between velocity v and sound velocity c_{s} of the fluid
Static Length Force	$\phi_F = \frac{\rho_1}{\rho_0} \cdot \phi_L{}^3$	-	-	Similarity of weights (constant gravitational acceleration)
	φ _L , φ _F	Hooke	$H_0 = \frac{F}{E \cdot L^2}$	Sole effect of elastic forces (similarity of expansions)

Continuation of table, see Page 121.

Type of similarity	Scale factors (invariant)	Name of characteristic	Definition	Similarity of physical subject matter
Dynamic Length Time	φ _L , φ _t , φ _F	Newton	$Ne = \frac{F}{\rho \cdot v^2 \cdot L^2}$	Ratio of resistance force to flow force
Force		Cauchy	$Ca = \frac{v}{\sqrt{E/\rho}}$	Ratio of inertia forces to elastic forces
		Froude	$Fr = \sqrt{\frac{v^2}{g \cdot L}}$	Ratio of inertia forces to gravitational forces
		Reynolds	$Re = \frac{v \cdot L}{\nu}$	Ratio of inertia forces to viscous forces
		Weber	$We = \frac{\rho \cdot v^2 \cdot L}{\sigma}$	Ratio of inertia force to surface force
		Euler	$Eu = \frac{\Delta p}{\rho \cdot v^2}$	Ratio of compressive forces to inertia forces
Thermal Length Time	φլ, φ _t , φ _q	Péclet	$Pe = v \cdot L\left(\frac{\rho \cdot c_p}{\lambda}\right)$	Ratio of transported to conducted heat quantity
Temperature		Prandtl	$Pr = \frac{P_e}{R_e} = \nu \cdot \left(\frac{\rho \cdot c_p}{\lambda}\right)$	Ratio between kinematic viscosity and thermal diffusivity
		Nußelt	$Nu = \frac{\alpha \cdot L}{\lambda}$	Heat transfer ratio with moving and stagnant layer
		Fourier	$Fo = \left(\frac{\lambda}{\rho \cdot c_p}\right) \cdot \frac{t}{L^2}$	Ratio of conducted to stored heat

Continuation of table, Dimensionless characteristic values, from Page 120.

Legend	L Length	m	g Gravitation	m/s ² al acceleration
	t Time	S	α Heat transf	W/(m ² K) er coefficient
	F Force	Ν	λ Thermal co	W/(m⋅K) nductivity
	ρ Density	kg/m ³	ν Kinematic v	m²/s viscosity
	v Velocity	m/s	c _p Specific he	J/(kg · K) at capacity.
	E Modulus o	N/m ² f elasticity		

Mechanics

Mechanics

Definitions

- Mechanics Mechanics is a branch of physics which describes the motion events occurring in nature and engineering. It deals with the plane and spatial motion of bodies and the effect of forces.
- Dynamics Dynamics deals with the forces (general: interactions) which cause bodies to move. It describes the association of these motions with mass and acting forces.

The branches of dynamics are:

Kinematics

Kinematics describes the occurrence of motions in space and time, without consideration of forces. Important terms used in dynamics are the motion values displacement, velocity and acceleration.

Kinetics

Kinetics describes the change in the above-mentioned motion values which occurs under the influence of forces in space.

Newton's All dynamic motion events are based on Newton's fundamental physical fundamental law laws:

Principle of inertia

A body will remain at rest or in uniform motion in a straight line unless compelled to change its state of motion by the action of external forces.

Action principle/principle of linear momentum

The resulting force needed to change the motion of a body is equal to the change in the quantity of motion over time, i.e. the linear momentum or angular momentum.

Alternatively, a resulting force is exerted on a body, causing it to accelerate in the direction of this force.

See also section Principle of angular momentum, Page 136.

Principle of action and reaction

Forces always act reciprocally.

If a body A exerts a force F on body B, then body B will exert an equal but opposite force on body A.

Mechanics

Values and units

Values and units The following table shows the names, values and units used in mechanics.

Designation	Value	Unit	Explanation
Acceleration	ā	m/s ²	$\vec{a} = d\vec{v} / dt$; $(\vec{\ddot{x}}, \vec{\ddot{y}}, \vec{\ddot{z}})$
Angle, angle of rotation	φ	rad ¹⁾	1 rad = 57°17′45″
Angular acceleration	α , ώ, φ	rad/s ²	$\vec{\alpha} = \dot{\vec{\omega}} = d\dot{\vec{\omega}} / dt = \ddot{\vec{\phi}}$
Angular frequency	ŵ	1/s	$f = \vec{\omega} / (2 \pi)$
Angular impulse	Ĥ	Nms	$\vec{H} = \int \vec{M} \cdot dt$
Angular velocity	ῶ, φ	rad/s	$\vec{\omega} = d\vec{\phi} / dt = \dot{\vec{\phi}}$
Area	A	m ²	$1 \text{ m}^2 = 10^6 \text{ mm}^2$
Cartesian coordinates	x, y, z	m	Right-handed coordinate system
Coefficient of friction	μ	1	$\mu=\vec{F}_R/\vec{F}_N$ (Coulomb)
Density, mass density	ρ	kg/m ³	$\rho = m/V$
Dynamic viscosity	η	$N \cdot s/m^2$	$\vec{\tau} = \eta \cdot d\vec{v} / d\vec{h} \ \ (\text{Newton})$
Efficiency	η	1	$\eta = P_{eff}/P_{the}$
Force	Ē	Ν	$\vec{F} = m \cdot \vec{a}$ (Newton)
Frequency	f	1/s	-
Friction energy	W _f	Nm	$W_f = \int \vec{F}_f \cdot d\vec{s}$
Gravitational acceleration ²⁾	ġ	m/s ²	$\vec{g} = 9,80665 \text{ m/s}^2$
Impulse	Ĩ	Ns	$\vec{I} = \int \vec{F} \cdot dt$
Kinematic viscosity	ν	m²/s	$\nu = \eta / \rho$
Kinetic energy	E _k	J = Nm	$E_{k} = (m/2) \cdot \vec{v}^2$
Linear momentum	p	kg∙m/s	$\vec{p} = m \cdot \vec{v}$
Mass	m	kg	SI base unit
Moment of force, torque	Ň	Nm	$\vec{M} = \text{force} \cdot \text{lever arm}$
Mass moment of inertia	J	kg m ²	Second moment of mass
Moment of momentum, angular momentum	Ĺ	$kg \cdot m^2/s$	$\vec{L} = J \cdot \vec{\omega}$
Path length, curve length	S	m	SI base unit
Potential energy (in the Earth's gravitational field or on the Earth's surface)	Ep	J = Nm	$E_p = m \cdot \vec{g} \cdot \vec{h}$ (position)
Power	Р	W = Nm/s	P = W/t
Pressure	р	N/m ²	$p = \vec{F} / \vec{A}$
Rotational speed	n	1/s	$n = \vec{\omega} / (2 \pi)$

Continuation of table, see Page 124.

 $^{1)}$ The unit can be replaced by the number "1".

²⁾ For a more detailed explanation, refer to Table Conservative forces, Page 128

Continuation of table, Values and units, from Page 123.

Designation	Value	Unit	Explanation
Time, timespan, duration	t	S	SI base unit
Velocity	v	m/s	$\vec{v} = d\vec{s} / dt$; $(\dot{\vec{x}}, \dot{\vec{y}}, \dot{\vec{z}})$
Volume	V	m ³	$1 \text{ m}^3 = 10^9 \text{ mm}^3$
Weight force ¹⁾	₽ _G	Ν	$\vec{F}_{G} = m \cdot \vec{g}$
Work	W	Nm = J	$W = \int \vec{F} \cdot d\vec{s}$; $W = \int \vec{M} \cdot d\vec{\phi}$

1) For a more detailed explanation, refer to Table Conservative forces, Page 128

	Motion equations
Fundamental law of accelerated motion	Newton's second fundamental law governing a constant mass is: in translation of the centre of gravity "S":
Equation 1	$\sum \vec{F}_S = m \cdot \vec{a}$
5	in rotation about the centre of gravity "S":
Equation 2	$\sum \vec{M}_{S} = J_{S} \cdot \dot{\vec{\omega}}$
Foundation 2	in rotation about the instantaneous centre of rotation "MP":
Equation 3	$\sum \vec{M}_{MP} = J_{MP} \cdot \vec{\omega}$
Dynamic equilibrium according to d'Alembert	If the inertia forces (m \cdot a) and the moments resulting from the inertia effect (J $\cdot \omega$) are interpreted as a kinetic reaction (externally impressed forces or moments) during the accelerated motion of a body, this gives:
Equation 4	$\sum \vec{F}_{S} + (-m\vec{a}) = 0$ $\sum \vec{F}_{S} + \vec{F}_{K} = 0$
	or:
Equation 5	$\sum \vec{M}_{S} + (J_{S} \cdot \dot{\vec{\omega}}) = 0 \qquad \sum \vec{M}_{S} + \vec{M}_{K} = 0$
Reduction to static equilibrium problem	The kinetic reaction is always opposing the (positively defined) direction of acceleration. Thus, the kinetic problem can be reduced to a static equilibrium problem.
	The fundamental equations of statics will then apply:
Equation 6	$\Sigma \vec{F^{\star}} = 0$ $\Sigma \vec{M^{\star}} = 0$
	The force sums $\sum F^{}$ and moment sums $\sum M^{*}$ contain the respective kinetic reactions.

Mechanics

Solving motion equations	The following guidelines apply to the formulation of equilibrium relationships and solving of motion equations.
Defining co-ordinates	 Define the co-ordinates at the centre of gravity of the body and in the expected direction of motion: for the translational motion of the centre of gravity for the rotational motion about the centre of gravity
Plotting kinetic reactions	Plot kinetic reactions against the positively defined directions of acceleration: inertia forces moments resulting from the inertia effect (where precent)
Plotting the remaining forces	Plot all other impressed forces (external forces, weight forces) and reaction forces (friction forces and support reactions).
Generating a force equilibrium	During plane motion, generate a force equilibrium for all forces in the direction of motion, including the kinetic reactions:
Equation 7	$\sum F_x^* = 0 \qquad \qquad \sum F_y^* = 0$
Generating a moment equilibrium	Generate a moment equilibrium about the centre of gravity, provided the body performs a rotational motion about its centre of gravity in addition to the translational motion, taking account of the sign in each case:
Equation 8	$\sum M_{z(S)} = 0$
Stating geometric relationships	State the geometric relationships between the translational and rotational motions.
Solving equations	Solve the equation in accordance with the required acceleration: acceleration = const. or f(t): capable of elementary integration, taking into account the boundary conditions
	acceleration = f(dist.): can be integrated once
Equation 9	$\ddot{x} = \frac{\dot{x} \cdot d\dot{x}}{dx} \qquad \qquad \ddot{\phi} = \frac{\dot{\phi} \cdot d\dot{\phi}}{d\phi}$

■ acceleration = f(dist.): an oscillation may be present.

Mechanics

Simple motion events

Motions, distancetime diagrams

The following table shows motion events, relationships and the corresponding distance-time diagrams.

Continuation of table, see Page 127.

Continuation of table, Motions, distance-time diagrams, from Page 126.

Forces in kinetics (selection)

Forces in kinetics The following tables describe a selection of the most important forces in kinetics.

General forces The following general and impressed forces are described in kinetics:

Force	Value	Explanation	
Force (general)	F	Muscle power, wind power, driving forces of machines etc	
Impressed forces	Impressed forces are primary forces that act on a body from the outside. They can promote or obstruct motion. As a rule, their magnitude, direction and line of action are known or given.		

Conservative forces In the case of conservative forces, the work (work = force \cdot distance) is independent of the distance curve.

Force	Value	Explanation
Mass attraction force	$F_{M} = G \cdot \frac{m_1 \cdot m_2}{r^2}$	The mass attraction force between two masses is proportional to the product of the masses and inversely proportional to the square of the distance between their centres of gravity. The proportionality factor is the universal gravitation constant, G = $6,674 \ 2 \cdot 10^{-11} \ m^3/(kg \cdot s^2)$.
Gravity, weight	$F_G = m \cdot g$	The force of gravity (weight) acts on all bodies in the Earth's proximity. It is based on the mass attraction law and on the centrifugal force (additional force) occurring on the Earth's surface as a result of the Earth's rotation.
Spring force for linear spring rigidities (Hooke's Law)	$F_F = c \cdot w$	The spring force results from the product of the spring constant c and spring deflection w. It acts against the positive deflection of the spring.

Dissipative forces In the case of dissipative (non-conservative) forces, the work (work = force \cdot distance) is dependent on the distance curve.

Force		Value	Explanation
Sliding frictio	n force	$F_R = \mu \cdot F_N$	The sliding friction force between two contact surfaces (Coulomb friction) is proportional to the acting normal force. The proportionality factor is the sliding friction coefficient μ . The sliding friction force acts against the relative velocity of the surfaces in contact.
Damping force	according to Stokes	$F_D = b \cdot v$	The resistance according to Stokes is valid for low velocities and is proportional to the velocity
2 1	according to Newton	$F_N = k \cdot v^2$	(damping constant b = F · t/s). The resistance according to Newton is valid for high velocities and is proportional to the square of the velocity (constant factor k). The damping force counteracts the positive velocity direction.

Constraining or guiding forces Constraining or guiding forces are caused by the restriction of the freedom of movement of a body or a system of bodies. The influence of friction-free guides or guiding curves on the body is

taken into account by external guiding forces that are perpendicular to the guiding curves.

Force		Value	Explanation	
Centripetal force	Curved path	$F_{CP} = m \cdot \frac{v^2}{r}$ When a body moves along a curve velocity v, it is subject to accelera acceleration, which is oriented to	When a body moves along a curved path with radius r at velocity v, it is subject to acceleration, known as centripetal acceleration, which is oriented to the centre point of the	
	Circular path	$F_{CP} = m \cdot r \cdot \omega^2$	urvature. he force generating it is referred to as the centripetal force.	

Kinetic reactions Kinetic reaction forces represent the action of a moving body as the result of accelerating or decelerating external forces. They always counteract the positive accelerations.

If the kinetic reaction of the body is also interpreted as an external force acting on the body (fictitious force), the kinetic problem can be reduced to a static one and can be handled with the aid of the equilibrium conditions (d'Alembert's principle).

Force		Value	Explanation
Tangential to the traject	ory curve	$F_{Kt} = -m \cdot \ddot{s}_t$	The kinetic reaction of a body during accelerated motion counteracts the positive direction of the acceleration that
Perpendicular to the trajectory curve		$F_{Kn}=-m{\cdot}\ddot{s}_n$	is produced by impressed forces and guiding forces. In the case of guided motion on a trajectory curve, it is advisable to split this into components that are
Centrifugal force	Curved path	$F_{Kn} = -m \cdot \frac{v^2}{r}$	tangential and perpendicular to the trajectory curve. Centrifugal force is one of the kinetic reactions that act perpendicular to the trajectory curve.
Circular path $F_{Kn} = -m \cdot r \cdot \omega^2$		$F_{Kn} = -m \cdot r \cdot \omega^2$	

Additional forces in the accelerated reference system

If motion events take place in an accelerated reference system, it is advisable to analyse these as relative motions in relation to the system from the point of view of an observer who is also accelerated.

In the accelerated reference system, all bodies are subject to additional inertia forces (apparent forces) which, from the point of view of the observer who is also accelerated, can be interpreted as external forces acting on the body.

Force		Value	Explanation
Inertia force in the translatory accelerated reference system		$F_{Sys} = -m \cdot a_{Sys}$	In the translatory accelerated reference system (system acceleration a_{Sys}), all bodies are subjected to an inertia force. It acts against the positive direction of system acceleration.
Inertia force in the rotating reference system	Centrifugal force	$F_Z = m \cdot r \cdot \Omega^2$	In the rotating reference system (angular velocity Ω), all bodies are subjected to the centrifugal force. To the observer who is also rotating with the body, this appears like a field force corresponding to gravity (weight) that points away from the rotation centre, and which is intrinsic to the system. For the observer, it has the character of a conservative impressed force, which lends a centrifugal acceleration to all free bodies in the same direction.
	Coriolis force	$\vec{F}_{C} = -2 \cdot m \cdot \left(\vec{\Omega} \times \vec{v}\right)$	The Coriolis force occurs in relative motions in the rotating reference system. It is perpendicular to the plane spanned by the vectors v and Ω and points in a right-handed screw direction if the vector v is moved over the shortest distance in the direction of Ω . Vectors v and Ω are calculated using the cross product. During guided motion of a body in the rotating reference system, it is subjected to Coriolis acceleration in the direction of the Coriolis force.

Law of conservation of energy

The energy conservation law in mechanics states:

Definition of the energy conservation law Equation 10

in a self-contained mechanical system, the sum of energies remains constant:

 $E_{p} + E_{k} + Q = const.$

The energies are composed of potential energy E_p , kinetic energy E_k and heat quantity Q. A mechanical system is referred to as self-contained if no forces are acting on the system from the outside or, if forces are acting on the system from outside, they are negligible.

Frictional energy in the mechanical	In a mechanical system, only an increase in heat quantity can occur, which is caused by friction losses in the system.
system	Thus, for the consideration of two points in time 1 and 2 of a motion sequence, the following applies:
Equation 11	$E_{p1} + E_{k1} + Q_1 = E_{p2} + E_{k2} + Q_2$
	For friction losses occurring along the way between 1 and 2, the following applies:
Equation 12	$Q_2 - Q_1 = W_{R1, 2}$
	This gives the following for the energy conservation law:
Equation 13	$E_{p1} + E_{k1} = E_{p2} + E_{k2} + W_{R1, 2}$
Conservative systems	For a conservative system in which no friction losses occur, the energy conservation law is:
Equation 14	$E_{p1} + E_{k1} = E_{p2} + E_{k2}$
Fountion 15	The energy conservation law can also be formulated as:
Equation 15	$E_{k2} - E_{k1} = W_{1, 2} - W_{R1, 2}$
	In other words, the shares in the birstic second between rejets 1 and 2

In other words, the change in the kinetic energy between points 1 and 2 of a motion sequence is equal to the work that is done by the impressed forces along the way from 1 to 2, minus the friction losses occurring along the way from 1 to 2.

Forms of energy in kinetics (selection)

Forms of energy in kinetics

ergy The following table describes a selection of the most important forms of energy in kinetics.

Energy	Value	Explanation	
Kinetic energies			
Translational energy of the mass centre of gravity	$E_k = \frac{m}{2} \cdot v_S^2$	The total kinetic energy of a moving mass is composed of the translational energy relative to the centre	
Rotational energy about the mass centre of gravity	$E_k = \frac{J_S}{2} \cdot \omega^2$	of gravity velocity and the rotational energy about the centre of gravity.	
Rotational energy about the instantaneous centre of revolution or rotation	$E_{k} = \frac{1}{2} \cdot J_{DP} \cdot \omega^{2}$ $E_{k} = \frac{1}{2} \cdot J_{MP} \cdot \omega^{2}$	In the case of a guided rotational motion of the mass, or whenever the motion's instantaneous centre of rotation can be specified, the total kinetic energy can be specified by the rotational energy about the instantaneous centre of revolution or rotation alone.	

Continuation of table, see Page 132.

Continuation of table.	Forms of energy in	kinetics. from	Page 131.

Energy	Value	Explanation	
Potential energies			
Energy of the position in the Earth's gravitational field	$E_p = m \cdot g \cdot h$	The energy of the position of a mass in the constant gravitational field (close to the Earth) is the product of the weight and of the altitude of the centre of gravity h above a chosen reference level.	
Work in the variable potential field	$W_{1,2} = \int_{1}^{2} m \cdot g(h) \cdot dh$	Work in the Earth's gravitational field at greater altitudes: $g(h)=g_0\cdot R_0^{-2}/(R_0+h)^2$	
Elastic deformation energ	gy of a spring:		
Translation spring	$E_p = \frac{1}{2} \cdot c \cdot w^2$	The work done on deformation of a spring is stored in the form of elastic energy in the spring.	
Torsion spring	$E_p = \frac{1}{2} \cdot c' \cdot \phi^2$	The energy depends on the spring constant ($c = 1/s$ or $c' = F \cdot s$) and the deflection w or torsion φ of the spring.	
Elastic energy of supports	s on deformation as the resu	llt of:	
Normal forces	$E_{p} = \frac{1}{2} \int \frac{F_{N}^{2}}{E \cdot A} dx$	If a support (cross-sectional area A, axial area moment of inertia I _a , polar area moment of inertia I _p) or bar is elastically deformed by external forces, displacements	
Bending moments	$E_p = \frac{1}{2} \int \frac{M_b^2}{E \cdot I_a} dx$	are generated by the internal stresses. The work done along the displacements which are generated by these is equal to the elastic energy stored in the bar or support.	
Torsion moments	$E_p \ = \frac{1}{2} \int \frac{M_t^2}{G \cdot I_p} dx$	Generally, this elastic deformation energy can be described by the spring constant and the deflection or torsion at the point of the deformation (see section on springs).	
Energy of the position in the centrifugal field	$E_{p} = \frac{1}{2} \cdot m \cdot \Omega^2 \cdot r^2$	In the rotating system, a force field (centrifugal field) exists for the accelerated observer, the strength of which increases from the rotation centre towards the outside. The energy of the position is relative to the rotation axis.	
Energy losses			
Due to sliding friction forces	$W_{R1, 2} = F_N \cdot \mu \cdot s_{1, 2}$	If sliding friction forces (resistance forces) are present, these do friction work along the acting distance $s_{1,2}$ which manifests itself as heat and is lost for the mechanical motion.	
In the case of an incomplete elastic impact	$W_{R1, 2} = \frac{1}{2} (1 - e^{2})$ $\cdot (v_{1} - v_{2})^{2}$ $\cdot \frac{m_{1} \cdot m_{2}}{m_{1} + m_{2}}$	In the case of an incomplete elastic impact of bodies, energy losses occur as the result of internal material friction. e = distance from centre of gravity – fixing points	

Mass moments of inertia of homogeneous solids

Second mass moments of inertia. homogeneous solids

The second mass moments of inertia of homogeneous solids can be calculated as follows:

Solid cylinder

Hollow cylinder

$$m = \rho \pi (R^{2} - r^{2})h$$

$$J_{x} = \frac{1}{2}m(R^{2} + r^{2})$$

$$J_{y} = J_{z} = \frac{1}{4}m(R^{2} + r^{2} + \frac{h^{2}}{3})$$

Thin disk

Truncated circular cone

Principle of linear momentum

Definition of the principle of linear momentum Equation 16 The fundamental dynamic law for motion of a constant mass m under the influence of an external, resulting, constant force \vec{F} is:

$$m\cdot \vec{a} = m\cdot \frac{d\vec{v}}{dt} = \frac{d(m\cdot \vec{v})}{dt} = \frac{d\vec{p}}{dt} \qquad \qquad m = const.$$

Integration over the duration of the effect gives the principle of linear momentum:

Equation 17

$$\int_{t_0}^{t_1} \vec{F} \cdot dt = \vec{F} \cdot (t_1 - t_0) = m \cdot (\vec{v}_1 - \vec{v}_0) = \vec{p}_1 - \vec{p}_0$$

The value $\vec{p}=m\cdot\vec{v}$ is referred to as the linear momentum or momentum of mass m.

Further statements about the principle of linear momentum

The following statements can be made on the basis of the principle of linear momentum:

- The defined time integral over the external resulting force F acting on a mass m is equal to the change in the absolute linear momentum of the mass (p = m · v) in the direction of this force.
- If no external resulting force F acts on the mass m, its linear momentum p remains constant in terms of its magnitude and direction since: F = 0 and thus dp/dt = 0, giving p = const. This statement can be extended to a system of several, individual masses:

If no external resulting force acts on a system of masses, the system's overall linear momentum remains constant in terms of its magnitude and direction. In other words, the overall centre of gravity of the system either remains at rest or moves uniformly and in a straight line.

Principle of angular momentum

Definition of the principle of angular momentum

Equation 18

On a similar basis to the principle of linear momentum, it follows from the fundamental dynamic law that the motion of a rotating mass with the constant moment of inertia J_0 about its pivotal point "0", under the influence of an external, resulting moment, is:

$$\vec{M}_0 = J_0 \cdot \dot{\vec{\omega}} = J_0 \cdot \frac{d\vec{\omega}}{dt} = \frac{d(J_0 \cdot \vec{\omega})}{dt} = \frac{d\vec{L}}{dt} \qquad \qquad J_0 = \text{const.}$$

The following applies:

Equation 19

 $\vec{M}_0 = \vec{r} \times \vec{F}$

In this instance \vec{r} is the vector from the reference point (pivotal point) "0" to the point of application of the external, resulting force \vec{F} .

Integration over the duration of the effect gives the principle of angular momentum:

Equation 20

$$\int_{t_0}^{t_1} \vec{M}_0 \cdot dt = \vec{M}_0 \cdot (t_1 - t_0) = J_0 \cdot (\vec{\omega}_1 - \vec{\omega}_0) = \vec{L}_1 - \vec{L}_0$$

The value $\vec{L} = J_0 \cdot \vec{\omega}$ is referred to as the **angular momentum**, **moment** of linear momentum or moment of momentum of the rotating mass J_0 about the reference point "0".

Further statements about the principle of angular momentum The following statements can be made on the basis of the principle of angular momentum (on a similar basis to the principle of linear momentum):

- The time integral over the resulting moment M
 ₀ of the external forces F acting on a rotating mass J₀ in relation to a reference point "0" is equal to the change in the angular momentum J₀ · ω (moment of momentum L) of the rotating mass in the direction of the acting moment.
 - If the resulting moment vector points in the direction of the rotation vector $\vec{\omega}$ of the rotating mass, it changes the magnitude of the angular momentum (moment of momentum), i.e. a pure **angular momentum magnitude change**.
 - If the resulting moment vector is perpendicular to the direction of the rotation vector w of the rotating mass, this results in a change to the direction of the angular momentum (moment of momentum), i.e. a pure angular momentum direction change.

In this case we use the statement of the angular momentum principle in the differential form:

Equation 21

$$\vec{M}_a = \frac{d\vec{L}}{dt}$$

- The change over time of the moment of momentum is equal to the moment of the external forces in relation to any reference point "0".
- If no external resulting moment \overline{M}_0 acts on the rotating mass J_0 , then its angular momentum (moment of momentum) \vec{L} remains constant in terms of its magnitude and direction in space since: $\overline{M}_a = 0$ and thus $d\vec{L} = 0$, giving $\vec{L} = \text{const.}$

This statement can be extended to a system of several, individual masses.

Calculations involving the principles of linear momentum and angular momentum The following analyses are helpful when studying the motion of bodies under the influence of external forces and moments:

- For the purpose of the calculation it is advisable to
 - choose the centre of gravity as the reference point for the angular momenta and to additionally specify the change in linear momentum of the centre of gravity.
 - select the instantaneous centre of revolution or rotation as the reference point for the motion. In the case of guided motion, it is sufficient to specify the body's change in angular momentum about the instantaneous centre of revolution.
- Both the linear and angular momenta are directional quantities. When studying the motion of bodies, the positive direction of motion (coordinates) must be defined. Their mathematical signs and the signs of the acting, resulting, external forces and moments must be observed.
- The principle of linear momentum and of angular momentum result from the fundamental equation of motion (fundamental dynamic law) through integration over time. Thus, all motion events which can be described using the fundamental equation of motion, can also be studied with the aid of the principles of linear momentum and of angular momentum.
- Linear momentum and angular momentum principles are observed in relation to so-called impact phenomena in particular. Impact phenomena cannot be described by the simple fundamental equation of motion, as generally no statement can be made about the magnitude of the acting impact force and the duration of the impact.

Impact laws - central impulse

We speak of an impact when a large force F(t) is exerted on a body with the mass m during a very short period of time τ (impact duration) and when this takes place in such a way that the time integral over the acting force assumes a finite value.

The time integral over the force F(t) is referred to as the magnitude of the impulse I:

Equation 22

I

Definition of impact

and impulse

$$= \int_{t_1}^{t_2} F(t) \cdot dt = \Delta p \qquad \qquad \mbox{with impact} \\ duration \qquad \tau = t_2 - t_1$$

Generally, the time curve for the acting force F(t) cannot be determined separately from the impact duration τ . The impulse I can be described by its effect, which **brings about a finite change in the velocity** of the body. In other words, the linear momentum of the body changes in the direction of the acting impact force.

In accordance with the fundamental dynamic law, the following applies:

Equation 23

$$F(t) = \frac{d(m \cdot v)}{dt}$$

This gives the following for the time integral over the acting impact force:

Equation 24

where $\Delta v =$ change in velocity of the body's centre of gravity as a result of the impact.

Figure 2 Impulse

1) Before impact (t₁) 2) After impact (t₂)

Figure 3 Impulse velocity profile

An impulse causes a "sudden" change in the velocity of the body, which
corresponds to a change in linear momentum (see Principle of linear
momentum). This change in velocity takes place in such a short space
of time that the distance covered by the body during this time is negligible
or practically zero.

The influence of other external forces (weights and friction forces etc.) is also negligible during the course of the impact compared with the magnitude of the impact force.

If the impulse is applied "normally" to the body and in the direction of the centre of gravity S and no other external forces are applied (including reaction forces) in the direction of impact, this results in a **sudden change in the translational velocity** in the direction of impact.

Impact laws - angular impulse

Unguided motion If the impulse is not applied in the direction of the centre of gravity S of the body and the line of influence of the impulse is at a distance a from the centre of gravity, the impact not only causes a sudden change in the translational velocity, but also a sudden change in the angular velocity ω.

Angular impulse Consequently, there is also a change in the angular momentum (moment of momentum) of the body about the centre of gravity S. This impulse is known as **angular impulse**:

Equation 25

 $H_s = a \cdot I$

Figure 4 Unguided motions

Before impact
 After impact

If we apply the equation for impulse:

Angular impulse relative to centre of gravity S *Equation 26*

$$I = \int_{t_0}^{t_1} F(t) \cdot dt = m \cdot (v_1 - v_0) = m \cdot v_1$$

this gives the following for the angular impulse relative to the centre of gravity S:

Equation 27

$$H_{S} = a \cdot \int_{t_{0}}^{t_{1}} F(t) \cdot dt = a \cdot I = J_{S} \cdot (\omega_{1} - \omega_{0}) = J_{S} \cdot \omega_{1}$$

Angular impulse relative to instantaneous centre of rotation MP Equation 28 If the change in angular momentum about the instantaneous centre of rotation MP is described as the angular impulse $H_{MP} = I \cdot b$ (b = distance between the line of action of the impulse I and the instantaneous centre of rotation), this gives:

$$H_{MP} = b \cdot \int_{t_0}^{t_1} F(t) \cdot dt = b \cdot I = J_{MP} \cdot (\omega_1 - \omega_0) = J_{MP} \cdot \omega_1$$

Guided motion

In the case of a guided motion, a relationship between the velocity of the centre of gravity and the angular velocity of the body can be described:

1) Before impact 2) After impact

If several impulses (including reaction impulses) are applied to a body, then the following statements apply:

- The sum of all impulses is equal to the change in the linear momentum.
- The sum of all angular impulses about the centre of gravity (total moment of the impacts) is equal to the change in the angular momentum about the centre of gravity.
- The total moment of the impacts about the instantaneous centre of rotation (of revolution) is equal to the change in the angular momentum (moment of momentum) about the instantaneous centre of rotation.

For the centre of gravity S for example, this gives the following:

Equation 29

 $I + I_R = m \cdot v_S$ $I \cdot a - I_R \cdot (b - a) = J_S \cdot \omega$

 $v_{S} = (b-a) \cdot \omega = s \cdot \omega$

and for the instantaneous centre of rotation MP:

Equation 30

 $I \cdot b = J_{MP} \cdot \omega$

 $v_S = s \cdot \omega$

Once the positive velocity directions have been defined, the signs of the impulses and angular impulses must be taken into account.

Impact laws for solid bodies

Direct.

In the case of a direct, central impact, the impact normal and the velocity **central impact** vectors lie on the line connecting the centres of gravity of the two bodies.

Impact period	Principle of linear momentum I =	Energy equation E =
positive direction		
1. Before impact $v_1 > v_2$ m_1 v_1 v_2 m_2	m ₁ v ₁ + m ₂ v ₂	$\frac{m_1}{2}v_1^2 + \frac{m_2}{2}v_2^2$
II. Moment of maximum deformation of the bodies	(m ₁ + m ₂) v	$\frac{(m_1 + m_2)}{2}v^2 + E_{p max} + W_{R1, 2}$
III. After impact $v_1^{'} < v_2^{'}$	m ₁ v ₁ '+m ₂ v ₂ '	$\frac{m_1}{2} (v_1')^2 + \frac{m_2}{2} (v_2')^2 + W_{R1, 2}$

In this context, the impact hypothesis is:

Newton's impact hypothesis Equation 31

 $e(v_1 - v_2) = v_2' - v_1'$

■ The imperfectly elastic impact (0 < e < 1) lies between the two limiting cases.

Calculating The velocities of the bodies after impact and the occurring losses can be determined using the principle of conservation of linear momentum¹, the energy conservation law¹ and Newton's impact hypothesis¹.

Velocities of the bodies after impact (III)	Potential elastic energy at the moment of maximum deformation (II)	Energy loss during impact $I \rightarrow II$ and $II \rightarrow III$
Perfectly elastic impact e = 1	$v_2' - v_1' = v_1 - v_2$	
$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$	$E_{p max} = \frac{1}{2} (v_1 - v_2)^2$ $m_1 m_2$	$W_{R1, 2} = 0$
$v_{2}' = v_{1}' = \frac{(m_{2} - m_{1})v_{2} + 2m_{1}v_{1}}{m_{1} + m_{2}}$	$m_1 + m_2$	
Imperfectly elastic impact $0 < \mathbf{e} < 1$	$v_{2}' - v_{1}' = e \cdot (v_{1} - v_{2})$	
$v_1' = \frac{m_1 v_1 + m_2 v_2 - m_2(v_1 - v_2) e}{m_1 + m_2}$	$E_{p max} = \frac{1}{2}e^{2}(v_{1}-v_{2})^{2}$	$W_{R1, 2} = \frac{1}{2} (1 \! - \! e^2) (v_1 \! - \! v_2)^2$
$v_{2}' = \frac{m_{1}v_{1} + m_{2}v_{2} + m_{1}(v_{1} - v_{2})e}{m_{1} + m_{2}}$	$\cdot \frac{m_1 m_2}{m_1 + m_2}$	$\cdot \frac{m_1 m_2}{m_1 + m_2}$
Perfectly plastic impact $e = 0$	v ₁ ' = v ₂ ' = v	
$v_1' = v_2' = v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	$E_{p \max} = 0$	$W_{R1, 2} = \frac{1}{2} (v_1 - v_2)^2 \frac{m_1 m_2}{m_1 + m_2}$

¹⁾ The signs of v and v' must be observed when evaluating the relationships.

Oblique, central impact

In the case of an oblique, central impact, the impact normal lies on the line connecting the centres of gravity of the two bodies, but the velocity vectors do not.

If no frictional forces occur in the contact area between the two bodies, there will be no change in the bodies' velocity component which is tangential to the contact area. In this instance, the relationships for the direct, central impact can be used by determining the components of the velocities in the direction of the impact normal.

Example system: oblique central impact of a sphere against a wall

(1) Impact normal

The following applies perpendicular to the impact normal:

Equation 32

 $v_1 \cdot \sin \alpha_1 = v_1' \cdot \sin \alpha_2 = v_1' \cdot \sin \beta$

The following applies in the direction of the impact normal:

Equation 33

$$v_1' \cdot \cos \alpha_2 = -e \cdot v_1 \cdot \cos \alpha_1 = e \cdot v_1 \cdot \cos \beta$$

Therefore:

Equation 34

$$\tan \alpha_2 = -\frac{\tan \alpha_1}{e} = -\tan \beta \qquad v_1' = -e$$

 $\frac{v_1 \cdot \cos \alpha_1}{\cos \alpha_2}$

Direct, eccentric impact

In the case of a direct, eccentric impact, the velocity vectors lie in the direction of the impact normal, but the impact normal does not lie on the line connecting the two bodies' centres of gravity.

Guided motion If one of the two bodies (or both) is pivot-mounted, the relationships for a direct, central impact can be used by reducing the rotating mass of the guided bodies to the point of impact.

Example system: guided motion

Figure 7 Direct, eccentric impact Before impact

(1) Impact normal

Note:

Equation 35

		J_{2A}
m _{2 red}	=	b ²

With impact factor e, this gives the following:

Equation 36

$$v_{1}' = \frac{m_{1}v_{1} - m_{2 \text{ red}} \cdot v_{1} \cdot e}{m_{1} + m_{2 \text{ red}}} \qquad v_{2}' = \frac{m_{1}v_{1} - m_{1}v_{1} \cdot e}{m_{1} + m_{2 \text{ red}}}$$
$$\Omega_{2} = \frac{v_{2}'}{b}$$

Unguided motion

If neither of the two bodies is guided, the equations required to determine the velocities of the bodies (translational velocity and angular velocity) after impact are obtained from the impact laws (for the impulse or angular impulse) and Newton's impact hypothesis for the point of impact.

 $\int F(t) \cdot dt = m_1 (v_1' - v_1)$

a∘∫

For reaction reasons, an impulse of the same magnitude acts on body 2 (mass m_2):

Equation 39

$$\int F(t) \cdot dt = m_2 \left(v_{2S} - v_{2S} \right) \qquad v_{2S} = 0$$

An angular impulse also acts about the centre of gravity of body 2 (mass m₂):

Equation 40

$$F(t) \cdot dt = J_{2S}(\omega_2 - \omega_2) \qquad \qquad \omega_2 = 0$$

With Newton's impact hypothesis, this ultimately gives the following for the impact point:

Equation 41

$$e = \frac{v_{2}' - v_{1}'}{v_{1} - v_{2}} = \frac{(v_{2}s' + \omega_{2}' \cdot a) - v_{1}'}{v_{1}} \qquad v_{2} = 0$$

These equations can be used to determine the velocities v_1' and $v_2{\,}_S'$ and ω_2' after impact.

Oblique, eccentric impact

In the case of an oblique, eccentric impact, neither the impact normal nor the line connecting the centres of gravity of the two bodies and the velocity vectors coincide.

If no frictional forces occur in the contact area between the two bodies, there will be no change in the bodies' velocity component which is perpendicular to the impact normal. In this instance, the relationships for the direct, eccentric impact can be used by determining the components of the velocities in the direction of the impact normal.

Example system: oblique, eccentric impact

1 Impact normal

Mechanical vibrations and acoustics

General definitions

Description of vibration events In a vibration event, the energy present is transformed from one form of energy to another in defined time periods and periodically transformed, in whole or in part, back into the first form of energy.

Within a mechanical translational or rotational vibration system comprising a mass and a potential energy reservoir, a transformation process occurs between the kinetic and potential energy present.

Free, undamped vibration

A free, undamped oscillation is present if energy is neither supplied to nor withdrawn from the oscillating system during the oscillation. As a result, the amount of energy initially introduced remains constant and a periodic energy transformation takes place. In this case, the system would perform stationary natural oscillations, whose frequency depends solely on the characteristics of the system (mass and potential energy storage). Oscillations of this type are also known as **harmonic oscillations**. The vibration pattern x(t) over time can therefore be characterised by a constant **vibration amplitude** (x_{max}) and a harmonic mathematical function (sin, cos), whose argument contains the **natural frequency** of the system.

 $x_{max} = amplitude$ $2\pi = period$

Without phase shift
 With phase shift α

Damped vibration If the oscillating system loses a portion of its dynamic energy in each oscillation period, a damped vibration is present. In the case of linear damping proportional to velocity (e.g. Newtonian friction), the vibration amplitude will decrease according to a geometric progression.

- Forced vibration If the oscillating system is excited by an external, periodically acting force F(t) or moment M(t), forced vibrations will occur. Due to the excitation force, energy can be supplied to or withdrawn from the system. After an initial transient phase, the system no longer oscillates at its natural frequency, but with the frequency of the externally acting excitation force.
 - Resonance If the frequency of the external excitation acting on the system matches the natural frequency, resonance occurs. In the case of undamped systems, the vibration amplitudes in resonance tend towards "infinity". The vibration amplitudes, when considered as a function of the excitation frequency, are subdivided at the resonance point (natural frequency = excitation frequency) into subcritical and supercritical frequency ranges.
- Coupled vibrations If two oscillating systems are coupled with each other by means of mass or elasticity, a periodic exchange of energy takes place between the systems (multiple mass oscillator).
 - Mathematical description of vibrations
 In general, mechanical vibration events can be described, depending on their initial conditions, by means of sine or cosine functions or their superposition. In the analysis of vibration events, Fourier analysis can be useful, as any function that is monotonic and continuous can be represented as a sum of sinusoidal and cosinusoidal basic and harmonic oscillations.

The following relationships exist between the natural circular frequency, the frequency and the period time of a harmonic vibration:

Eauation 1

$$\begin{split} \omega_0 &= 2 \cdot \pi \cdot f_0 = \frac{2 \cdot \pi}{T} & \overline{\psi_0} = \text{natural circular frequency} \\ & \text{(vibration in 2 π seconds)} \\ f_0 &= \text{frequency} \\ & \text{(number of vibrations per second)} \\ T &= \frac{2 \cdot \pi}{\omega_0} = \frac{1}{f_0} & T &= \text{vibration time} \\ & \text{for one period} \end{split}$$

In circumferential motion, the relationship between frequency and speed is as follows:

Equation 2

$f = \frac{n}{60}$	in Hz (n in min ⁻¹)
$\omega = \frac{2 \cdot \pi \cdot n}{60} = \frac{\pi \cdot n}{30}$	in s ⁻¹ (n in min ⁻¹)

Quantities and units A number of important quantities and units relating to mechanical vibrations are described as follows:

Name	Quantity	Unit	Description
Mass (rigid body)	m	kg	A (rigid) mass undergoing translational acceleration, velocity or displacement through vibration
Mass moment of inertia	J	$kg \cdot m^2$	Inertia of a rigid mass against a change of angular velocity or rotational speed
Displacement	$\begin{array}{c} x(t) \\ \phi(t) \end{array}$	m rad ¹⁾	Time dependent local displacement or angular deflection value
Peak displacement	x_{max}, \hat{x} $\varphi_{max}, \hat{\varphi}$	m rad	Maximum observed peak value of local displacement and angular deflection (within a time window or angular range)
Displacement velocity	$\begin{array}{l} \dot{x}(t) \\ \dot{\phi}(t) \end{array}$	m/s rad/s	Instantaneous value of alternating velocity through mass displacement
Vibration acceleration	x(t)	m/s ²	Instantaneous acceleration of the oscillating mass
Force of inertia	$m \cdot \ddot{x}(t)$	Ν	According to d'Alembert: inertia force or
Moment of inertia forces	$J{\cdot}\ddot{\phi}(t)$	N·m	the instantaneous acceleration
Spring stiffness, spring constant	С	N/m	For linear springs (springs with proportional characteristic curve): the spring reaction is
Spring force	$F_F = c \cdot \Delta x$	Ν	proportional to the deflection (displacement)
Torsion spring stiffness, Torsion spring constant	c _T	N · m/rad	For torsion springs with linear characteristic curve the spring reaction is proportional to angular
Spring moment (spring torque)	$c_T\cdot \phi(t)$	N·m	deflection
Damping constant	b	N·s/m	In the case of Newtonian friction, the damping
Damping constant for rotary motion	b	$N \cdot m \cdot s/rad$	force is proportional to the velocity and the damping constants (linear damping)
Damping factor (damping coefficient)	$\begin{array}{l} \delta = b/(2 \cdot m) \\ \delta = b/(2 \cdot J) \end{array}$	1/s 1/s	The damping constant relative to twice the mass
Damping factor	$D = \delta/\omega_0$	-	D < 1: damped vibration, $D \ge 1$: aperiodic case

Continuation of table, see Page 151.

1) The unit rad can be replaced by "1" in calculation.

Name	Quantity	Unit	Description
Damping ratio	\hat{x}_n/\hat{x}_{n+1} $\hat{\phi}_n/\hat{\phi}_{n+1}$	-	The ratio between two amplitudes separated by one period
Logarithmic damping decrement	$\Lambda = \frac{2 \cdot \pi \cdot D}{\sqrt{1 - D^2}}$	-	$\begin{split} \Lambda &= \ln \left(\hat{x}_{n} / \hat{x}_{n+1} \right) \\ \Lambda &= \ln \left(\hat{\phi}_{n} / \hat{\phi}_{n+1} \right) \end{split}$
Time	t	s	The current time coordinate
Phase angle	α	rad	This characterises the vibration phase, in other words the vibration state in which the system is currently present
Phase displacement angle	$\epsilon = \alpha_1 - \alpha_2$	rad	The difference in phase angle between two vibration events with the same circular frequency; if the value is positive this is a leading angle
Periodic time (cycle duration)	$T=2\cdot\pi/\omega_0$	5	The time in which one single vibration occurs
Characteristic frequency of the natural vibration	$f_0 = 1/T$	Hz	The reciprocal value of the period time
Characteristic circular frequency of the natural vibration	$\omega_0 = 2 \cdot \pi \cdot f_0$	1/s	The number of vibrations in $2\cdot\pi$ seconds
Natural circular frequency (natural frequency)	$\omega_0 = \sqrt{c/m}$	1/s	The vibration frequency of the natural vibration of the system (undamped)
	$\omega_0 = \sqrt{c_T/J}$	-/-	
Natural circular frequency in the case of damping	$\omega_{d} = \sqrt{\omega_{0}^{2} - \delta^{2}}$	1/s	In the case of a very small damping factor D \ll 1, ω_d = ω_0
Excitation frequency	Ω	1/s	The circular frequency of the excitation
Circular frequency ratio	$\eta = \Omega / \omega_0$	-	Resonance is present at $\eta = 1$

Continuation of table, Quantities and units, from Page 150.

Free, undamped vibration

Description of the energy approach Where free, undamped mechanical vibrations take place, a periodic exchange generally occurs between **potential** and **kinetic energy**.

The potential energy is present in this case as:

- the energy of position of the vibrating mass in a gravitational field (the Earth's gravitational field, a centrifugal field etc.)
- the elastic deformation energy (elastic strain energy of a spring, a support or a bar structure etc.)
- or both

The kinetic energy is present in this case as:

the energy of motion of the vibrating mass

Motion equation, formulation and solution

The simplest mechanical vibration system, to which a range of vibrating bodies can be reduced, is **linear spring vibration**. The oscillator comprises a theoretically massless elastic element (in this case a spring with a linear spring characteristic) and a point mass.

For formulation and solution of the motion equation for this free, undamped vibration, consideration is given to the following forces:

- translational forces
- inertia forces
- reset forces

Translational forces

In a resting state, the weight force F_{G} of the mass m and the spring force F_{F} are in equilibrium.

Figure 2

Linear spring vibration: translational forces

GL = static equilibrium position S = centre of gravity

(1) Massless spring

An equilibrium between the two translational forces can be described as follows:

Equation 3

$F_G = m \cdot g$	$F_F = c \cdot u_{st}$
Equilibrium:	$F_G = F_F$

The spring is deflected by an amount \boldsymbol{u}_{st} compared to its untensioned length:

Equation 4

 $u_{st} = \frac{m \cdot g}{c}$

This position is known as the **rest position** or **static equilibrium position**.

If the mass is deflected out of its static equilibrium position in a vertical direction and then released, it performs free, periodic vibrations about the static equilibrium position.

Figure 3

Linear spring vibration: motion pattern

GL = static equilibrium position

 Motion pattern over time

The motion pattern is described by means of the motion equation. This is determined by developing a force approach in accordance with d'Alembert's principle:

- In the direction of motion, plot the coordinates of direction for x, x and x starting from the centre of gravity of the mass in the static equilibrium position.
- Then plot the forces acting at the centre of gravity of the mass in the direction of motion if these are regarded as being deflected in the positive coordinate of direction in the vibration.

Inertia forces	 The inertia forces are considered using the following approach: Force approach according to d'Alembert: plot the kinetic reaction against the positive direction of acceleration x. If the vibration event takes place in an accelerated reference system (accelerated elevator, accelerated vehicle or rotating system etc.), there will be an additional system force (kinetic reaction, centrifugal force, Coriolis force) that acts on the mass. This additional system force is plotted against the positively defined direction of system accelerated reference system. This can result, on the one hand, in a change in the static equilibrium position compared with that in the unaccelerated reference system or, on the other hand, a change in the frequency of vibration.
Reset forces	 The reset forces are considered using the following approach: Plot the spring force due to the deflection of the mass out of its static equilibrium position against the positive direction of deflection. Weight force and static spring force: If only a periodic exchange occurs in a vibration system between potential elastic and kinetic energy under the influence of a constant gravitational field, the weight force F_G (of the mass m) and the spring force F_F (due to the static deflection) will cancel each other out at each moment of the motion if the motion equation is formulated for vibration about the static equilibrium position. In this case, the weight force and spring force are not used at all in the approach. If an exchange takes place between potential energy of position and kinetic energy during the vibration, the weight force F_G (of the mass m) must be included in the approach.
Motion equation Equation 5	For an equilibrium of forces in the direction of motion, this gives the following equilibrium relationship in the oscillator presented:
	$\sum F_x = -m \cdot \ddot{x} - c \cdot x = 0$ The forces occurring are written in the sequence of the derivatives of x, starting with the force having the highest derivative, taking account of their direction.

If this equation is divided by the factor of the highest derivative, this gives the **homogeneous differential equation** as a motion equation for free, undamped vibration of the mass m:

Equation 6

 $\ddot{x} + \frac{c}{m} \cdot x = 0$

This form of the equation will hereinafter be referred to as the **normal form**. In terms of its mathematical structure, it is typical for all free, undamped and linear vibrations.

This therefore solves the purely mechanical problem of formulating the motion equation. Solving this motion equation is now a mathematical task.

General solutionThe acceleration of the motion event is a function of the travel.of the motion equationAs a result, solving this equation by means of double integration over time
is not a straightforward matter.

For the existing form of d'Alembert's differential equation with constant coefficients, the general approach to solution is as follows:

Equation 7

$$x = C \cdot e^{s \cdot t}$$

If this approach to solution is applied to the normal form of the differential equation, this gives:

Equation 8

$$C \cdot s^2 \cdot e^{s \cdot t} + \frac{c}{m} \cdot C \cdot e^{s \cdot t} = 0$$
$$s^2 + \frac{c}{m} = 0$$
$$s_{1,2} = \pm \sqrt{-\frac{c}{m}} = \pm i \sqrt{c/m}$$

This gives the general solution of the motion equation:

Equation 9

$$\mathbf{x} = \mathbf{C}_1 \, \mathbf{e}^{+\mathbf{i}\sqrt{\mathbf{c/m}}\cdot\mathbf{t}} + \mathbf{C}_2 \, \mathbf{e}^{-\mathbf{i}\sqrt{\mathbf{c/m}}\cdot\mathbf{t}}$$

With the aid of Euler's formula $e^{\pm i\,\phi}$ = cos $\phi\pm i\cdot$ sin $\phi,$ this can also be expressed as follows:

Equation 10

$$\begin{split} x &= C_1 \Big(\cos \sqrt{c \, / \, m} \cdot t + i \cdot \sin \sqrt{c \, / \, m} \cdot t \Big) \\ &+ C_2 \Big(\cos \sqrt{c \, / \, m} \cdot t - i \cdot \sin \sqrt{c \, / \, m} \cdot t \Big) \\ x &= \big(C_1 + C_2 \big) \cos \sqrt{c \, / \, m} \cdot t + i \cdot \big(C_1 - C_2 \big) \sin \sqrt{c \, / \, m} \cdot t \end{split}$$

This relationship only results in a real value as a solution for the motion coordinate x if the constants C_1 and C_2 are conjugated in complex form as follows:

Equation 11

 $C_{12} = K_1 \pm i \cdot K_2$

The general solution for a harmonic vibration is thus expressed as follows:

$$\begin{split} x &= 2K_1\cos\sqrt{c\,/\,m}\cdot t - 2K_2\sin\sqrt{c\,/\,m}\cdot t \\ \text{where} \quad \omega_0 &= \sqrt{c/\,m} \qquad \omega_0^{\,2} &= c\,/\,m \end{split}$$

 ω_0 is known as the **natural circular frequency** of the vibration event. The square of the natural circular frequency is always represented in the normal form of the differential equation by the factor of the linear motion coordinate x.

Based on these considerations, the following **general solution** of the differential equation is always to be expected for the free, undamped vibration:

Equation 13

 $x = A \sin \omega_0 \ t + B \cos \omega_0 \ t \qquad \text{where} \ \ \omega_0 = \sqrt{c/m}$

Consideration of the initial conditions The two free constants A and B of the general solution are defined by the **initial conditions** of the vibration event, which are normally stipulated.

The different initial conditions will result in the corresponding solutions when the conditions are used in the general solution:

Initial cor	nditions		Solution
t = 0	x = 0	$\dot{x} = \dot{x}_{max}$	$x = \frac{\dot{x}_{max}}{\omega_0} \cdot \sin \omega_0 t$
t = 0	$x = x_{max}$	$\dot{x} = 0$	$x = x_{max} \cdot \cos \omega_0 t$
t = 0	x = 0	$\ddot{x} = \left \ddot{x}_{max} \right $	$x = \frac{\left \ddot{x}_{max}\right }{\omega_0^2} \cdot \cos \omega_0 t$
t = 0	$x = x_0$	$\dot{x} = \dot{x}_0$	$\mathbf{x} = \frac{\dot{\mathbf{x}}_0}{\omega_0} \cdot \sin \omega_0 \mathbf{t} + \mathbf{x}_0 \cdot \cos \omega_0 \mathbf{t}$

From a comparison of the maximum vibration deflections x_{max} (amplitudes), two important relationships can be determined between the natural circular frequency of the oscillating body, the vibration amplitude, the maximum velocity and the maximum acceleration:

Equation 14

 $\dot{\mathbf{x}}_{max} = \boldsymbol{\omega}_0 \cdot \mathbf{x}_{max}$ $|\ddot{\mathbf{x}}_{max}| = \boldsymbol{\omega}_0^2 \cdot |\mathbf{x}_{max}|$

The general solution of the differential equation can therefore be expressed with the aid of the amplitudes in the following form:

Equation 15

 $\mathbf{x} = \mathbf{x}_{\max} \cdot \sin(\omega_0 \mathbf{t} + \alpha)$

In this case, α is the phase angle (leading angle) with respect to a vibration $x = x_{max} \cdot \sin(\omega_0 t)$ and x_{max} is the amplitude of the vibration event. The phase angle and amplitude are determined by the initial conditions.

This gives:

Initial co	ndition		Solution
t = 0	x = x ₀	$\dot{x} = \dot{x}_{0}$	$x_{max} = \sqrt{x_0^2 + \frac{\dot{x}_0^2}{\omega_0^2}}$
			$\tan \alpha = \frac{x_0}{\dot{x}_0 / \omega_0}$

 $2\pi = \text{period}$

Overview of motion equations and amplification function

Free, undamped and damped vibration The following table shows the conditions and relationships for solving the motion equations for free, undamped and damped vibrations:

Oscillator schematic	Differential equation and solution	Time-based vibration pattern	
	Approach:		
$-m \cdot \ddot{x} - c \cdot x = 0$ Differential equation: (normal form of the homogeneous differential equation, 2nd order): $\ddot{x} + \frac{c}{m} \cdot x = 0$ Initial conditions: $t = 0; x = 0; \dot{x} = \dot{x}_{max}$		x x_{max} $0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3}{2}\pi \qquad \omega_0 t$ $\omega_0 T = 2\pi$	
x, x, x	Solution: $x = x_{max} \cdot \sin \omega_0 t$	Period time of one vibration: $T = 2 \pi/\omega_0$	
$ \begin{array}{l} \mbox{GL = static equilibrium} \\ \mbox{position} \end{array} & \mbox{With natural circular frequency:} \\ \mbox{$\omega_0 = \sqrt{\frac{c}{m}}$} \end{array} $		Vibration frequency: $f = 1/T = \omega_0/2 \ \pi$	
	Approach:	Damped vibration:	
c b b c c c c c c c c c c c c c c c c c	$-\mathbf{m} \cdot \ddot{\mathbf{x}} - \mathbf{b} \cdot \dot{\mathbf{x}} - \mathbf{c} \cdot \mathbf{x} = 0$ Differential equation: (normal form of the homogeneous differential equation, 2nd order): $\ddot{\mathbf{x}} + \frac{\mathbf{b}}{\mathbf{m}} \cdot \dot{\mathbf{x}} + \frac{\mathbf{c}}{\mathbf{m}} \cdot \mathbf{x} = 0$ Initial conditions: $t = 0; \mathbf{x} = \mathbf{x}_0; \ \dot{\mathbf{x}} = 0$ Simplified solution: $\mathbf{x} = e^{-\delta t} \cdot \mathbf{x}_{max} \cdot \cos \omega_d t$ With damping factor: $\delta = b/(2m)$	b < $2\sqrt{c \cdot m}$ $x_{max} \cdot e^{-\delta t}$ 0 $\frac{1}{\pi} 2\pi$ $\frac{1}{\pi} 4\pi$ $\frac{1}{\pi} \omega_d t$ Period time of one vibration: $T = 2\pi/\omega_d$	
GL = static equilibrium position b = damping constant	With natural circular frequency: $\omega_{d} = \sqrt{\omega_{0}^{2} - \delta^{2}}$	Amplitude ratio for T/2: $x_n/x_{n+1} = e^{-\delta} (T/2)$	

Undamped vibration excitation

Indamped vibration The following table shows the conditions and relationships for solving the motion equations for undamped vibrations caused by external excitation (forced vibrations). The solutions apply to the forced state.

Oscillator schematic	Differential equation	Solution and amplitude (non-homogeneous)	Phase angle	
Excitation function: $\alpha = \alpha_0 \cdot \sin(\Omega t)$		Solution function: $\mathbf{x} = \mathbf{x}_{\max} \cdot \sin\left(\Omega \; \mathbf{t}\right)$	Solution function: $\mathbf{x} = \mathbf{x}_{max} \cdot \sin(\Omega t + \alpha)$	
$F = F_0 \cdot \sin \Omega t$	Approach: $-\mathbf{m} \cdot \ddot{\mathbf{x}} - \mathbf{c} \cdot \mathbf{x} + \mathbf{F}(\mathbf{t}) = 0$	Solution: $x = \frac{F_0}{c - m \Omega^2} \sin(\Omega t + \alpha)$ Amplitude:	Subcritical	
m , x, x, x	$\mathbf{m} \cdot \ddot{\mathbf{x}} + \mathbf{c} \cdot \mathbf{x} = \mathbf{F}_0 \sin \Omega \mathbf{t}$	$x_{max} = \frac{F_0}{c} \cdot \left \frac{1}{1 - \eta^2} \right = \frac{F_0}{c} \cdot V_{03}$	range $\eta = \frac{\Omega}{\omega_0} < 1$ $\alpha = -\epsilon$	
~~~ •	Approach:	Solution:	€ = 0°	
$c = U_0 \cdot \sin \Omega t$	$-m\cdot\ddot{x}-c\cdot x+c\cdot u=0$	$x = \frac{c \cdot U_0}{c - m \Omega^2} \sin\left(\Omega t + \alpha\right)$		
m	Differential equation:	Amplitude:		
x, x, x	$\mathbf{m} \cdot \ddot{\mathbf{x}} + \mathbf{c} \cdot \mathbf{x} = \mathbf{c} \cdot \mathbf{U}_0 \sin \Omega \mathbf{t}$	$x_{max} = U_0 \left \frac{1}{1 - \eta^2} \right = U_0 \cdot V_{03}$		
11/1/1	Approach:	Solution:		
c ₁ m	$-\mathbf{m}\cdot\ddot{\mathbf{x}}-\mathbf{c}_{1}\cdot\mathbf{x}-\mathbf{c}_{2}\cdot\mathbf{x}+\mathbf{c}_{2}\cdot\mathbf{u}=0$	$x = \frac{c_2 \cdot U_0}{c_1 + c_2 - m \Omega^2} \sin(\Omega t + \alpha)$		
5 c ₂	Differential equation:	Amplitude:	Super-	
x, x, x	$m \cdot \ddot{x} + (c_1 + c_2) \cdot x$ $= c_2 \cdot U_0 \cdot \sin \Omega t$	$\mathbf{x}_{\max} = \frac{\mathbf{c}_2 \cdot \mathbf{U}_0}{(\mathbf{c}_1 + \mathbf{c}_2)} \cdot \left \frac{1}{1 - \eta^2} \right $	critical range $\eta = \frac{\Omega}{2} > 1$	
$u = u_0 \cdot \sin u_t$		$= \frac{1}{c_1 + c_2} \cdot V_{03}$	ω_0 $\alpha = -\epsilon$	
//////	Approach:	Solution:	€ = 180°	
, Č	$-(\mathbf{m}_1 + \mathbf{m}_2) \cdot \ddot{\mathbf{x}} - \mathbf{c} \cdot \mathbf{x} - \mathbf{m}_2 \cdot \ddot{\mathbf{u}} = 0$	$x = \frac{m_2 \cdot r \cdot \Omega^2}{c - (m_1 + m_2) \Omega^2} \sin \left(\Omega \; t + \alpha \right)$		
m_1	Differential equation:	Amplitude:		
$\frac{1}{x, \dot{x}, \ddot{x}} = r \cdot \sin \Omega t$	$ \begin{pmatrix} m_1 + m_2 \end{pmatrix} \cdot \ddot{x} + c \cdot x \\ = m_2 \cdot r \cdot \Omega^2 \cdot \sin \Omega t $	$\begin{aligned} x_{max} &= \frac{m_2 \cdot r}{m_1 + m_2} \cdot \left \frac{\eta^2}{1 - \eta^2} \right \\ &= \frac{m_2 \cdot r}{m_1 + m_2} \cdot V_{01} \end{aligned}$		

Amplification function

Figure 6 Periodic force or spring force excitation

$$\label{eq:gamma} \begin{split} \eta &= \mbox{circular frequency} \\ ratio \\ V_{01} &= \mbox{amplification} \\ function \end{split}$$

(1) Subcritical range (2) Supercritical range

2

 $\eta = \frac{\Omega}{\omega_0}$

2,5

ż

3,5

Á

0,5

i

1,5

ò

Figure 7 Periodic mass force excitation

$$\begin{split} \eta &= \text{circular frequency} \\ \text{ratio} \\ V_{03} &= \text{amplification} \\ \text{function} \end{split}$$

Subcritical range
 Supercritical range

Damped vibrationThe following table shows the conditions and relationships for solving
the motion equations for damped vibrations caused by external excitation **excitation** (forced vibrations). The solutions apply to the turned in state.

Oscillator schematic	Differential equation and amplitude	Phase angle
Excitation function: α = α_0	$\sin(\Omega t)$ Solution function: $x = x_{ma}$	$_{x} \cdot \sin (\Omega t + \alpha)$
c b $bm S c F = F_0 \cdot \sin \Omega tx, \dot{x}, \ddot{x}$	Approach: $-m \cdot \ddot{x} - b \cdot \dot{x} - c \cdot x + F(t) = 0$ Differential equation: $m \cdot \ddot{x} + b \cdot \dot{x} + c \cdot x = F_0 \cdot \sin \Omega t$ Amplitude: $x_{max} = \frac{F_0}{c} \cdot \frac{1}{\sqrt{(1 - \eta^2)^2 + 4 D^2 \eta^2}}$ $x_{max} = \frac{F_0}{c} \cdot V_3$	$\alpha = -\epsilon_3$ $\tan \epsilon_3 = \frac{2D \eta}{1 - \eta^2}$
c_1 b m x, \dot{x}, \ddot{x} c_2 $u = U_0 \cdot \sin \Omega t$	Approach: $-m \cdot \ddot{x} - b \cdot \dot{x} - c_1 \cdot x - c_2 \cdot x + c_2 \cdot u = 0$ Differential equation: $m \cdot \ddot{x} + b \cdot \dot{x} + (c_1 + c_2) \cdot x = c_2 \cdot U_0 \cdot \sin \Omega t$ Amplitude: $x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot \frac{1}{\sqrt{(1 - \eta^2)^2 + 4D^2\eta^2}}$ $x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot V_3$	$\alpha = -\epsilon_3$ $\tan \epsilon_3 = \frac{2D \eta}{1 - \eta^2}$
x, \dot{x}, \ddot{x} $u = U_0 \cdot \sin \Omega t$	Approach: $-\mathbf{m} \cdot \ddot{\mathbf{x}} - \mathbf{b}_{1} \cdot \dot{\mathbf{x}} - \mathbf{b}_{2} \cdot \dot{\mathbf{x}} - \mathbf{c} \cdot \mathbf{x} + \mathbf{b}_{2} \cdot \dot{\mathbf{u}} = 0$ Differential equation: $\mathbf{m} \cdot \ddot{\mathbf{x}} + (\mathbf{b}_{1} + \mathbf{b}_{2}) \cdot \dot{\mathbf{x}} + \mathbf{c} \cdot \mathbf{x} = \mathbf{b}_{2} \cdot \mathbf{U}_{0} \cdot \Omega \cdot \cos \Omega \mathbf{t}$ Amplitude: $\mathbf{x}_{max} = \frac{\mathbf{b}_{2} \cdot \mathbf{U}_{0}}{\mathbf{b}_{1} + \mathbf{b}_{2}} \cdot \frac{2D \eta}{\sqrt{(1 - \eta^{2})^{2} + 4D^{2} \eta^{2}}}$ $\mathbf{x}_{max} = \frac{\mathbf{b}_{2} \cdot \mathbf{U}_{0}}{\mathbf{b}_{1} + \mathbf{b}_{2}} \cdot \mathbf{V}_{2}$	$\alpha = \overline{\gamma_2} = \frac{\pi}{2} - \epsilon_3$ $\tan \gamma_2 = \frac{1 - \eta^2}{2D \eta}$

Continuation of table, see Page 163.
Continuation of table, Damped vibration caused by external excitation, from Page 162.

Oscillator schematic	Differential equation and am	plitude	Phase angle
Excitation function: α = α_0 -	$\sin{(\Omega t)}$	Solution function: $x = x_{max}$.	sin (Ω t + α)
c m_1 n $m_2/2$ x, \dot{x}, \ddot{x} $u = r \cdot \sin \Omega t$	Approach: $-(m_{1}+m_{2})\cdot\ddot{x}-b\cdot\dot{x}-c\cdot\dot{x}+c\cdot$	$-m_2 \cdot \ddot{u} = 0$ $= m_2 \cdot r \cdot \Omega^2 \sin \Omega t$ $\frac{\eta^2}{\left[r^2\right]^2 + 4 D^2 \eta^2}$	$\alpha = -\epsilon_1$ $\tan \epsilon_1 = \frac{2D \eta}{1 - \eta^2}$
$u = U_0 \cdot \sin \Omega t$ b c s m x, \dot{x}, \ddot{x}	$\begin{split} \chi_{max} &= {m_1 + m_2} \cdot V_1 \\ \hline \text{Approach:} \\ -m \cdot \ddot{x} - b \cdot \dot{x} - c \cdot x + c \cdot u &= 0 \\ \hline \text{Differential equation:} \\ m \cdot \ddot{x} + b \cdot \dot{x} + c \cdot x &= c \cdot U_0 \cdot s \\ \hline \text{Amplitude:} \\ \chi_{max} &= U_0 \cdot \frac{1}{\sqrt{\left(1 - \eta^2\right)^2 + s^2}} \\ \chi_{max} &= U_0 \cdot V_3 \end{split}$	$\frac{1}{4D^2\eta^2}$	$\alpha = -\epsilon_3$ $\tan \epsilon_3 = \frac{2D \eta}{1 - \eta^2}$
$u = U_0 \cdot \sin \Omega t$ b s x, x, x	Approach: $-m \cdot \ddot{x} - b \cdot \dot{x} - c \cdot x + b \cdot \dot{u} = 0$ Differential equation: $m \cdot \ddot{x} + b \cdot \dot{x} + c \cdot x = b \cdot U_0 \cdot \cdot$ Amplitude: $x_{max} = U_0 \cdot \frac{2 D \eta}{\sqrt{(1 - \eta^2)^2 + t^2}}$ $x_{max} = U_0 \cdot V_2$	$\frac{D}{1} \frac{1}{4D^2\eta^2}$	$\alpha = \gamma_2 = \frac{\pi}{2} - \epsilon_3$ $\tan \gamma_2 = \frac{1 - \eta^2}{2D \eta}$

Continuation of table, see Page 164.

Continuation of table, Damped vibration caused by external excitation, from Page 163.

Oscillator schematic	Differential equation and amplitude	Phase angle
Excitation function: α = α_0 -	sin (Ω t) Solution function: $\mathbf{x} = \mathbf{x}_{max}$.	sin (Ω t + α)
x, x, x	Approach: $-m \cdot \ddot{x} - b \cdot \dot{x} - c \cdot x + b \cdot \dot{u} + c \cdot u = 0$	$\alpha = -\epsilon_{2,3}$ $\tan \epsilon_{2,3}$
s m	$ \begin{array}{l} \text{Differential equation:} \\ m\cdot\ddot{x}+b\cdot\dot{x}+c\cdot x \ = \ b\cdot U_0\cdot\Omega\cdot\cos\Omega\ t+c\cdot U_0\cdot\sin\Omega\ t \end{array} \end{array}$	$= \frac{2 D \eta^3}{1 + \eta^2 (4 D^2 - 1)}$
c 🗧 🗖 b	Amplitude:	
	$x_{max} = U_0 \cdot \sqrt{\frac{1 + 4 D^2 \eta^2}{\left(1 - \eta^2\right)^2 + 4 D^2 \eta^2}}$	
u = 0 ₀ . sin <i>ut</i>	$x_{max} = U_0 \cdot V_{2,3}$	
	Approach:	$\alpha = -\epsilon_{2,3}$
	$-m \cdot \ddot{x} - (b_1 + b_2) \cdot \dot{x} - (c_1 + c_2) \cdot x + b_2 \cdot \dot{u} + c_2 \cdot u = 0$	tan € _{2,3}
c ₁ b ₁ b ₁	Differential equation: $\mathbf{m} \cdot \ddot{\mathbf{x}} + (\mathbf{b}_1 + \mathbf{b}_2) \cdot \dot{\mathbf{x}} + (\mathbf{c}_1 + \mathbf{c}_2) \cdot \mathbf{x}$	$= \frac{2 D \eta^3}{1 + \eta^2 (4 D^2 - 1)}$
x, x, x	$= b_2 \cdot b_0 \cdot \Omega \cdot \cos \Omega t + c_2 \cdot b_0 \cdot \sin \Omega t$ Amplitude:	
$u = U_0 \cdot \sin \Omega t$	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot \sqrt{\frac{1 + 4D^2\eta^2}{\left(1 - \eta^2\right)^2 + 4D^2\eta^2}}$	
	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot V_{2,3}$	

Amplification function

spring and damping force excitation: Amplification function V_{2,3}

Sound, sound pressure and sound levels Sound pressure waves in the medium of air with frequency components within the human hearing range from 20 to 20 000 Hz are described as **audible sound**. Sound at lower or higher frequencies is described as infrasound or ultrasound respectively.

Furthermore, the following terms are used depending on the medium transmitting the sound:

- airborne sound = vibrations in air and gases
- liquid-borne sound = vibrations in liquids
- structure-borne sound = vibrations in solid bodies

In air and other gases as well as in liquids, sound only propagates in the form of compression waves. The alternating pressure p(t) that is superposed on the static air pressure is described as **sound pressure**. The sound pressure is the most important measurement value in these media and is measured by means of microphones or pressure sensors.

For structure-borne sound, the most important measurement value is the vibration velocity v(t) or structure-borne sound speed vertical to the radiating surface of a sound generator.

In general, the acceleration a(t) is measured using piezoelectric quartz sensors and then converted to structure-borne sound speed:

```
Equation 18
```

a(t) = dv(t)/dt

For a frequency band with the centre frequency f, the speed is used as the RMS:

Equation 19

 $\overline{v}(f) = \overline{a}(f)/2 \cdot \pi \cdot f$

The speed is normally stated in relative terms as a speed level $L_{\rm v}$, using the reference value $v_0=5\cdot 10^{-8}~m/s:$

Equation 20

 $L_{v} = 10 \cdot \lg(\overline{v}/v_{0})^{2} = 20 \cdot \lg(\overline{v}/v_{0})$

in dB

The following table shows some values for the acoustic perception of the human ear.

Perception	Volume	Sound pressure	Sound power	Sound intensity	
	phon	N/m ²	W	W/m ²	
Auditory threshold ¹⁾	0 - 10	2 · 10 ^{-5 2)}	10 ⁻¹²	10 ⁻¹²	
Conversation	50 - 60	0,2	$\approx 10^{-3}$	$\approx 10^{-3}$	
Pain threshold	130	20	$\approx 10^3$	$\approx 10^3$	

 $^{1)}$ The lowest volume level that is perceptible by the human ear.

 $^{2)}$ Reference sound pressure: $p_0=2\cdot10^{-5}$ N/m², internationally defined reference value for the RMS of sound pressure (DIN ISO 226).

Sound level, noise situation and perception Some example values for the sound level in certain noise situations and the resulting levels of perception are as follows:

Sound level	Noise situation	Perception
dB(A)*		
0 0 - 10 10 - 20	Complete silence, start of the auditory range Auditory threshold Rustling of leaves	Calm
30 40 50	Whispered speech Quiet radio music Upper limit for mental work requiring concentration	Faint
50 – 70 75	Office work, people talking Start of a disruptive influence on the nervous system	Moderately loud
80 85	Heavy traffic, limit of hearing recovery Start of danger to hearing	Very loud
90 90 - 100	Truck driving noise Car horn	Extremely loud
110 110 - 120	Pneumatic drill Large forging hammer	Unbearable
130 140	Jet aircraft (100 m), pain threshold Rocket launch	Painful

¹⁾ In accordance with IEC 61672:2013.

Sound pressure level L_p with applied A-weighting characteristic.

Quantities and units The following table shows a selection of acoustic quantities.

Name		Quantity	Unit	Description
Speed of sound	Solid materials	$c_{L} = \sqrt{\frac{2 G (1 - \nu)}{\rho (1 - 2 \nu)}}$	m/s	Longitudinal waves in large bodies
		$c_T = \sqrt{G/\rho}$		Transversal waves in large bodies
		$c_D = \sqrt{E/\rho}$		Longitudinal waves in bars; steel: 5 000 m/s
	Liquids	$c = \sqrt{K/\rho}$		Water: 1485 m/s
	Gases	$c = \sqrt{\kappa \cdot R \cdot T}$		Air: $c_{air} = 331,3 \text{ m/s} + T(^{\circ}C) \cdot 0,606 \text{ (m/s)}/^{\circ}C$ $343 \text{ m/s} (at 1 \text{ bar, }+20 ^{\circ}C)$ $331 \text{ m/s} (at 1 \text{ bar, } 0 ^{\circ}C)$ Hydrogen: 1280 m/s (at 1 bar, 0 ^{\circ}C)
Sound part	icle velocity	$v = a_0 \cdot \omega$ $v = a_0 \cdot 2 \cdot \pi \cdot f$	m/s	Alternating speed of oscillating particles in the direction of vibration
Sound pressure		р	N/m ² µbar	Alternating pressure caused by sound vibration
Sound power		$P=A\cdotp\cdotv$	W	Sound energy that passes through a defined surface per unit of time
Sound intensity		$I = P/A = p^2/(c \cdot \rho)$	W/m ²	Sound power per unit of area perpendicular to the direction of propagation
Sound level	Sound pressure level	$L_{p} = 20 \cdot \lg (p/p_{0})$	dB(SPL) dB(A)	$p_0 = 2 \cdot 10^{-5} Pa$
	Sound intensity level	$L_{I} = 10 \cdot lg (I/I_{0})$	dB(SIL)	$I_0 = 10^{-12} W/m^2$
	Sound power level	$L_{\rm W} = 10 \cdot \lg ({\rm P/P_0})$	dB(SWL)	$P_0 = 10^{-12} W$
Loudness l	evel	$ \Lambda = 10 \cdot \lg (I/I_0) $ at 1000 Hz	phon	Frequency-dependent relation of the perceived loudness of a pure tone to its respective sound pressure level
Sound absorption coefficient		$ \begin{aligned} \alpha &= 1 - \left(\frac{l_r}{l_a} \right) \\ \text{Index:} \\ a &= \text{incident} \\ r &= \text{reflected} \end{aligned} $	1	Intensity measure of the conversion of sound energy into heat as a result of air friction. At 500 Hz: concrete: 0,01 glass: 0,03 slag wool: 0,36 to 0,8 (depending on the layer thickness)
Sound redu	uction index	$R = 10 \cdot \lg (l_1/l_2)$ Index: 1 = this side of the wall 2 = the other side of the wall	dB	Logarithmic measure of the sound reduction achieved by a wall; sheet steel, 1 mm: R = 29 dB
Acoustic ef	ficiency	$\eta = P_{acou}/P_{mech}$	1	Ratio of acoustic to mechanical power

Continuation of table, see Page 171.

Continuation of table, Quantities and units, from Page 170.

Legend	a ₀ Amplitude	m	A Area	m ²
	f Frequency	Hz	E Modulus of	Pa elasticity
	ρ Density	kg/m ³	G Modulus of	Pa frigidity
	к Isentropic e	exponent	P Power	W
	K Modulus of	Pa compression	R Gas consta	J∕(kg·K) nt
	ν Poisson's r	atio	T Absolute te	K mperature.

Normal equal-loudness-level contours

Figure 14 Isophones according to ISO 226

Source: ISO 226:2023

 $\begin{array}{l} L_p = \text{sound pressure level} \\ f = frequency \\ L_N = loudness level \\ of a pure tone \\ T_f = human absolute \\ threshold of hearing \\ (auditory threshold) \end{array}$

The normal equal-loudness-level contours (isophones) are measured for pure tones under free-field conditions in an anechoic chamber.

Hydraulics

Hydraulic transmissions	Hydraulic transmissions contain pumps, motors and control elements (hydraulic valves) interconnected in a circuit in which power is transmitted by means of circulating hydraulic fluid. The circuit can be of an open or closed design. The controller defines the motion and direction of motion, limits the load in the transmission and, where necessary, adjusts the transmission ratio in accordance with the operating conditions.
Hydraulic pumps	Hydraulic pumps are rotary displacement (rotary piston) or stroke displacement (axial piston) machines with a fixed or variable displacement volume.
	In practice, displacement principles are allocated to specific application areas. The permissible continuous operating pressure is defined by the type of displacement element and the resulting load on the drive mechanism. A further significant feature is the chamber design, which covers the chamber shape and the size of the stroke volume in comparison with the machine size. In the case of the cell cross-sections of rotary displacement machines, which are normally of a rectangular cross-section, it is more difficult to maintain the required gap tolerances. Since internal leakage losses occur as a function of pressure, the scope of application is restricted to low and medium-pressure systems. Cylindrical fits can be easily achieved. Axial piston machines are therefore required for use in the high and very high pressure range.
Rotary displacement machines	Rotary displacement machines feed the hydraulic fluid with uniform rotation into cells whose volume is cyclically varied by the design of the limiting walls or the penetration of a tooth. The rotary displacement machine also ensures that the inlet and pressure chambers are sealed from each other. An adjustable stroke volume is only realised in single-stroke vane-cell pumps.

Stroke displacement machines	Stroke displacement machines are characterised by the separation of the drive mechanism and the delivery chamber. The cyclical variation of the cell size is carried out by means of a linear piston. Adjustment of the stroke volume is possible by intervention in the drive mechanism geometry or the controller. Due to the internal flow reversal of the fluid, the machines require a slide or valve control mechanism between the displacement chamber and the flow paths.
Hydraulic motors	Hydraulic motors convert the fluid energy made available to them into mechanical work. Depending on their output drive motion, a distinction is drawn between torque motors, swivel motors with a limited rotation angle and thrust motors (cylinders). In contrast to hydraulic pumps, hydraulic motors have a constant stroke volume. Adjustable machines are only used in exceptional cases.
Torque motors	All of the design principles described for rotary displacement machines and slide-valve controlled axial piston machines are suitable for use as torque motors. They convert the hydraulic power $P_h = \dot{V} \cdot \Delta p$ (minus the leakage power loss $P_{v, v} = \dot{V}_v \cdot \Delta p$, the hydraulic power loss $P_{v, h} = \dot{V} \cdot \Delta p_h$ and the mechanical power loss $P_{v, r} = M_r \cdot \omega$) into the mechanical motor power $P_m = M \cdot \omega$.
Swivel motors	Swivel motors generate swivel motion either directly by swivelling a vane in the subdivided circular cylinder (vane motor with swivel angle of 300°) or by linear movement of a piston by means of a rack and pinion gear.
Thrust motors	In the case of thrust motors, a distinction is drawn between single action designs (plunger cylinders) and double action designs (differential cylinders). Differential cylinders can be used for thrust and pull operation by means of alternate piston loading.

Hydraulic pumps The following section presents the values, units and relationships for hydraulic pumps, as well as common hydraulic pumps and their normal operating values.

Values, units and The relationships for hydraulic pumps can also be applied analogously to the inverse energy transformation process in hydraulic motors.

Value	Unit	Name	Relationship, comments
М	Nm	Mechanical drive torque of the pump	Torque provided by the drive unit to the pump shaft
M _r	Nm	Frictional torque within the pump	Friction in the drive mechanism and between the displacement elements
M _{th}	Nm	Theoretical pump moment	$ \begin{aligned} M_{\text{th}} &= \Delta p \cdot V_{H} / (2 \cdot \pi) \\ &= \Delta p \cdot V_{0} \end{aligned} $
P _m	W	Mechanical drive power of the pump	$P_{m} = M \cdot \omega$ $P_{m} = P_{th} + P_{v, t} + P_{v, h}$
P _{th}	W	Displacement power in relation to Δp	$P_{th} = M_{th} \cdot \omega$
Pu	W	Displacement power	$\begin{split} P_{u} &= (M - M_{e}) \cdot \omega \\ \text{The displacement power is transferred to} \\ \text{the displacement volume flow and divided up into} \\ \text{the displacement power P}_{th} \text{ in relation to } \Delta p \text{ and} \\ \text{the hydraulic power loss P}_{v, h} \end{split}$
P _{v, h}	W	Hydraulic power loss	$P_{v,h}=\dot{V}_{th}{\cdot}\Deltap_{h}=M_{h}{\cdot}\omega$
P _{v, r}	W	Frictional power loss of the pump	$P_{v,r}=M_{r}\cdot\omega$
V _H	m ³	Stroke volume = displacement volume	The displacement volume is determined from the geometrical data for the pump
Ý	m³/s	Actual delivery rate	$ \begin{split} \dot{V} &= \dot{V}_{th} - \dot{V}_v \\ \text{The pressure differential } \Delta p \text{ causes a leakage} \\ \text{flow } \dot{v}_v \text{ through the gap that reduces} \\ \text{the displacement volume flow} \end{split} $
Ý _{th}	m³/s	Theoretical delivery rate (based on the assumption of complete filling of the stroke volume during intake)	$ \begin{split} \dot{V}_{th} &= n \cdot V_H = \omega \cdot V_0 \\ n &= speed \\ \omega &= 2 \cdot \pi \cdot n \\ V_0 &= V_H/(2 \cdot \pi) \text{ base volume} \end{split} $
η	-	Overall efficiency	$\begin{split} \eta &= \frac{P_h}{P_m} = 1 - \frac{\sum P_v}{P_m} \\ \eta &= \eta_{h,m} \cdot \eta_v \end{split}$
η _{h, m}	-	Mechanical-hydraulic efficiency	$\eta_{h, m} = \frac{P_{th}}{P_m} = 1 - \frac{P_{v, r} + P_{v, h}}{P_m}$
η_v	-	Volumetric efficiency	$\eta_v = \frac{P_h}{P_{th}} = 1 - \frac{P_{v,v}}{P_{th}} = 1 - \frac{\dot{V}_v}{\dot{V}_{th}}$

Rotary displacement machines The following table shows an overview of types of common rotary displacement machines and their normal operating values.

Displace- ment	Nam	e	Displacement volume	Pressure range	Speed	Favourable oil viscosity
element			cm ³ /rev	bar	1/min	$10^{-6}m^2/s$
Gear	Gear pump		0,4 1200	200	1500 3 000	40 80
	Screw pump		2 800	200	1000 5000	80 200
Vane	Vane pump	Single stroke	30 800	100	500 1500	30 50
		Multiple stroke	3 500	160 (200)	500 3 000	30 50
	Rotary piston pump		8 1000	160	500 1500	30 50

Source: Dubbel (with slight design modifications).

Stroke displacement The following table shows an overview of types of common stroke displacement machines and their normal operating values.

Displace- ment element	Name	Displacement volume cm ³ /rev	Pressure range bar	Speed 1/min	Favourable oil viscosity 10 ⁻⁶ m ² /s
Piston	In-line piston pump	800	400	1000 2 000	20 50
	Radial piston pump with internal piston support	0,4 15 000	630	1000 2 000	20 50
	Axial piston pump or swash plate pump	1,5 3 600	400	500 3 000	30 50
	Rear swash plate pump				
	Bent axis piston pump				

Source: Dubbel (with slight design modifications).

Hydrostatic stationary transmissions Hydrostatic stationary transmissions can be subdivided according to some of their characteristic features as follows:

Transmission type	Displacemen (fixed or adju stroke volum	t machines Istable Ie)	Speed transmission ratio i _G (constant or adjustable, dependent on load or	Open loop or closed loop control of speed transmission ratio		Torque trans- mission
	Pump	Motor	independent of load)	Open loop	Closed loop	ratio μ_{G}
l Figure 1, Page 178		\rightarrow	Constant, independent of load	Not possible		Constant
II Primary flow throttle transmission Figure 2, Page 178		$ \rightarrow $	i _G adjustable, dependent on load in open loop control, independent of load in closed loop control	*	*	-
III Secondary flow throttle transmission Figure 3, Page 178		\rightarrow	i _G adjustable, dependent on load in open loop control, independent of load in closed loop control	<u>, </u>	*	Constant
IV		+	Adjustable in steps, independent of load	Connection of a machine	-	-
V Figure 4, Page 178		\rightarrow	i _G adjustable, speed transmission ratio is independent of the load	ole, ismission ratio is ent of the load raulic motor ismission ratio is ratio transformed raulic motor ismission ratio is ratio transformed volume of one or both (VII) displacement machines		-
VI Figure 4, Page 178						-
VII Figure 4, Page 178		-				-

For corresponding diagrammatic examples, see Page 178.

The following diagrams show examples of the transmission types I to VII for hydrostatic stationary transmissions.

The following image shows an **open circuit**: the hydraulic pump and hydraulic motor are not adjustable.

The following image shows a **closed circuit**: the hydraulic pump is adjustable and reversible, the hydraulic motor is not adjustable.

Figure 4

Transmission type V to VII

Drive unit
 Operating unit
 Hydraulic pump
 Hydraulic motor

Hydraulic oil systems

The following tables give an overview of symbols and names in hydraulic oil systems. The hydraulic symbols correspond to DIN ISO 1219-1:2019 "Fluid power systems and components – Graphic symbols and circuit diagrams".

The associated diagram shows an example of a complete, hydraulic oil system. The idle position of the system is always shown.

2 Whipping 3 Lift 4 Push 5 Rotate

Symbol	Name and explanation
Hydraulic pump	
	Pump With constant displacement volume ① With one flow direction ② With two flow directions
	Pump With variable displacement volume ① With one flow direction ② With two flow directions

Continuation of table, see Page 180.

Symbol	Name and explanation
Hydraulic motor	
	Motor With constant displacement volume ① With one flow direction ② With two flow directions
	Motor With variable displacement volume ① With one flow direction ② With two flow directions
-)+	Swivel motor (with restricted swivel angle)
Hydraulic pump – hydraulic motor	
	Pump motor With constant displacement volume As pump in one flow direction As motor in the opposing direction
	Pump motor With constant displacement volume As pump or motor in one flow direction
	Pump motor With constant displacement volume As pump or motor in two flow directions
Compact hydraulic transmission	
+	Transmission For one direction of output rotation with adjustment and constant motor for one delivery direction
	Transmission

For two directions of output rotation with variable pump and variable motor for two delivery directions

Continuation of table, Hydraulic oil systems, from Page 179.

Continuation of table, see Page 181.

Symbol	Name and explanation
Hydraulic valves (gene	ral)
	The valve is represented by a square or rectangle
1 0 2	Number of fields = number of valve settings, where the neutral position is arranged on the right if there are two boxes
	In the case of valves with a constant functional transition between the switching positions, the boxes are framed by two lines above and below
	The ports, respectively inlet and outlet, are attached to the neutral position box
	Within the boxes, the lines and arrows indicate the direction of flow
	A connection between two paths within a valve is indicated by a dot. Where lines cross but a dot is not present, this indicates that the paths are not connected to each other
	Closed ports are indicated by perpendicular bars
	The respective positions of the paths and arrows (angled or straight) within the boxes correspond to the positions of the ports
	If a position is changed and the inlet or outlet remains connected to a port, the arrow is displaced relative to the ports

Continuation of table, Hydraulic oil systems, from Page 180.

Continuation of table, see Page 182.

Continuation of table, Hydraulic oil systems, from Page 181.

Symbol	Name and explanation
Hydraulic valve actuation	
The symbols for the actuation modes and auxiliary elements are arranged perpendicular to the ports and outside of the rectangle (for further actuation modes, see Actuation and drive modes, Page 187). The valves are drawn in the current-free starting position.	
rz III X w	4/2-way valve (valve with 4 ports and 2 switching positions) With magnetic coil actuation and spring return
	⁴ / ₃ -way value (valve with 4 ports and 3 switching positions) With manual actuation by pressing or pulling and spring contains at a particular participant.

centring at neutral position

Hydraulic directional control valves

The description as a way valve is preceded by the number of ports and the number of switching positions; e.g. way valve with three controlled ports and two switching positions: 3/2-way valve (vocalised: three stroke two way valve).

² / ₂ -way valve Locked in neutral position
² / ₂ -way valve With free flow in neutral position
³ / ₂ -way valve Flow shut off in neutral position
³ / ₃ -way valve With shut-off neutral position, forward and reverse settings
⁴ / ₂ -way valve With forward and reverse settings
⁴ / ₃ -way valve With recirculating neutral position, forward and reverse settings
⁴ / ₄ -way value As 4/3, but with floating position after forward setting
⁶ / ₃ -way valve In neutral position, 1 inlet free, 2 inlets locked

Continuation of table, see Page 183.

Symbol	Name and explanation
Hydraulic pressure val	ves
	Pressure valve (general) ① Single edge valve with closed neutral position ② Single edge valve with open neutral position ③ Double edge valve, three controlled ports
[W	Pressure relief valve Pressure limited at inlet by opening the outlet against a return force
	Pressure control valve Maintenance of constant outlet pressure ① Without outlet port = pressure regulating valve ② With outlet port = pressure reducing valve
	Pressure drop valve Reduction of outlet pressure by a fixed amount compared to the inlet pressure
	Proportional pressure valve Reduction of outlet pressure in a fixed ratio to the inlet pressure
	Sequence valve Opening of path to further devices upon reaching the inlet pressure defined by the spring force
	Proportional pressure relief valve Restriction of inlet pressure to a value proportional to the pilot pressure
Hydraulic flow control valves	
<u>``</u>	Choke Valve with integral, constant constriction; flow rate and pressure drop are dependent on viscosity
	Orifice Sharp-edged constriction, substantially independent

of viscosity and effective in both directions

Adjustable constriction, effective in both directions

Continuation of table, Hydraulic oil systems, from Page 182.

Continuation of table, see Page 184.

¥

Choke valve

Symbol	Name and explanation	
Hydraulic flow control	Hydraulic flow control valves	
	 2-way flow control valve 2-way flow limiting valve 2-way flow adjustment valve Flow control valve maintains constant outlet flow by automatic closure 	
	 3-way flow control valve 3-way flow limiting valve 3-way flow adjustment valve Flow control valve maintains constant outlet flow by automatic opening of outlet (bypass valve) 	
	Flow divider Valves for dividing or combining several outlet or inlet flows. Substantially independent of pressure	
Hydraulic shut-off valv	res	
	 Shut-off valves Shut-off of flow in one direction and release of flow in the opposing direction ① Check valve: shut-off if the outlet pressure is greater than the inlet pressure, ② Shut-off if the outlet pressure is greater than or equal to the inlet pressure (with spring) 	
	Check valve ① Shut-off can be deactivated ② Flow can be shut off	
	Delockable double check valve With 2 check valves for 2 separate flows, automatic locking of which is alternately deactivated by the inlet pressure	
	Choke check valve With flow in one direction and choke in the other direction	

Continuation of table, Hydraulic oil systems, from Page 183.

Continuation of table, see Page 185.

Symbol	Name and explanation
Hydraulic pipelines an	d accessories
	Working pipeline Pipeline and energy transfer
	Control pipeline, oil leakage pipeline, venting pipeline, flushing pipeline For transfer of control energy, for setting and control, for discharge of leaking fluids
	Flexible pipeline Pipeline being flexible in operation, rubber hose, corrugated tube etc.
1 2 0,5M 0,75M	Pipeline connection Rigid connection, for example welded, soldered or connected by screws (including fittings) ① Within a symbol ② Outside a symbol
	Pipeline crossover Crossover of pipelines that are not connected with each other
	Quick release coupling ① Connected without mechanically opened check valve ② Disconnected, with one check valve ③ Connected, with two check valves ④ Disconnected, with two check valves
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rotating connection Pipeline connection that can be rotated during operation, for example a pivot ① With one path ② With three paths
	Vent Without connection option
	Reservoir Open, connected to the atmosphere ① With pipe end above the fluid level ② With pipe end below the fluid level
	Hydraulic reservoir For storage of hydraulic energy

Continuation of table, Hydraulic oil systems, from Page 184.

Continuation of table, see Page 186.

Symbol	Name and explanation
Hydraulic pipelines an	d accessories
\rightarrow	Filter or mesh For separation of contaminant particles
\rightarrow	Heating system Arrows indicate the supply of heat
\rightarrow	Cooling system Arrows indicate the dissipation of heat
\bigcirc	Manometer
\bigcirc	Thermometer
- Z	Pressure switch Electromechanical, adjustable
	Shut-off valve
Actuation and drive modes	
	Manual actuation modes () General () By pressing () By pulling () By pressing and pulling

Continuation of table, Hydraulic oil systems, from Page 185.

By key By lever By pedal with detent Mechanical actuation modes By spring By sensing roller By roller lever

(5) By rotating

Continuation of table, see Page 187.

6

Symbol	Name and explanation		
Actuation and drive mo	Actuation and drive modes		
	 Electric actuation Magnetic coil, one winding, effective direction towards the adjustment element Magnetic coil, one winding, effective direction away from the adjustment element Two mutually acting windings Stepper motor 		
	Pressure actuation (direct) ① By application of pressure ② By withdrawal of pressure		
① ② ►►	Pressure actuation (indirect) ① By application of pressure on control line ② By withdrawal of pressure on control line		
	Combined actuation ① Magnetic coil and pilot directional valve ② Magnetic coil or pilot directional valve		
	 Shaft Pump drive shaft in one direction of rotation (right hand rotation from viewpoint of shaft end) In two directions of rotation With shaft coupling 		
	Detent ① 1 lockable engaged position ② 3 lockable engaged positions ③ 4 lockable engaged positions ④ No lockable engaged position		
►	Pressure source Hydraulic energy		
	Pressure source Pneumatic energy		
M	Electric motor with almost constant speed		
M	Heat engine		

Continuation of table, Hydraulic oil systems, from Page 186.

Pneumatics

Pneumatic systems

The following table gives an overview of symbols and names in pneumatic systems.

SSOT		
Compressor With constant displacement volume, only one flow direction		
Vacuum pump For removing gaseous media from a low pressure area		
Pressure converter Comprising two different pressure chambers x and y		
Pressure medium converter Changeover from one pressure medium to another while maintaining the same pressure		
Pneumatics – motor		
Pneumatic motor With constant displacement volume ① With one flow direction ② With two flow directions		
Swivel motor		
Pneumatic valve		
Quick ventilation valve Shut-off valve in which the outlet line is vented to the outside when the inlet line is in the vented stage (with noise damper in the outlet pipeline)		

The remaining symbols are identical to those used for hydraulic oil systems

Continuation of table, see Page 189.

Symbol	Name and explanation
Pneumatic pipelines a	nd accessories
-57	Noise damper For reduction of resulting noise
	Compressed air reservoir
	Flow measurement device (also for use with hydraulic systems) Volume flow measurement device
Maintenance unit	
	Water separator Separation and drainage of condensation water from the system ① Manually actuated ② Automatic drainage
	Filter With water separator ① Manually actuated ② Automatic drainage
	Vent Without connection option
\Rightarrow	Dryer For drying of air by means of chemicals
\rightarrow	Oiler For adding a small quantity of oil to the air flow
Actuations	
	Pressure actuation (direct) ① By application of pressure ② By withdrawal of pressure
 ② ···▷ ···▷ 	Pressure actuation (indirect) ① By application of pressure ② By withdrawal of pressure
	Combined actuation ① Electromagnet and directional valve ② Electromagnet or directional valve

Continuation of table, Pneumatic systems, from Page 188.

Mechatronics

Terms and definitions

Mechatronics The development and production of mechatronic products involves an integrated partnership between the disciplines of mechanics, hydraulics, pneumatics, electrical engineering and electronics, control technology and information technology.

While mechatronics was defined in its earliest days (approx. 1970) as simply the integration of mechanics and electronics, the term now has a wider scope:

"Mechatronics is a branch of engineering which seeks to enhance the functionality of technical systems by close integration of mechanical, electronic and data processing components." (Bosch. Automotive Handbook 1995).

A similar definition was issued by the IEEE/ASME in 1996 and was also used as a basis for VDI Guideline 2206 "Development of mechatronic and cyber-physical systems":

"Mechatronics is the synergetic integration of mechanical engineering with electronic and intelligent computer control in the design and manufacturing of industrial products and processes."

Source: VDI/VDE Guideline 2206:2021

	Mechatronics can therefore achieve synergies through the integration of mechanical engineering, electrical engineering and information technology, as well as other disciplines if necessary, leading to improvements in the functionality of technical systems. The spectrum of mechatronic products extends from simple implements through household appliances ("white goods, brown goods"), automotive engineering and medical technology to aviation and aerospace engineering.
Technical system	A technical system consists of subsystems or elements that are interconnected by relationships and segregated from the environment by a system boundary (enveloping surface), giving rise to input and output variables in the form of energy, material and information. For comparisons, refer to Figure 2, Page 192.
Technical process	A technical process converts energy, material and information in a technical system, whereby the temporal sequence is characterised by states.
Materials, energy and information	Raw products, substances, components, gases and liquids are examples of materials. Energy can be made available in a number of forms, including mechanical, thermal, electrical and chemical. Information can take the form of a signal, a measurement value, various data or a control pulse.

Mechatronic system

Mechatronic systems are technical systems which have the special feature, as illustrated in Figure 1, Page 190, of combining mechanical engineering, electrical engineering and information technology as well as other disciplines where applicable.

If the mechatronic system is regarded as a "black box", it can be represented as follows as a reference architecture:

The input and output values are material, energy and information flows. The technical component, the basic system (or even the technical process), represents the supporting basis system in practical terms and essentially comprises elements taken from mechanics, electrical engineering, hydraulics and pneumatics. It is controlled on the open loop or closed loop principle by means of the information processing component. The sensors convert the signals from the technical component into information elements for the information processing component and the actuators intervene by modifying the parameters of the technical component.

Depending on the complexity of the system, the following tasks can be undertaken in mechatronic systems:

- open loop control, closed loop control
- monitoring and error diagnosis
- coordination
- management

They thus cover the entire spectrum ranging from reactive to cognitive activities.

Cyber-physical system VDI Guideline 2206 defines the term cyber-physical system (CPS) as a "system based on a mechatronic core that is characterized by its networking with the Internet of Things and Services, which enables, for example, changes in behaviour or properties during operation". The basis is, therefore, a mechatronic system that can communicate beyond the system boundary. This intensified networking of technical systems and the connection to the Internet of Things opens up further potential in relation to the digitalisation of products, processes and associated services, but also comes with increased responsibility in terms of cyber security.

Sensors

Main task In the context of mechatronics, a sensor is defined as a device that records and provides information about the current properties of the basic system and the environment. A sensor thus records all characteristic, physical measurement values and usually converts these into proportional electric signals, in line with requirements, which are fed to the informationprocessing component.

> A non-electrical quantity is usually recorded at the sensor input, converted into intermediate quantities by transformers where appropriate (also repeatedly) and converted into the primary analog electrical quantity by a converter. Depending on the integration level of the sensor, the primary analog electrical quantity directly represents the output signal, or is subject to further processing by evaluation units and, where necessary, converted into a digital output signal by an analogto-digital converter.

The sensors must therefore be selected on the basis of:

- the physical parameter to be recorded
- the measuring range to be mapped
- the required accuracy
- any pre-processing required
- the required output signal

Working principles Established sensors are commonly based on three basic working principles established in metrological practice. Resistive sensors detect changes in electrical resistance, while the basis of inductive sensors is on measuring changes in magnetic resistance. By contrast, the function of capacitive sensors is based on measuring changes in electrical capacitance.

There are also other sensors which use optical, piezoelectric or pyroelectric effects, to cite just a few examples.

Examples The following table, which does not claim to be exhaustive, provides an overview of established sensors categorised according to their measurement value (input) and sensor output signal (output).

Measurement	Sensor output signal (output)							
value (input)	Electric resistance			Voltage	Current	Charge		
	Resistive R	Inductive L	Capacitive C	U	1	Q		
Elongation $\epsilon = \Delta l/l_0$	Strain gauge	-	-	-	Fibre-optic sensor	-		
Position: Length l Displacement s Angle φ	Potentiometer, magneto-resistive sensor, Gaussian field plate	Differential transformer, plunger-type displacement sensor	Capacitive displacement sensor	Hall sensor, optoelectronic light barrier sensor	Eddy current sensor	-		
Velocity v = ds/dt	Magneto-resistive rotational angle sensor	Inductive rotational angle sensor	-	Magnetic pole speed sensor	Opto- electronic speed sensor	Gyrometer/ piezo sensor		
Acceleration a = dv/dt	Seismic sensor: mass-damper-spring system, retransmission to displacement measurement: resistive, inductive, capacitive, optoelectronic, piezoresistive; Hall/Gaussian sensor technology or strain measurement (strain gauge)							
Force F Moment F · I	Piezoresistive sensor, strain gauge sensor	Magneto- elastic sensor	Force com- pensation sensor	$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Pressure p = force/area	Piezoresistive sensor, strain gauge sensor	Magneto- elastic sensor	Capacitive pressure sensor	Spring elements or strain gauges, retransmission to: displacement(s) measurement with $F = f(s)$, or elongation(e) measurement with $F = f(e)$		Piezo electric sensor		
Temperature T	NTC and PTC resistance	-	-	Thermocouple	Opto- electronic pyrometer	-		
Humidity f _{abs} · f _{rel}	Resistive hygrometer	-	Capacitor, hygrometer	-	-	-		

Source: Horst Czichos, Mechatronik, Grundlagen und Anwendungen technischer Systeme, 4. überarbeitete und erweiterte Auflage.

Stephan Rinderknecht, Rainer Nordmann, Herbert Birkhofer, Einführung in die Mechatronik für den Maschinenbau, 2. überarbeitete Auflage, Skripte im Shaker Verlag, Shaker Verlag, Aachen, 2018.

Information processing

Main task Information processing generally represents the link between sensor technology and actuator technology. The sensor signal is processed within a process computer and a control signal is output for the actuator. The process computer is a programmable, electronic hardware component that provides the entire system with a certain level of artificial intelligence. A distinction is made here between open loop control and closed loop control of the system. A human-machine interface is required in order to allow users to influence the mechatronic system during operation. In the cyber-physical system, an interface is also possible without human interaction.

Open loop control and Open loop control

closed loop control In open loop control, the control signal output to the actuator is directly influenced by the reference variable without feedback via sensors. Therefore, in open loop control, the output variable of the basic system is not checked against its desired reference variable. Inaccuracies in the mapping of system behaviour or the occurrence of external disturbances render open loop control imprecise.

Closed loop control

In closed loop control, the output variable of the basic system is returned via the sensors in a process known as feedback, creating a closed action flow. A nominal/actual comparison with the reference variable enables a corresponding continuous adjustment of the control variable. This allows a closed loop control system to compensate for unknown disturbances, parameter fluctuations and model uncertainties and ensure stable operation.

Actuators

Main task In the context of mechatronics, an actuator is defined as a device that specifically influences state variables in mechatronic systems. The actuator represents the link between information processing and the basic system to be influenced. The often digital, low-power control signal from information processing may first need to be converted into an analog signal.

Depending on the application, actuator technology can include several functional elements, but as a minimum the energy controller, see Figure 3:

Figure 3 Structure of an actuator

- Energy controller The actuator is activated by the low-power control variable via the energy controller. The higher energy required is provided by powerful energy stores, as determined by the control variable at the energy controller output. Examples of energy controllers include transistors, thyristors and valves. The energy provided by the energy store can be in hydraulic, pneumatic, electrical, mechanical or other form.
- Energy converter Depending on requirements, the energy provided by the energy controller will need to be converted into another form of energy by the energy converter. For example, electric motors convert electrical energy into mechanical rotational energy and hydraulic cylinders convert hydraulic energy into mechanical translational energy.
- Energy transformer The energy obtained from the energy converter can be further adapted to process-related requirements using energy transformers of the same type, thus allowing special requirements such as short travel ranges for large loads (so-called force actuators) and large travel ranges for small loads (so-called travel actuators) to be realised. Examples of mechanical converters include gearboxes, spindles and levers.

Examples The following table, which does not claim to be exhaustive, provides an overview of the established functional elements of actuators.

Working principle		Functional element			
Electromechanical	Electromagnetic	ElectromagnetReluctance motor			
	Electrodynamic	 Plunger coil Direct current motor EC motor Synchronous and asynchronous machine 			
Hydromechanical	Pneumatic	 Pneumatic cylinder Radial and axial piston motor Multi-disc motor 			
	Hydrostatic and hydrodynamic	 Hydrostatic motor Hydraulic cylinder Hydrodynamic motor, fluid motor Bent-axis motor In-line motor Vane motor Radial piston motor 			
Material-mechanical	Thermomechanical	 Shape memory alloy Bimetal Expansion element 			
	Electromechanical	 Piezo crystal Electroactive polymer Electrorheological fluid 			
	Magnetomechanical	 Ferromagnetic crystal Magnetic shape memory alloy Magnetorheological fluid 			
	Chemomechanical	 Fuel cell Oxygen pump Polymer gel Cross-linked polymers 			

Source: Horst Czichos, Mechatronik, Grundlagen und Anwendungen technischer Systeme, 4. überarbeitete und erweiterte Auflage. Stephan Rinderknecht, Rainer Nordmann, Herbert Birkhofer, Einführung

in die Mechatronik für den Maschinenbau, 2. überarbeitete Auflage, Skripte im Shaker Verlag, Shaker Verlag, Aachen, 2018.

Development process

The development of mechatronic and cyber-physical systems requires ways of thinking and working that are holistic and interdisciplinary.

Since the development methods and processes in the individual disciplines will demonstrate some similarities but will also show differences in decisive respects, it is vital to achieve good communication in the interdisciplinary team in order to ensure an effective method of working across the disciplines. A decisive role is played here by the issues of modelling and orientation to the functional concept.

In VDI Guideline 2206, a process model in a V shape is presented for the development of mechatronic and cyber-physical systems. It should be viewed as a framework that can be adapted to the respective corporate structure and describes the linking of interdisciplinary product development tasks in iterative terms during the design stage for the purpose of ensuring product properties.

Figure 4 V model for development of mechatronic and cvber-physical systems

Source: VDI/VDE Guideline 2206:2021
In relation to the quality of the resulting products, it has become clear that there are three definitive aspects: the integration of the technical disciplines, a holistic approach and correct modelling (as a basis for simulation of the complete system).

It is important to prepare a process landscape in which mechatronic engineers can apply the most suitable method. Employees in such a team must be able to "see the big picture" and see themselves as system architects who can, as necessary, draw on the competences of the technical specialists.

Structure The V model is divided into three strands, which must be processed of the V model simultaneously and are closely linked.

Middle strand of the V model The middle strand represents the system development stage complete with the iterative and partially overlapping core tasks:

- Elicit requirements.
- Develop system architecture.
- Implement system elements.
- Consolidate and verify subsystems to form the overall system.
- Validate and hand over the system.

Inner strand describes the requirements development stage comprising requirements elicitation and requirements management. The purpose of requirements management is to analyse, structure, assign and integrate changes in requirements across the entire development project.

Outer strand The outer strand is concerned with modelling and analysis of the system of the V model and various subsystems. The objective of modelling is to create mathematical and descriptive substitution models of the system, subsystems or system elements, which describe the structure and behaviour with sufficient accuracy.

> It is important that powerful software tools are provided that can be used, by means of simulations, to secure the necessary characteristics in the various stages of development.

Modelling and simulation

Main task The objective of modelling is to analyse and/or predict the actual system in question and/or the behaviour of the system in question, and thereby obtain important information as early as the design phase regarding the optimal design of the system or replacement of components.

Modelling involves converting an actual (existing or intended) system into an abstract image (model). As an abstraction, a model is always a simplified representation of an actual system. The principle "as simple as possible, as complex as necessary" should be applied here. In other words, whilst it is necessary to map all relevant physical effects in order to adequately predict actual system behaviour, the numerical effort needed to generate the simulation must remain manageable.

Theoretical modelling In theoretical modelling, the system is described using mathematically formulated physical laws – usually in the form of ordinary and partial differential equations.

The most frequently required laws include:

- Newton's axioms
- Leverage laws
- Fundamental laws of thermal dynamics
- Ohm's law
- Kirchhoff's laws

The theoretical modelling process is divided into three stages. First, the actual system must be converted into a limited, simplified substitute system. The static and dynamic behaviour of the system is then described using the differential equations. Once the differential equations have been concurrently solved, the actual behaviour of the system can be simulated.

Block diagrams The causal relationships between a system and its environment or between subsystems are best described using functional diagrams. In practice, this interlinking of differential equations is commonly represented in symbolic form as a block diagram, in which the characteristic transfer function between the input variables (cause) and output variables (effect) is represented as a simple block for each of the elements in question. The individual blocks are linked to each other via their input and output variables. Block diagrams are a widely used form of representation in the field of engineering and encountered in many numerical solution tools such as MATLAB[®]/SIMULINK[®] and LabVIEW™.

Symbols for standard operators

The following table shows the symbolic representation for standard operators, which can be used to build differential equations and thus system elements in the block diagram.

Operation	Mathematical formulation	Symbolic representation
Addition and subtraction (also with more than two outputs)	y = x - z	x + y - z
Multiplication (multiplier/gain) with constant expression a	y = x · a	x a y
Multiplication of two variables	$y = x \cdot z$	x y
Integration over time	y = x	× J y
Any functions (with constant expressions or multiple inputs)	y = f(x)	f(x)

 Equivalent circuit
 The following tables show common equivalent circuit diagrams

 diagrams for system
 for the various system components from the fields of mechanics, electrical engineering, hydraulics and pneumatics:

Component	Physical/mathematical value	Mathematical formulation Symbolic representation					
Mechanical system components							
Spring	Elasticity (store)	$F_{k} = k \cdot x = k \cdot \int \dot{x} \cdot dt$					
			× f × k rk				
Torsion spring		$M_{k} = \hat{k} \cdot \phi = \hat{k} \cdot \int \dot{\phi} \cdot dt$	k Mk				
			$\dot{\phi}$				
Damper	Resistance (drain)	$F_d = d \cdot \dot{x}$					
			d F _d				
Rotational damper		$M_{d} = \hat{d} \cdot \dot{\phi}$	Md				
			¢ d M _d				
Mass	Inertia (store)	$F_m = m \cdot \ddot{x} = m \cdot \frac{d\dot{x}}{dt}$	Fm Fm				
			\dot{x} d \ddot{x} m F_m				
Rotating mass		$M_m = \theta \cdot \ddot{\phi} = \theta \cdot \frac{d\dot{\phi}}{dt} \int \dot{\phi} \cdot dt$	φ θ θ				
			$\dot{\phi}$ $\frac{d}{dt}$ $\ddot{\phi}$ Θ M_m				

Continuation of table, see Page 203.

Continuation of table, Equivalent circuit diagrams for system components, from Page 202.

Component	Physical/mathematical value	Mathematical formulation	Symbolic representation
Electrical system co	omponents		
Condenser	Capacitance (store)	$U_C = \frac{1}{C} \cdot \int I \cdot dt = \frac{1}{C} \cdot Q$	$I = \int_{-\infty}^{C} \frac{1}{1/C} U_{C}$
Ohmic resistance	Resistance (drain)	$U_R = R \cdot I = R \cdot \dot{Q}$	
Coil	Inductance (store)	$U_L = L \cdot \dot{I} = L \cdot \ddot{Q}$	$I = \begin{bmatrix} d & I \\ dt \end{bmatrix} = \begin{bmatrix} U_L \\ U_L \end{bmatrix}$
Hydraulic and pneu	imatic system component	S	
Reservoir	Capacitance (store)	$\begin{split} & \text{Weight accumulator:} \\ & (p_1 - p_2) \cdot A = \rho \cdot g \cdot A \cdot h \\ & \dot{V} = (\dot{V}_2 - \dot{V}_1) = A \cdot \dot{h} \\ & \Delta \dot{p} = \dot{p}_1 - \dot{p}_2 \\ & = \frac{\rho \cdot g}{A} \cdot \dot{V} = \frac{1}{C_{hyd}} \cdot \dot{V} \\ & \text{General pressure accumulator:} \\ & \Delta p = p_1 - p_2 \\ & = \frac{1}{C_{hyd}} \cdot \int \dot{V} \cdot dt \\ & C_{hyd} = \frac{dV}{d\Delta p} \end{split}$	$h(t) = \int \frac{V}{1/C} \frac{A}{Ap}$

Continuation of table, see Page 204.

Continuation of table, Equivalent circuit diagrams for system components, from Page 203.

Component	Physical/mathematical value	Mathematical formulation	Symbolic representation	
Hydraulic and pneu	matic system component	s		
Choke, orifice	Resistance (drain)	Linear case: $\begin{split} \Delta p &= p_1 - p_2 = \alpha_l \cdot \dot{V} \\ \text{Nonlinear case:} \\ \Delta p &= p_1 - p_2 = \alpha_{nl} \cdot \dot{V}^n \end{split}$	\dot{v} p_1 p_2 \dot{v} \dot{v} a_1 Δp	
Fluid mass	Inertia (store)	$\begin{split} & (p_1 - p_2) \cdot A = \rho \cdot l \cdot A \cdot \ddot{x} \\ & = \rho \cdot l \cdot \ddot{V} \\ & \Delta p = p_1 - p_2 \\ & = \frac{\rho \cdot l}{A} \cdot \ddot{V} = L_{hyd} \cdot \ddot{V} \end{split}$	$\dot{V} \qquad P_1 \qquad P_2 \qquad \dot{V} \qquad \dot{V} \qquad A, \rho, \ddot{x}$ $\dot{V} \qquad \dot{d} \qquad \dot{V} \qquad \rho / A \qquad \rho $	
Controller				
l element of the controller	Integral coefficient k _l	$u_1 = k_1 \cdot \int e \cdot dt$		
P element of the controller	Amplification factor kp	$u_P = k_P \cdot e$	e kp up P element	
D element of the controller	Differential coefficient k _D	$u_D = k_D \cdot \hat{e}$	e d k_D u_D	

In addition to the function-oriented schematic representation, the preceding tables illustrate the translation of the mathematical description into block diagrams using basic operations for important system components, see table Symbols for standard operators, Page 201. All other elements, such as sources (for example batteries) and converters (for example transmissions) etc. can also be represented accordingly.

Motivation and indicators for use

The motives and reasons for the implementation of mechatronic systems can be as follows:

- functional transfer, in other words the distribution at optimum cost of the main function to various disciplines
- the implementation of new functions
- increasing the precision of motion under real time conditions
- robustness against mechanical malfunctions
- capability of adaptation to changes in environmental conditions
- autodiagnosis, autocorrection
- improvement of operational security
- increasing autonomy
- automatic learning
- compensation of mechanical deficiencies

In spite of the advantages stated, the blind use of components from different technical disciplines can lead to a more complicated problem and a more expensive solution. Mechatronic solutions should be applied in such a way that they give an increased benefit.

Examples of mechatronic systems

ABS and ESP The anti-lock braking system (ABS) system ensures, through the interaction of mechanics, electronics and software, that a vehicle retains steerability and driveability under braking. Locking of the wheels is prevented.

Like anti-lock braking systems, electronic stability programs (ESP) are practically standard equipment in modern cars. They ensure stable and thus safe driving around bends, since braking is applied in a targeted manner to the individual wheels independently of the driver order to counteract swerving of the vehicle.

The vehicle is the complete system and also acts as the supporting technical component (basic system), see Figure 5.

The current state of the vehicle is detected by means of sensors measuring the wheel speed, yaw rate, lateral acceleration, steering wheel angle and by the pre-pressure sensor. An electronic control device (here, information technology component) processes these data and, if necessary, sends control signals to the hydraulic unit (actuator).

Magnet bearings These bearings are suitable for extremely high speeds (in applications such as machine tool spindles) where conventional bearing arrangements are susceptible to failure. The rotor is held without contact and without friction in a magnetic field. The bearing forces are held in equilibrium by means of magnetic forces and these are controlled so that the rotor floats in a stable manner.

Functional expansion of rolling bearings

Mechatronics in rolling bearings

Rolling bearings are essentially designed to facilitate rotations about an axis or displacements along an axis with little friction, but prevent certain other movements through the support of forces and moments. In the course of development, bearing components have been designed such that they can take on additional mechanical functions such as guidance, support or mounting, such as in the case of flanged bearings.

The integration of sensors and actuators offers the possibility of expanding even further the functional scope of bearings.

Sensors detect operating parameters and bearing conditions and forward this information, normally in the form of electrical signals.

The values detected include:

- rotational angle (rotary bearings)
- position (linear bearings)
- velocity and rotational speed
- axial and radial force
- torque and tilting moment
- temperature
- Iubricant condition
- vibrations, running noise
- 📕 wear, damage

In combination with a rolling bearing, actuators can fulfil the following functions:

- driving
- braking, locking
- setting of operating clearance or rigidity
- damping of vibrations
- relubrication

Inversely, generators can also convert mechanical energy into electrical energy. In many cases, the motion of the bearing can act as a source here.

In order that the mechatronic bearing can fulfil its task, the sensor and actuator functions must be matched to each other.

The operating parameters detected by the sensor system are electronically processed in a closed loop control system according to their programming and the actuator is initiated. Nowadays, closed loop control is mostly achieved by means of microcontrollers; some of these are so small that they can even be integrated in the bearing.

If the microprocessor is controlling a motor in a rolling bearing, this can induce acceleration or deceleration in the direction of motion of the bearing and influence the system state in the required direction via the closed control loop (such as speed stabilisation).

The objective is to create a mechatronic unit in which the components are optimally matched to each other, in order to make best possible use of the advantages of mechanical and electronic components.

In contrast to solutions comprising individual components that have to be installed retrospectively, mechatronic rolling bearings offer the advantages of integrated solutions, such as reduced design space, easier assembly and a smaller number of components.

Rolling bearings are generally fitted with sensors in order to fulfil one of the following three objectives:

Detection of actual operating conditions such as loads, shocks and temperature.

The detected data are used in order to achieve well-grounded bearing design for identical or similar applications. Such measurement initiatives often prevent unexpected bearing damage or failures. Once the load conditions have been clarified, the design can be adapted. Further measurements are normally no longer required in regular operation.

Continuous condition monitoring of the rolling bearing and other adjacent machine elements such as gears. The sensors generally record several measurement values relevant to bearings. Automatic signal assessment is often carried out by means of defined algorithms. If necessary, an optical or acoustic alarm is triggered for the operating personnel.

Online measurement of operating data for the open or closed loop control of the system in which the bearing is fitted. Applications range from electric motors (commutation) through machine tools (load determination), vehicles such as cars (ABS, ESP, steer-by-wire), e-bikes (pedal torque measurement) or railways (braking control) to stationary production plant (overload protection), robots (collaboration, safety functions, force-/torquecontrolled processes) and household appliances.

Sensors in and on the bearing

Matching of measurement values and measurement purpose

Depending on the purpose of the measurement, different physical measurement values are recorded for the bearing. The sensors required for this measurement are selected accordingly. The table shows the relationship between the measurement values and purpose.

Measurement value	Purpose		
	Design	Condition monitoring	Closed loop control of complete system
Position, velocity	-		
Axial and radial force		-	
Torque and tilting moment		-	
Temperature			
Lubricant condition	-		-
Vibration, noise	-		-
Wear, damage	-	•	-

Examples of measurement methods for some selected values that play a role in rolling bearing technology are given below.

Measurement of position and velocity

Recording of the rotational speed is, due to its use in robotics and in anti-lock braking systems in cars, the most widely used form of integrated sensor technology for rolling bearings. In general, it is used to determine the position and velocity of a moving bearing component relative to a stationary component.

A fundamental distinction is made between:

- Absolute positional measurement, where the relative position between fixed reference points is present as a datum at any point in time, in particular immediately after switching on.
- Incremental measurement, where primary information is generated on the basis of changes in position and direction.

If an index is added, an incremental measurement system can be developed further in the direction of an absolute measurement system. This requires appropriate signal processing, especially recognition of the direction of motion. An orientation movement is always required after switching on, however, in order to arrive at the index point.

The typical design of a rotary bearing comprises an encoder, the scale, applied to the rotating bearing ring. Its position is measured by one or more sensors connected to the stationary ring. The signal created is transmitted by cable. Such bearings are often greater in width than the original types but match these in terms of the other mounting dimensions and performance data, see Figure 6.

In the case of linear bearings, the encoder is normally applied to the profiled guideway as a linear scale. The sensor is mounted on the carriage. Encoders are used to measure the position and velocity of the carriage on the guideway, see Figure 7.

Figure 6

Rotary rolling bearing with measurement system

> Sensor housing
> Magnet
> Hall IC (sensor)
> Pulse emitter ring (encoder)

Figure 7

Linear rolling element guidance system with measurement system

> Guideway with integrated linear scale
> Covering strip
> Adaptive measuring head
> Carriage

Working principles

Sensors may use different working principles. For rolling bearings, the sensors used so far are optical, inductive, capacitive and magnetic types. By far the largest number of applications so far have been based on magnetic methods.

Measurement of force and torque between the shaft or gear are equally as suitable as the bearing. For measuring force, however, the bearing is often the only machine element that can be used.

Directly measurable forces

Where forces act and are presented with resistance by a rolling bearing, several effects occur that can in principle be used for measurement:

- An increase in the pressures at internal and external contact points.
- Stresses and thereby elongations at the location of particular volume elements and surface contours.
- Changes in distance between certain reference points. The bearing undergoes deflection.

Torque determination

None of these effects occur, however, if a torque is generated along the rotational axis provided by a rotary bearing. Direct torque measurement within a bearing is therefore difficult.

In arrangements with two bearings at both ends of a shaft subjected to torsion by a torque, the difference in the bearing rotational angle can be used as a measurement value, see Figure 8. Gears ultimately convert the torque into reaction forces with the result that, in transmissions, the torque can be determined indirectly from the bearing forces.

 ϕ = torsion angle M_t = torsional moment

The method of measuring torque using the torsion angle, as described above, cannot be implemented in practice for shafts with higher torsional stiffness. Instead, various magnetic measuring methods can be used to measure the torque, which directly or indirectly record the shear stresses in a twisted component. The use of strain gauges or sensor coatings on, for example, a shaft is also conceivable.

Selection of the measurement method

For selection of the measurement method, one of the decisive questions is whether it must be possible to measure the forces while the bearing is stationary. If this is not necessary, signals can be used that vary in a periodic manner with the passage of rolling elements and whose amplitude can be used as an indicator of the force. Long term drift and temperature influence have a much less disruptive effect than in the other case.

Measurement of pressures by means of sensor coatings

At the points where forces are transmitted, namely shaft/inner ring, inner ring/rolling element, rolling element/outer ring and outer ring/ housing, there is normally no space for sensors unless these are very thin. Piezoelectric and piezoresistive coating systems fulfil this requirement. The former generate electric charges if there is a change in the active force and therefore their thickness; the latter develop a different electric resistance as a function of the specific load. Both methods are suitable for dynamic measurements while piezoresistive systems are preferable for static measurements.

Condition monitoring In addition to classical condition monitoring, bearings can also be subjected to structural health monitoring. Sensors for non-destructive inspection are integrated in the bearing.

One of these inspection methods is eddy current testing of the raceways, see Figure 9. The probes are located in one or more cage pockets and can check for cracks or spalling during rotation of the inner ring and outer ring. Supply of energy and transmission of signals is carried out wirelessly.

Figure 9 Inductive damage

monitoring of rolling bearings

Inductive sensor
 Antenna on cage
 Antenna on outer ring

Actuator bearings There is a wide range of operating principles that can be integrated in the rolling bearing or at least mounted on the bearing in a space-saving form.

Those with a purely mechanical function include:

- one way clutch for locking of one direction of rotation
- brake disc on the rotating ring and brake calliper on the static ring
- passive damping elements for reducing vibration

The use of active elements with a thermal or electrical activation function offers further possibilities for equipping bearings with additional functions. Some have already been realised, while others are still at the development stage.

The following table shows the relationship between the actuator principle and the possible applications.

Actuator principle	Application				
	Drive	Braking Locking	Positioning	Damping	Relubri- cation
Electric motor			-	-	
Magnetic coil	-	•	•	-	•
Piezo element	•	•	•	•	•
Magnetostriction	•	•	•	•	•
Rheological liquid	-	•	-	•	-
Shape memory alloy	-	•	•	•	•
Dielectric polymer	•	•	•	-	•
Thermal expansion	-	•	-	-	-

Driving and braking

Where an electric motor is required to generate a particular torque, the rotor and stator must be of an appropriate size. If the bearing required for guidance of the shaft is significantly smaller than the electric motor, integration is not advisable.

Integration of electric motors

For the integration of electric motors, bearings with a relatively large diameter are more suitable if this is determined not as a result of high loads but of other design requirements. Such bearings are, despite their size, not particularly large in section or heavy.

They are used, for example, in conveying equipment and computer tomographs, see Figure 10. If the generation of torque is distributed to the circumference by means of a ring motor, solutions can be realised that give space savings and run quietly. Segmented motors, in which the winding is not required to span the entire circumference of the bearing, are also possible.

Figure 10 Bearing for computer tomographs with integrated ring motor

Positioning and damping

These two functions are similar in that only small actuation distances of between 1 μ m and 100 μ m are necessary, but in some cases considerable forces are involved. The setting of bearing parameters such as rigidity, preload or internal clearance does not require actuators that operate particularly quickly. In many cases, it is only necessary to compensate for temperature influences. In active vibration reduction, the actuator frequency response must however be matched to the excitation spectrum present.

Change in preload

Spindle bearings are characterised by particularly precise shaft guidance. In order to ensure zero backlash, they are preloaded. If the thermal influence is excessively high, there is a danger that the preload will become excessively large, which will thus reduce the bearing operating life.

With an axially active piezo element, the preload can be held constant independently of the temperature, see Figure 11.

Figure 11 Spindle bearing arrangement, preload

arrangement, preload by means of piezo tensioning elements

 Piezo tensioning element

Energy supply and data transmission

Sensors, like actuators, normally require electrical energy in order to function. The rolling bearing can be used here as a source of mechanical energy.

Energy must be supplied, depending on the application, to the following: sensors

- signal processing and evaluation units
- cableless data transmitters
- electronic controllers
- actuators

Data transmission is more difficult to achieve than energy supply. Cables can be used for both but cause problems in mounting in many cases and are easily damaged. Plugs on the bearing are expensive if they are required to fulfil the normal requirements for mechanical stability and leak tightness. There are arguments in favour of wireless data transmission.

Development potential of mechatronic rolling bearings

Although rolling bearings have a history stretching back 120 years, they are still a long way off reaching the end point in their evolution. One branch of this development, the integration of electronic components, has been sketched out in this chapter.

The solutions presented here reflect the current status of development in mechatronic bearings. There is still room for optimisation and possibly also completely new ideas. The rolling bearing will continue to evolve and move from being a component to (also hopefully) a reliable and robust mechatronic system.

Condition monitoring of machines with rolling bearings by means of vibration analysis

Vibration analysis Vibration condition monitoring began with the observations of machine operators, who used the "human sensory system", i.e. hearing, touch and sight, to detect abnormalities and assess these to a certain extent. With the advancement of measurement technology came the ability to not only identify conspicuous machine vibrations subjectively, but also more comprehensively and objectively, leading in turn to continuous improvements in the quality of the knowledge gained.

Today, vibration-based machine monitoring (vibration measurement and analysis) is an established and reliable tool for detecting and identifying the root causes of machine problems at an early stage, and thus supports the timely planning of necessary maintenance measures.

Vibration measurement and vibration analysis can be used to detect fault conditions such as unbalance and misalignment as well as rolling bearing damage and gear tooth defects. Depending on the application, advance warning times of several months can be achieved, see Figure 12.

Figure 12 Damage curve and detectability as a function of time

Vibrations are induced by occurring forces. Every machine in operation will have a certain basic vibration that reflects its mechanical condition. If the forces acting in the machine change, for example as a result of unbalance, damaged machine components or electrical issues, the vibration behaviour of the machine will also change. If the vibration level increases while the operating parameters remain unchanged, this can indicate a deterioration in the condition of the machine.

With vibration analysis, various machine faults and damage types can be identified on the basis of characteristic vibration patterns in the measurement signals. Early detection of the changed condition may indeed render further operation of the machine permissible in the first instance. This method of condition monitoring offers considerable costsaving potential provided that the service life of the plant and machinery can be almost fully utilised and their availability can be increased.

In most cases, attention is focussed on the measurement and analysis of structure-borne sound. This involves recording vibrations at the surface of a solid body, for example a machine housing, which are transmitted within the body from their point of origin to the measurement location. Alternatively, measurement methods which involve observing the vibration motion of an entire body, such as a shaft, can also be used.

Vibrations are measured using vibration sensors, which usually measure accelerations, and are broken down into piezoelectric sensors, which detect vibrations in a frequency range of up to 20 kHz, and semiconductor sensors (also known as MEMS sensors), which have a measuring range below 10 kHz but are considerably cheaper.

In the recording of measurement data, a distinction is made between online and offline measuring systems. With online measuring systems, the sensors, which are already intelligent in some cases, are permanently attached to the machine and data recording takes place continuously. With offline measuring systems (usually in the form of hand-held measuring devices) that are used for temporary measurements, the sensors are usually installed on the machines on a temporary basis using magnets.

Time domain and frequency domain

The objective of vibration-based machine monitoring is to identify the cause of a machinery problem.

In order to do so, the emphasis must always be on gaining as much information as possible from the measurement data. Vibration signals can be analysed using the time domain or frequency domain. Based on the same measurement, they are two different display formats that provide the information.

When a vibration signal from the time domain is transferred to the frequency domain, the result is a frequency spectrum, or spectrum for short. For the vibration signal in the time domain, the measurement quantity is plotted against the time axis, whereas for the spectrum, it is plotted against the frequency axis, see Figure 13.

Time and frequency representation of a sine wave signal

Time domain
 Frequency domain

t = time $T_1 = period$ f = frequency $f_1 = frequency of the$ sine wave vibration

Depending on the manufacturer and measuring system, analysis software not only provides different forms of representation but also various functionalities that assist the user in the evaluation. These comprise simple analysis tools such as various cursor types and zoom functions, extending through to mathematical functions. Through the use of these media, the causes or sources of vibration patterns can be precisely identified.

Amplitude modulation and demodulation (envelope signal) Amplitude-modulated signals are a frequent occurrence in the vibration monitoring of machines, particularly in the monitoring of gearboxes and rolling bearings. These signals are characterised by the fact that their amplitude values regularly increase and decrease.

In the monitoring of machinery, amplitude modulation is very important where shock-type excitations are present, for example in the case of rolling bearing damage, impacting or gearbox damage. In these cases, the carrier frequency is a system natural frequency. It is modulated by the frequency of the impacts occurring. In general, the carrier frequency is not of interest, which is why demodulation is used to separate the carrier signal from the useful signal (impact frequencies).

The variants of demodulation used for this purpose by the various measuring device manufacturers all use the shock-type excitation in the case of damage and extract this signal component from the overall signal. The resulting signal is also known as the envelope signal. In contrast, velocity or acceleration signals that are not processed in this form are also called raw signals. In order to obtain the envelope signal, the filters are set such that natural frequencies in the mechanical structure that are excited by impacts are enveloped and filtered out, see Figure 14. In the spectrum, this makes it possible to see only the repeat frequency of the impacts with multiples. This repeat frequency of the impacts is evaluated in envelope signal analysis.

Figure 14

Envelope signal in detail

Time domain
 Frequency domain

 High pass filter
 Rectifier
 Low pass filter

```
A = measurement
quantity
t = time
f = frequency
```


Bearing damage patterns and calculation of frequencies The envelope signal analysis is usually used for bearing damage analysis which shows typical forms of bearing damage very clearly. Although advanced bearing damage may also be visible in the acceleration spectrum, this form of analysis is often very difficult.

The following figures show a theoretical envelope signal spectrum and a measured envelope signal spectrum, respectively, for an instance of bearing damage.

If the raceway of the outer ring is damaged, the envelope signal spectrum will show the ball pass frequency of the outer race (BPFO) with its harmonics.

Figure 15

Outer ring damage (envelope spectrum)

Theoretical vibration pattern
 Measured signal

a = acceleration f = frequency BPFO = ball pass frequency outer race

In the event of damage to the inner ring, the envelope signal spectrum will show the ball pass frequency of the inner race (BPFI) with its harmonics and with sidebands spaced at the rotational frequency of the rotating bearing ring.

Theoretical vibration pattern
 Measured signal

a = acceleration f = frequency f_n = rotational frequency BPFI = ball pass frequency inner race

In a case of rolling bearing damage, the envelope signal spectrum will show the double ball spin frequency (2 \times BSF) with its harmonics and with sidebands spaced at the fundamental train frequency.

Theoretical vibration pattern Measured signal

a = acceleration f = frequency BSF = ball spin frequency FTF = fundamental train frequency

To enable the allocation of the patterns described above to the installed bearing types, the overrolling frequencies can be calculated using the following equations. Alternatively, the frequencies can be found on the web pages operated by bearing manufacturers, such as on the Schaeffler **medias** platform: *https://medias.schaeffler.de*.

Typical frequencies The frequency components that form the typical damage patterns in the vibration signals by repeated overrolling of a defective location correspond to the kinematic frequencies of the particular bearing that are the product of its geometry.

For the individual damage frequencies, it is common practice to use designations and abbreviations such as:

- ball pass frequency outer race: f_o or BPFO
- ball pass frequency inner race: f_i or BPFI
- ball spin frequency: f_w or BSF
- fundamental train frequency: f_c or FTF

The kinematic frequencies can be calculated using the following equations. The following applies to the ball pass frequency outer race:

Equation 1

$$\mathsf{BPFO} = \mathsf{f}_{\mathsf{o}} = \frac{1}{2} \cdot \mathsf{f}_{\mathsf{n}} \cdot z \cdot \left[1 - \frac{\mathsf{D}_{\mathsf{w}}}{\mathsf{D}_{\mathsf{pw}}} \cdot \cos \alpha \right]$$

The following applies to the ball pass frequency inner race:

Equation 2

$$BPFI = f_i = \frac{1}{2} \cdot f_n \cdot z \cdot \left[1 + \frac{D_w}{D_{pw}} \cdot \cos \alpha \right]$$

Equation 3

The following applies to the ball spin frequency:

$$\mathsf{BSF} = \mathsf{f}_{\mathsf{w}} = \frac{1}{2} \cdot \mathsf{f}_{\mathsf{n}} \cdot \frac{\mathsf{D}_{\mathsf{p}\mathsf{w}}}{\mathsf{D}_{\mathsf{w}}} \cdot \left[1 - \left(\frac{\mathsf{D}_{\mathsf{w}}}{\mathsf{D}_{\mathsf{p}\mathsf{w}}} \cdot \cos \alpha \right)^2 \right]$$

Further information relating to the monitoring of gearboxes, for example, can be found in the Schaeffler Condition Monitoring Handbook. Support is also available from the Schaeffler Condition Monitoring Service department.

	Strength of materials
	Terms, values and definitions
Strength theory	The strength theory provides us with the basis for calculating the mechanical stress and dimensioning technical designs.
	 The following two questions are answered here: distribution of the inner forces on the cross-sectional surface of a stressed machine part
	the changes in shape that are caused by these cross-sectional values
	The answer to the first question gives the mechanical stress that is acting on the design. The answer to the second question provides information about the elastic deformations of a machine part which are associated with the load, such as changes in length or deflections for example.
Stress in area elements	The external forces and moments acting on a body are balanced by corresponding reaction forces inside the body. If a homogeneous mass distribution is assumed, the occurring inner reaction forces are distributed over a large area. The force density (quotient of internal force and effective area) prevailing in every area element is the stress . It mostly changes its size and direction from one point to another.
	To describe the stress state in a cross section, the stresses are split: normal stress σ = components perpendicular to the cross-sectional plane
	shear stresses τ = two components in the cross-sectional plane
	If a cross-sectional plane is placed in such a way that both shear stresses become zero, then the normal stress reaches an extreme value, which is referred to as the principal stress .
Deformation	Stresses are always linked with deformations. A distinction is made between two kinds of deformation: elastic deformations plastic deformations

Elastic deformation Elastic deformations disappear again once the imposed external load has been removed. They often follow Hooke's Law.

Changes in the length of a line element per unit of length are described as elongations. Length changes are caused by **normal stresses**.

According to Hooke's Law, elongations are proportional to the stresses accompanying them:

Equation 1

 $\sigma = F \cdot \epsilon$

 $\varepsilon = elongations$

Here, the proportionality constant is the material parameter modulus of elasticity E.

Shear stresses result in angle changes. The change in an angle that was originally a right angle is, relative to this, described as torsional shear strain or shear γ .

Torsional shear strain (dislocation) is proportional to the shear stress:

Equation 2

 $\tau = G \cdot \gamma$ $\gamma =$ torsional shear strains (dislocation)

Here, the proportionality constant is the material parameter shear modulus of rigidity G.

The following relationship exists between the two material parameters:

Equation 3

 $G = \frac{E}{2(1+\nu)} \qquad \qquad \nu = \text{Poisson's ratio}$

Plastic deformation If the external forces on a component and thus the inner stresses exceed a certain limit that is intrinsic to the material, either plastic deformations occur, which remain after removal of the external load or the component breaks. The theory of yield, strain hardening and fracture applies.

> As a rule, only the elastic range of the material is utilised in the design of components. For this reason, we will only be considering the elastic behaviour of materials here and will be ignoring plastic deformation.

Values and units	The following table shows a selection of values and units associated
	with the strength of materials.

Value	Unit	Designation	Comments
x, y, z	mm	Cartesian coordinates	Right-handed coordinate system
u, v, w	mm	Deformation in x, y, z direction	
а	mm	Distance, lever arm, major elliptical semi-axis	In contrast to the SI system,
b	mm	Width, minor elliptical semi-axis	the basic unit metre (m) is not used in mechanical engineering
d, D	mm	Diameter	but the derived unit
r, R	mm	Radius	millimetre (mm) instead.
f	mm	Deflection, sagging	
h	mm	Height	
l	mm	Length	1 mm = 10 ⁻³ m
А	mm ²	Area, cross-sectional area	$1 \text{ mm}^2 = 10^{-6} \text{ m}^2$
E	N/mm ²	Modulus of elasticity	$E = \sigma/\epsilon$
F	Ν	Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$
F _G	Ν	Weight	$F_G = m \cdot g$
g	mm/s ²	Gravitational acceleration	g = 9,806 65 m/s ²
G	N/mm ²	Shear modulus	$G=\tau/\gamma$
Н	mm ³	First moment of area	$H_y = \int z d A$
la	mm ⁴	Axial second moment of area	$I_y = \int z^2 dA$
Ι _p	mm ⁴	Polar second moment of area	$I_p = \int r^2 dA$
It	mm ⁴	Torsional area moment	-
m	kg	Mass	SI base unit
Mb	N·mm	Bending moment	Cross-sectional value
Mt	N·mm	Torsional moment	Cross-sectional value
F _N , N	Ν	Normal force	Cross-sectional value
р	N/mm ²	Pressure, Hertzian pressure	-
Q	Ν	Transverse force	Cross-sectional value

Continuation of table, see Page 227.

Value	Unit	Designation	Comments
R _e	N/mm ²	Yield point	see material tables
R _m	N/mm ²	Tensile strength, breaking strength	
R _{p0,2}	N/mm ²	0,2 proof stress	
Т	К	Temperature	SI base unit
Wa	mm ³	Axial section modulus	W _x , W _y , W _z
Wp	mm ³	Polar section modulus	$W_p = I_p/R$ (circle)
Wt	mm ³	Torsional section modulus	-
Wi	N·mm	Internal deformation work	of the internal stresses
W _ä	N·mm	External deformation work	of the forces, moments
α	1/K	Coefficient of linear thermal expansion	$\Delta l = \alpha \cdot l \cdot \Delta T$
$\boldsymbol{\alpha}_k$	1	Stress concentration factor, notch concentration factor	-
β	1/K	Coefficient of cubical thermal expansion	$\beta = 3 \alpha$
β _k	1	Fatigue notch factor	-
γ	1	(Torsional) shear strain	$\gamma=\tau/G$
e	1	Elongation	$\epsilon = \Delta l/l$
ϵ_q	1	Transverse elongation	$\epsilon_q = \Delta d/d = -\nu \epsilon$
ε _m	1	Elongation at fracture	-
Θ	rad/mm	Twist	$\Theta = \phi/l$
ν	1	Poisson's ratio	ν = 0,3 (for most metallic materials)
			Further designations for ν : 1/m, $\nu_{\rm E}$
ρ	kg/mm ³	Density, mass density	-
σ	N/mm ²	Normal stress (tensile stress, compressive stress)	$\sigma = F_N / A$
σ_{W}	N/mm ²	Fatigue strength under reversed stresses	see Smith diagram
σ_{Sch}	N/mm ²	Fatigue strength under pulsating stresses	
σ_{A}	N/mm ²	Amplitude strength	
$\sigma_{\rm D}$	N/mm ²	Fatigue limit (general)	
τ	N/mm ²	Shear stress, torsional shear stress	-
φ	rad	Angle, torsional angle	-

Continuation of table, Values and units, from Page 226.

Material The following table lists a number of important material characteristics. **characteristics** For additional or detailed values, refer to the Engineering materials chapter of this Pocket Guide.

Material	Modulus of elasticity ¹⁾ E	Poisson's ratio ν	$\begin{array}{l} \text{Coefficient} \\ \text{of linear} \\ \text{expansion} \ \alpha \end{array}$	Density ρ	Tensile strength ²⁾ R _m
	$kN/mm^2 = GPa$		10 ⁻⁶ /K	kg/dm ³	N/mm ² = MPa
Metals					
Aluminium	72,2	0,34	23,9	2,7	40 160
Aluminium alloys	59 78	0,330,34	18,5 24,0	2,6 2,9	300 700
Brass	78123	0,35	17,5 19,1	8,3 8,7	140 780
Brass (60% Cu)	100	0,36	18	8,5	200 740
Bronze	108	0,35	16,8 18,8	7,2 8,9	300 320
Cast iron	6481	0,240,29	9 12	7,1 7,4	140 490
Copper	125	0,35	16,86	8,93	200 230
Gold	79	0,42	14,2	19,3	130 300
Iron	206	0,28	11,7	7,86	300
Lead	16	0,44	29,1	11,34	10 20
Magnesium	44	0,33	26,0	1,74	150 200
Nickel	167	0,31	13,3	8,86	370 800
Nickel alloys	158213	0,31	11 14	7,8 9,2	540 1275
Platinum	170	0,22	9,0	21,5	220 380
Silver	80	0,38	19,7	10,5	180 350
Steel, alloyed	186216	0,2 0,3	9 19	7,8 7,86	500 1 500
Steel, unalloyed	210	0,3	12	7,85	300 700
X5CrNi18-10	190	0,27	16	7,9	500 700
100Cr6, hardened	208	0,30	12	7,85	2 000 2 400
Tin	55	0,33	21,4	7,29	15 30
Titanium	105	0,33	8,35	4,5	300 740
Zinc	94	0,25	29	7,14	100 150

Continuation of table, see Page 229.

1) The following relationship applies between the modulus of elasticity E and the shear modulus G of the materials: Е G

$$=\frac{1}{2(1+\nu)}$$

 $^{2)}$ Detailed values for the tensile strength R_m and the yield point R_e of materials can be found in the relevant DIN standards and in the Engineering materials chapter of this Pocket Guide.

Material	Modulus of elasticity ¹⁾ E	Poisson's ratio ν	$\begin{array}{l} \text{Coefficient} \\ \text{of linear} \\ \text{expansion} \alpha \end{array}$	Density ρ	Tensile strength ²⁾ R _m			
	$kN/mm^2 = GPa$		10 ⁻⁶ /K	kg/dm ³	N/mm ² = MPa			
Non-metallic materials (Non-metallic materials (inorganic)							
Brick	10 40	0,20 0,35	8 10	1,7 1,9	-			
Concrete	22 39	0,15 0,22	5,4 14,2	2,0 2,8	10 40			
Construction glass	62 86	0,25	9	2,4 2,7	30 90			
Glass (general)	39 98	0,10 0,28	3,5 5,5	2,2 6,3	30 90			
Granite	50 60	0,13 0,26	3 8	2,6 2,8	10 20			
Marble	60 90	0,25 0,30	5 16	1,8 2,7	-			
Porcelain	60 90	-	3 6,5	2,2 2,5	15 40			
Quartz glass	62 76	0,17 0,25	0,5 0,6	2,21	30 90			
Non-metallic materials (organic)							
Araldite	3,2	0,33	50 70	-	-			
Plexiglas [®] (PMMA)	2,6 3,2	0,35	70 100	1,18	40 70			
Polyamide (Nylon [®])	1,3 1,7	-	70 100	1,01 1,14	40 80			
Polyethylene (HDPE)	0,15 1,6	-	150 200	0,91 0,97	25 30			
Polyvinyl chloride	1 3	-	70 100	1,2 1,7	45 60			

Continuation of table, Material characteristics, from Page 228.

¹⁾ The following relationship applies between the modulus of elasticity E and the shear modulus G of the materials: $G = \frac{E}{1}$

$$\mathbf{b} = \frac{1}{2(1+\nu)}$$

 $^{2)}$ Detailed values for the tensile strength $R_{\rm m}$ and the yield point $R_{\rm e}$ of materials can be found in the relevant DIN standards and in the Engineering materials chapter of this Pocket Guide.

Load types

Load types

es The most important load types, complete with occurring stresses and associated deformations, are presented below.

Continuation of table, see Page 231.

1) Depending on sign of F_x.

Load type	Stress	Deformation
Shear loading (actual)	Shear stress distribution	Deflection of the beam (only as the result of shear stress)
$Q_{z} = F_{z}$	$\begin{split} \tau(z) &= \frac{Q_z H_y(z)}{I_y b(z)} \\ \text{with static moment} \\ H_y(z) &= \int_z^{e_z^2} z b(z) dz \\ \tau_{max} &= \frac{Q_z H_y(z=0)}{I_y(z=0)} \end{split}$	$\begin{split} w(x) &= k \frac{Q_z}{G \cdot A} \cdot x < \frac{\tau_{max}}{G} \cdot x \\ w(l) &= k \frac{Q_z}{G \cdot A} \cdot l \\ k &= cross-sectional factor \end{split}$
Direct shear loading	Average shear stress	Shearing occurs when
Ta A y x y z Fz	$\tau_a = \frac{F_z}{A}$	the material's shear strength is exceeded
Bending without transverse force	Bending stress	Curvature
$f_{M_{by}}$ f_{Z} f_{ρ} e_{2} $f_{M_{by}}$	$\sigma(z) = -\frac{M_{by}}{l_y} z$ Maximum value $\sigma_{max} = \frac{M_{by}}{l_y} e_{max} = \frac{M_{by}}{W_y}$	$\begin{split} k &= \frac{1}{\rho} = \frac{M_{by}}{EI_y} \\ \rho &= \text{curvature radius} \\ \text{Differential equation} \\ \text{of the elastic curve} \\ w^{\prime\prime}(x) &= -\frac{M_{by}}{EI_z} \end{split}$
$\begin{array}{l} M_{by} = const. \\ l_y = const. \\ e_1 = e_{max} \\ l_y = axial second moment of area \\ about the y axis \end{array}$		- 'y

Continuation of table, Load types, from Page 230.

Continuation of table, see Page 232.

Load type	Stress	Deformation
Bending (general)	Bending stress Distribution	Differential equation of the elastic curve
$\begin{array}{c} A(x) & F_z \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{split} \sigma_{b}\left(x,z\right) &= -\frac{M_{by}\left(x\right)}{l_{y}\left(x\right)}z\\ \text{Maximum value}\\ \sigma_{b_{max}}\left(x\right) &= \frac{M_{by}\left(x\right)}{W_{y}\left(x\right)} \end{split}$	$w^{\prime\prime}(x) = \frac{M_{by}(x)}{EI_{y}(x)}$
Torsion of circular solid cross sections $T_{p} = polar second moment of area$	Torsional stress Distribution $\tau(r) = \frac{M_t}{l_p} r$ Maximum value $\tau_{max} = \frac{M_t}{l_p} \cdot \frac{D}{2} = \frac{M_t}{W_p}$	Twist $\vartheta = \frac{\varphi}{l} = \frac{M_t}{GI_p}$ Angle of twist $\varphi = \frac{M_t l}{GI_p}$
Torsion of circular hollow cross sections (tubes)	Torsional stress Maximum value $\tau_{max} = \frac{M_{t}}{W_{p}}$ $W_{p} = \frac{I_{p} (D) - I_{p} (d)}{D/2}$	Angle of twist $\varphi = \frac{M_{t} l}{G l_{p}}$ $l_{p} = l_{p}(D) - l_{p}(d)$

Continuation of table, Load types, from Page 231.

Continuation of table, see Page 233.

Load type	Stress	Deformation
Torsion of thin-walled, closed hollow cross sections (Bredt's formulas) $\delta(s) \qquad \tau(s)$ $s \qquad formulas$ M_t $A_m \qquad \delta_{min}$	$\begin{split} & \text{Shear stress} \\ & \text{Distribution over circumference} \\ & \tau(s) = \frac{M_t}{2A_m\delta(s)} \\ & \text{Maximum value} \\ & \tau_{max} = \frac{M_t}{W_t} = \frac{M_t}{2A_m,\delta_{min}} \end{split}$	Twist $\vartheta = \frac{M_t}{G \cdot l_t} = \frac{M_t}{G} \frac{\oint \frac{ds}{\delta(s)}}{\oint \frac{ds}{A_m^2}}$ $l_t = \frac{4A_m^2}{\oint \frac{ds}{\delta(s)}}$
Torsion of narrow rectangular	Shear stress	Twist
z Mt A V Tmax	Distribution $\tau = \frac{2M_t}{l_t} y$ Maximum value $\tau_{max} = \frac{M_t}{W_t} = \frac{2M_t}{l_t} \frac{b}{2} = \frac{3M_t}{b^2 h}$	$\vartheta = \frac{M_t}{G \cdot l_t} = \frac{M_t}{G} \frac{3}{b^3 h}$ $l_t = \frac{b^3 h}{3}$
Heating of a bar	No stresses	Length change
	Elongation occurs without stresses.	$\begin{array}{l} \Delta l = l \cdot \alpha \cdot \Delta T \\ \alpha = coefficient of linear thermal \\ expansion \\ \Delta T = temperature change \end{array}$
Heating of a bar,	Thermal stress	No deformation
	$ \begin{aligned} \sigma_{\Delta T} &= -E \cdot \alpha \cdot \Delta T \\ \alpha &= \text{coefficient of linear thermal} \\ \text{expansion} \\ \Delta T &= \text{temperature change} \end{aligned} $	An increase in length is not possible on account of the clamping operation and must be absorbed by compression in the bar.

Continuation of table, Load types, from Page 232.

Continuation of table, see Page 234.

Load type	Stress		Deformation
Thin-walled tube under internal pressure p_i d_m d_m D_{p_i} d_m d	Tangential stress $\sigma_{t} = \frac{p_{i} d_{m}}{2 s}$ Axial stress $\sigma_{a} = \frac{p_{i} d_{m}}{4 \cdot s}$ where $d_{m} = \frac{D+d}{2}$ $s = \frac{D-d}{2}$	(Barlow's formula) (Barlow's formula)	Diameter change $\Delta d_{m} = \frac{d_{m} \sigma_{t}}{E}$ Length change $\Delta l = \frac{l \sigma_{a}}{E}$
Thick-walled tube	Tangential stress		Radial displacement
under internal pressure $p_1^{(1)}$	$\sigma_t = p_i \frac{\left(r_a / r\right)^2 + 1}{\left(r_a / r_i\right)^2 - 1}$		$u(r) = \frac{p_{i}}{E} \frac{\left[(1-\nu) Q^{2} r + (1+\nu) r_{i}^{2} / r \right]}{1-Q^{2}}$
	Radial stress		Diameter change
	$\sigma_r = -p_i \frac{\left(r_a / r\right)^2 - 1}{\left(r_a / r_i\right)^2 - 1}$	L 1	$\Delta d_a = \frac{p_i d_a}{E} \frac{2Q^2}{1-Q^2}$
	Axial stress ²⁾		$\Delta d_{i} = \frac{p_{i} d_{i}}{\Gamma} \left[\frac{1+Q^{2}}{1-Q^{2}} + \nu \right]$
Ratio:	$\sigma_a = p_i \frac{1}{\left(r_a / r_i\right)^2 - 1}$		c [1-Q ²]
$Q = \frac{r_i}{r_a} = \frac{d_i}{d_a}$			

Continuation of table, Load types, from Page 233.

Continuation of table, see Page 235.

 $^{1)}$ In the presence of p_i and $p_a,$ the relationships for the stresses and deformations can be superimposed. The results of FEM calculation may deviate by up to 10% from the results determined using these equations.

²⁾ System with axially impeded expansion.
Load type	Stress	Deformation
Thick-walled tube under external pressure p ₂ ¹⁾	Tangential stress	Radial displacement
r a	$\sigma_{t} = -p_{a} \frac{\left(r_{a}/r_{i}\right)^{2} + \left(r_{a}/r\right)^{2}}{\left(r_{a}/r_{i}\right)^{2} - 1}$	$u(r) = -\frac{p_{a}}{E} \frac{\left[(1-\nu)r + (1+\nu)r_{i}^{2}/r\right]}{(1-Q^{2})}$
Pa	Radial stress	Diameter change
r _a	$\sigma_{r} = -p_{a} \frac{\left(r_{a}/r_{i}\right)^{2} - \left(r_{a}/r\right)^{2}}{\left(r_{a}/r_{i}\right)^{2} - 1}$	$\Delta d_{a} = -\frac{p_{a} d_{a}}{E} \left[\frac{1+Q^{2}}{1-Q^{2}} - \nu\right]$
A A A A A A A A A A A A A A A A A A A	Axial stress ²⁾	$\Delta d_i = -\frac{p_a d_i}{E} \frac{2}{1-Q^2}$
$r_i \leq r \leq r_a$	$\sigma_{a}=-p_{a}\frac{\left(r_{a}/r_{i}\right)^{2}}{\left(r_{a}/r_{i}\right)^{2}-1}$	
Solid shaft	Tangential stress	Radial displacement
under external pressure p _a	$\sigma_t = -p_a = \text{const.}$ Radial stress	$u(r) = -\frac{p_a r}{E} (1 - \nu)$
	$\sigma_t = -p_a = const.$	Diameter change
Pa σ _r	Axial stress ²⁾ $\sigma_a = -p_a = const.$	$\Delta d_{a} = -\frac{p_{a} d_{a}}{E} (1 - \nu)$
Ta ot		v = Poisson's ratio
$0 \leq r \leq r_a$		

Continuation of table, Load types, from Page 234.

²⁾ System with axially impeded expansion.

 $[\]label{eq:product} \stackrel{(1)}{=} \mbox{In the presence of p_l and p_a, the relationships for the stresses and deformations can be superimposed. The results of FEM calculation may deviate by up to 10% from the results determined using these equations.$

Buckling of slender bars

A buckling load represents a special case of compressive loading, as occurs, for example, with long spindles, pin supports of slip-on gears, frame members and in other similar cases. Slender bars, when subjected to a compressive load, move out of the unbent (unstable) equilibrium state into an adjacent bent (stable) state when a critical compressive stress is reached.

With the aid of compressive stress:

Equation 4

 $\sigma_{d} = \frac{F}{A}$

this gives the following for the buckling stress (in the Euler range for Euler buckling case 2, see Figure 1):

Equation 5

$$\sigma_{K} = \frac{F_{K}}{A} = \frac{\pi^{2} \cdot E \cdot I_{y}}{A \cdot l^{2}} \qquad \qquad I_{y} = I_{min}$$

Buckling in the elastic (Euler) range

If we consider the deformed equilibrium state of the bar shown (see Figure 1), the differential equation for buckling around the major cross-sectional axis y (with I_y as the smallest second moment of area), in the case of small deflections w(x), is:

$$\begin{split} & E \cdot I_y \cdot w''(x) = -M_b\left(x\right) = -F \cdot w\left(x\right) \\ & w''(x) + \alpha^2 \cdot w\left(x\right) = 0 \qquad \qquad \text{where } \alpha = \sqrt{\frac{F}{E \cdot I_y}} \end{split}$$

The solution to this differential equation is:

Equation 7

$$w(x) = c_1 \cdot \sin(\alpha \cdot x) + c_2 \cdot \cos(\alpha \cdot x)$$

From the marginal conditions for the bar shown:

Equation 8

$$w(x = 0) = 0$$
 and $w(x = l) = 0$

it follows that $c_2 = 0$ and $sin(\alpha \cdot l) = 0$ (eigenvalue equation) with the eigenvalues:

Equation 9

$$\alpha_{\rm K} = \frac{\mathbf{n} \cdot \boldsymbol{\pi}}{\mathbf{l}} \qquad \qquad \mathbf{n} = 1, 2, 3...$$

This gives the buckling load:

Equation 10

$$F_{K} = \alpha_{K}^{2} \cdot E \cdot I_{y} = n^{2} \cdot \pi^{2} \cdot E \cdot I_{y} / l^{2}$$

and the smallest buckling load:

Equation 11

$$F_{\rm K} = \frac{\pi^2 \cdot E \cdot I_{\rm y}}{l^2} \qquad \qquad n = 1$$

Appropriate eigenvalues are produced for other bearing arrangement cases which, however, can all be ascribed to Euler's buckling load with the reduced buckling length $l_{K}.$

The following diagram shows the four buckling cases for slender bars

Euler's four buckling cases Figure 2 Euler's buckling cases

(1) Case 1: $l_{K} = 2 l$ (2) Case 2: $l_{K} = l$ (3) Case 3: $l_{K} = 0,7 l$ (4) Case 4: $l_{K} = 0,5 l$

With the radius of gyration:

$$i_y = \sqrt{I_y/A}$$

and the slenderness ratio:

Equation 13

Equation 12

$$\lambda = l_{K} / i_{y} = l_{K} / \sqrt{\left(l_{y} / A \right)}$$

the following is given for the buckling stress:

Equation 14

$$\sigma_{K} = F_{K} / A = \pi^{2} \cdot E / \lambda^{2}$$

These relationships for F_K and σ_K apply only in the linear, elastic material range, i.e. as long as the following applies:

Equation 15

σ

$$_{K} = \pi^{2} \cdot E / \lambda^{2} < R_{p}$$
 or $\lambda > \sqrt{\pi^{2} \cdot E / R_{p}}$

The transition from the elastic to the inelastic (plastic) range lies at the limit slenderness:

Equation 16

$$\lambda_0 = \sqrt{\pi^2 \cdot E / R_p}$$

In this case, R_p is the proportional limit of the material.

Buckling in the inelastic (plastic) range Equation 17 For smaller slenderness ratios than the limit slenderness, Euler's hyperbola is replaced by Tetmajer's line (see Figure 3, Page 239), which has the following form:

 $\sigma_{K} = a - b \cdot \lambda$

The values for limit slenderness λ_0 and for a and b are presented in the following table for a number of materials.

Material	Old designation	E N/mm ²	λ ₀	a	b
S235JR	St 37	2,1 · 10 ⁵	104	310	1,14
E295, E335	St 50, St 60	2,1 · 10 ⁵	89	335	0,62
5% Ni steel		2,1 · 10 ⁵	86	470	2,30
Flake graphite cast iron		1,0 · 10 ⁵	80	$\sigma_{K} = 776 - 12 \cdot \lambda$	+ 0,053 · λ ^{2 1)}
Softwood		1,0 · 10 ⁴	100	29,3	0,194

¹⁾ No longer a line, rather Engesser's hyperbola.

Tetmajer's line runs from the intersection with Euler's hyperbola to the intersection with the yield point $R_{\rm e}$ of the material used.

In the example "Buckling stress diagram for material S235", we arrive at the following for the yield point R_{e} :

Equation 18

 $R_{o} = 235 \text{ N/mm}^2$

and for the proportional limit R_n:

Equation 19

 $R_{n} = 0.8 \cdot R_{e} = 188 \text{ N/mm}^{2}$

Fracture forms

Uniaxial and multi-axial stress states

5 The mechanism of fracture forms for the uniaxial stress state is presented below.

The most important types of failures under mechanical loading are:

Type of failure	Crucial strength characteristic
Start of yield	Yield point, 0,2 proof stress
Cleavage fracture	Breaking strength
Fatigue fracture	Fatigue strength for present dynamic load case

External load	Brittle materials ¹⁾		Tough materials	
	Maximum normal stress	Cleavage fracture	Maximum shear stress	Shear or torsional shear deformation
Tension F	$\sigma_{max} = \frac{F}{A}$		$\tau_{max} = \frac{\sigma_{max}}{2}$	
Compression -F	$\sigma_{max} = -\frac{F}{A}$	Cleavage fracture not possible	$\tau_{max} = \frac{\sigma_{max}}{2}$	
Bending Mb Mb	$\sigma_{max} = \frac{M_{b}}{W_{a}}$		$\tau_{max} = \frac{\sigma_{max}}{2}$	
Torsion Mt	$\sigma_{max} = 2 \tau_{max}$		$\tau_{max} = \frac{M_t}{W_p}$	
Applicable fracture hypothesis	Normal stress hypoth	esis	Shear stress hypothe distortion energy hyp	sis, othesis

The following fracture forms can be described for the uniaxial stress state:

 $^{1)}$ In accordance with the FKM guideline, materials with an elongation at fracture of < 8–12% are regarded as brittle.

Strength hypotheses The following important strength hypotheses can be formulated for the multi-axial stress state:

Failure by		Cleavage fracture	Deformation, ductile fracture	
Strength hypothesis		Normal stress hypothesis (NSH)	Shear stress hypothesis (SSH)	Distortion energy hypothesis (DEH)
Stress state		Equivalent stress $\sigma_{\rm v}$		
$\sigma_1, \sigma_2, \sigma_3 \\ \sigma_1 \ge \sigma_2 \ge \sigma_3$	3-axial	σ_1	$\sigma_1 - \sigma_3 = 2 \tau_{max}$	$\frac{1}{\sqrt{2}} \cdot \sqrt{\frac{\left(\sigma_1 - \sigma_2\right)^2}{+ \left(\sigma_2 - \sigma_3\right)^2}} \\ + \left(\sigma_3 - \sigma_1\right)^2}$
$\sigma_1, \sigma_2, \sigma_3 = 0$		σ_1	$\sigma_1 = 2 \tau_{max}$	$\sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$
$\sigma_1, \sigma_3, \sigma_2 = 0$		σ_1	$\sigma_1 - \sigma_3 = 2 \tau_{max}$	$\sqrt{\sigma_1^2 + \sigma_3^2 - \sigma_1 \sigma_3}$
σ_x, σ_y, τ	2-axial	$\begin{split} & \frac{1}{2} \Big(\sigma_{\chi} + \sigma_{\gamma} \Big) \\ & + \frac{1}{2} \cdot \sqrt{ \Big(\sigma_{\chi} - \sigma_{\gamma} \Big)^2 + 4\tau^2 } \end{split}$	$ \sqrt{\left(\sigma_{x} - \sigma_{y}\right)^{2} + 4\tau^{2}} $ 1) $ \frac{1}{2}\left(\sigma_{x} + \sigma_{y}\right) $ $ + \frac{1}{2} \cdot \sqrt{\left(\sigma_{x} - \sigma_{y}\right)^{2} + 4\tau^{2}} $ 2)	$\sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2}$
$\sigma_x, \tau, \sigma_y = 0^{3}$		$\frac{1}{2}\sigma_x + \frac{1}{2}\sqrt{{\sigma_x}^2 + 4\tau^2}$	$\sqrt{\sigma_{\chi}^{2}+4\tau^{2}}$	$\sqrt{\sigma_x^2 + 3\tau^2}$

1) The following applies:

$$\sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4\tau^{2}} > \sigma_{x}+\sigma_{y}$$

²⁾ The following applies:

$$\sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4\tau^{2}}<\sigma_{x}+\sigma_{y}$$

3) Bending and torsion:

Application of the distortion energy hypothesis (DEH) has proven itself in cases of superimposed bending and torsion. For dynamic loads (for example, alternating bending load with superimposed torsion load), the correction factor α₀ must be taken into account:

$$\sigma_{v} = \sqrt{\sigma_{x}^{2} + 3 \cdot (\alpha_{0} \cdot \tau)^{2}}$$

In the case of alternating bending and static torsion: $\alpha_0 = 0,7^{4)}$ In the case of alternating bending and alternating torsion: $\alpha_0 = 1,0^{4)}$ In the case of static bending and alternating torsion: $\alpha_0 = 1,5^{4)}$

⁴⁾ Approximation values only valid for unnotched components made from general structural steel.

Area moments and section moduli

Axial area moments Axial 2nd moments of area and section moduli are calculated using: and section moduli

and section moduli		
Rectangle	$I_{y} = \frac{bh^{3}}{12} = A\frac{h^{2}}{12}$ $I_{z} = \frac{hb^{3}}{12} = A\frac{b^{2}}{12}$	$W_y = \frac{bh^2}{6} = A\frac{h}{6}$ $W_z = \frac{hb^2}{6} = A\frac{b}{6}$
Circle $d = 2r$	$I_y = I_z = \frac{\pi d^4}{64} = \frac{\pi r^4}{4} = \frac{A r^2}{4}$	$W_y = W_z = \frac{\pi d^3}{32} = \frac{\pi r^3}{4} = \frac{Ar}{4}$
Semicircle $4r \qquad z \qquad y \qquad d = 2r \qquad y$	$I_{y} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^{4} = \frac{I_{y}}{e} = 0,1907 \cdot r^{3}$ $I_{z} = \frac{\pi r^{4}}{8} = \frac{Ar^{2}}{4}$	$W_{y} = 0.0198 r^{4}$ $e = r - \frac{4 r}{3 \pi}$ $W_{z} = \frac{\pi r^{3}}{8} = \frac{A r}{4}$
Sector of a circle	$I_{y} = r^{4} \left[\frac{2\alpha + \sin 2\alpha}{8} - \frac{2(1 - \cos 2\alpha)}{9\alpha} \right]$ $I_{z} = \frac{r^{4}}{8} (2\alpha - \sin 2\alpha)$	$W_{y} = \frac{I_{y}}{ z_{max} }$ $z = \frac{2r \sin \alpha}{3\alpha}$ $\alpha \text{ in radians}$

Continuation of table, see Page 243.

Continuation of table, Axial area moments and section moduli, from Page 242.

Segment of a circle	$I_{y} = r^{4} \left[\frac{4\alpha - \sin 4\alpha}{16} - \frac{8}{9} \cdot \frac{\sin^{6} \alpha}{2\alpha - \sin 2\alpha} \right]$	$W_{y} = \frac{I_{y}}{ z_{max} }$
2α r	$I_{z} = \frac{r^{4}}{48} \Big[12\alpha - 8\sin 2\alpha + \sin 4\alpha \Big]$	$z = \frac{4 r \sin^3 \alpha}{3 (2 \alpha - \sin 2 \alpha)}$ \alpha in radians
Annulus R r y	$I_{y} = I_{z} = \frac{\pi}{4} \left(R^{4} - r^{4} \right)$	$W_{y} = W_{z} = \frac{\pi}{4} \frac{\left(R^{4} - r^{4}\right)}{R}$
Annular sector	$\begin{split} I_y &= \frac{R^4 - r^4}{8} \cdot \left(2\alpha + \sin 2\alpha\right) - e^2\alpha \left(R^2 - r^2\right) \\ I_z &= \frac{R^4 - r^4}{8} \cdot \left(2\alpha - \sin 2\alpha\right) \end{split}$	$\begin{split} W_y &= \frac{l_y}{R-e} \\ e &= \frac{2}{3} \cdot \frac{\left(R^3 - r^3\right) \sin \alpha}{\left(R^2 - r^2\right) \alpha} \\ \alpha \text{ in radians} \end{split}$
Triangle	$I_{y} = \frac{ah^{3}}{36} = \frac{Ah^{2}}{18}$ $I_{z} = \frac{ha^{3}}{48} = \frac{Aa^{2}}{24}$	$W_y = \frac{ah^2}{24} = \frac{Ah}{12}$ $W_z = \frac{ha^2}{24} = \frac{Aa}{12}$
Hexagon R e y	$I_{y} = I_{z} = \frac{5\sqrt{3}}{16}R^{4} = \frac{5\sqrt{3}}{256}e^{4}$	$W_{y} = \frac{5\sqrt{3}}{16}R^{3} = \frac{5\sqrt{3}}{128}e^{3}$ $W_{z} = \frac{5}{8}R^{3} = \frac{5}{64}e^{3}$

Continuation of table, see Page 244.

Continuation of table, Axial area moments and section moduli, from Page 243.

Ellipse	$I_y = \frac{\pi a b^3}{4} = \frac{A b^2}{4}$	$W_y = \frac{\pi a b^2}{4} = \frac{A b}{4}$
so y	$I_z = \frac{\pi a^3 b}{4} = \frac{A a^2}{4}$	$W_z = \frac{\pi a^2 b}{4} = \frac{A a}{4}$
Hollow ellipse	$\pi \left(a_a b_a^3 - a_i b_i^3 \right)$	$\pi \left(a_a b_a^3 - a_i b_i^3 \right)$
b _i z	$l_y = \frac{1}{4}$	$W_y = \frac{4 b_a}{4 b_a}$
so y	$I_z = \frac{\pi \left(a_a^3 b_a - a_i^3 b_i\right)}{4}$	$W_{z} = \frac{\pi \left(a_{a}^{3} b_{a} - a_{i}^{3} b_{i}\right)}{4 a_{a}}$
Cross, H profile, T profile		. BH ³ +bh ³ BH ³ +bh ³
H h y H h	y H h y b B b B	$I_y = \frac{-4}{12} \qquad W_y = \frac{-6}{6}$ where $B = B_1 + B_2$ and $b = b_1 + b_2$
Rectangular hollow profile,	I profile, C profile	$H = \frac{BH^3 - bh^3}{W} = \frac{BH^3 - bh^3}{W}$
		$T_y = \frac{12}{12}$ $W_y = \frac{1}{6H}$ where b = b ₁ + b ₂
T profile, L profile, U profile		$I_{y} = \frac{BH^3 + bh^3}{2} - (BH + bh)e_1^2$
$H = \begin{bmatrix} b_1 & B & b_2 \\ e_2 & e_1 \\ h & e_1 \end{bmatrix} H = \begin{bmatrix} e_2 & e_1 \\ e_1 & e_1 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$where B = B_1 + B_2 and b = b_1 + b_2$ $W_{y1, 2} = \frac{l_y}{e_{1, 2}}$ $e_1 = \frac{1}{2} \frac{BH^2 + bh^2}{BH + bh} e_2 = H - e_1$

Table: Values for circular sections

For circular sections with diameter d, we arrive at the following 2nd moments of area and section moduli:

	Area moment		Section modul	us
	axial	polar	axial	polar
ď	$I_a = \frac{\pi d^4}{64}$	$I_p = 2 \cdot I_a$	$W_a = \frac{\pi d^3}{32}$	$W_p = 2 \cdot W_a$

reference axes

Area moments The following table lists a number of 2nd moments of area for various for various reference axes.

Second moment of area for	Axial second moment of area	Centrifugal moment	Polar second moment of area	
Any vertical centre-of-gravity axes yz	perpendicular to each of	her		
y S z	$I_{y} = \int_{A} z^{2} \cdot dA$ $I_{z} = \int_{A} y^{2} \cdot dA$	$I_{yz} = \int\limits_A y \cdot z \cdot dA$	$\begin{split} I_{ps} &= \int\limits_{A} r^2 \cdot dA \\ I_{ps} &= \int\limits_{A} \left(y^2 + z^2 \right) \cdot dA \\ &= I_y + I_z \end{split}$	
Axes that are offset in parallel with the yz axes				
v i	$I_{\eta} = I_{y} + b^{2} \cdot A$ $I_{\zeta} = I_{z} + c^{2} \cdot A$	$I_{\eta\zeta} = I_{yz} + b \cdot c \cdot A$	$I_{p} = I_{ps} + I^{2} \cdot A$ $= I_{ps} + (b^{2} + c^{2}) \cdot A$	

Continuation of table, see Page 246.

 $= I_{\eta} + I_{\zeta}$

Continuation of table, Area moments for various reference axes, from Page 245.

Second moment of area for	Axial second moment of area	Centrifugal moment	Polar second moment of area	
Axes which are rotated in the positive sense about the angle ϕ in relation to the yz axes				
y η τ ζ ζ	$I_{\eta} = \frac{I_{y} + I_{z}}{2} + \frac{I_{y} - I_{z}}{2} \cdot c$ $I_{\zeta} = \frac{I_{y} + I_{z}}{2} - \frac{I_{y} - I_{z}}{2} \cdot c$ $I_{\eta\zeta} = \frac{I_{y} - I_{z}}{2} \cdot \sin 2\varphi - c$	os $2\varphi - I_{yz} \cdot \sin 2\varphi$ os $2\varphi - I_{yz} \cdot \sin 2\varphi$ $I_{yz} \cdot \cos 2\varphi$	$I_{ps} = I_{\eta} + I_{\zeta}$ $= I_1 + I_2$	

Principal inertia axes which are rotated in the positive sense about the angle ϕ_{H} in relation to the yz axes

Axes which are rotated in the positive sense about the angle ϕ_{A} in relation to the principal inertia axes

	$I_{\eta} = \frac{I_1 + I_2}{2} + \frac{I_1 - I_2}{2} \cdot \cos 2 \phi_A$	$I_{ps} = I_{\eta} + I_{\zeta}$ $= I_1 + I_2$
S S	$I_{\zeta} = \frac{I_1 + I_2}{2} - \frac{I_1 - I_2}{2} \cdot \cos 2 \varphi_A$	
φ _A 2	$I_{\eta\zeta} = \frac{I_1 - I_2}{2} \cdot \sin 2 \varphi_A$	
η		

torsional section moduli

Torsional area Torsional area moments and torsional section moduli can be calculated **moments and** as follows (with "P" as the locations for τ_{max}):

Circle ¹⁾ P	$I_{p} = \frac{\pi d^{4}}{32} = \frac{\pi r^{4}}{2}$ $W_{p} = \frac{\pi d^{3}}{16} = \frac{\pi r^{3}}{2}$
Annulus ¹⁾	$I_{p} = \frac{\pi}{2} \left(R^{4} - r^{4} \right)$ $W_{p} = \frac{\pi}{2} \frac{\left(R^{4} - r^{4} \right)}{R}$
Thin-walled annulus ¹⁾	$\begin{split} &\frac{D}{d} < 1,2 \qquad \qquad d_m = \frac{D+d}{2} \\ &I_p = \frac{\pi}{4} d_m^3 s \\ &W_p = \frac{\pi}{2} d_m^2 s \end{split}$
Semicircle $ \frac{4r}{3\pi} $ $ \begin{array}{c} & & \\ & &$	$I_t = 0,296 r^4$ $W_t = 0,348 r^3$
Ellipse ²⁾	$I_t = \pi \frac{a^3 b^3}{a^2 + b^2}$ $W_t = \frac{\pi}{2} a b^2$

Continuation of table, see Page 248.

Continuation of table, Torsional area moments and torsional section moduli, from Page 247.

Hollow ellipse	$a_a: b_a = a_i: b_i = c$
b _i p b _a a _i a _a	$\begin{split} I_{t} &= \pi \frac{c^{3} \left(b_{a}{}^{4} - b_{i}{}^{4} \right)}{1 + c^{2}} \\ W_{t} &= \frac{\pi c \left(b_{a}{}^{4} - b_{i}{}^{4} \right)}{2 b_{a}} \end{split}$
Equilateral triangle	a^4 h^4
h h P	$W_t = \frac{a^3}{20} \approx \frac{h^3}{13}$
Square	$l_t = 0,141 a^4$
a	W _t = 0,208 a ³
Hexagon	$I_t = 0,115 b^4 = 1,037 R^4$
R b b	W _t = 0,188 b ³ = 0,977 R ³
Octagon	$l_t = 0,108 b^4$
b P	W _t = 0,185 b ³

Continuation of table, see Page 249.

Continuation of table, Torsional area moments and torsional section moduli, from Page 248.

Bending due to transverse force

Shear centres of thin-walled profiles When symmetrical profiles are bent by a transverse force, the cross-section is devoid of torsion. The shear centre (transverse force centre) lies on the symmetry plane. If the profile cross-section has two axes of symmetry, the shear centre falls within the symmetry point, i.e. in the centre of gravity.

In general, this is no longer the case if the load plane does not coincide with a plane of symmetry belonging to the profile. Torsional loading of the profile can be avoided by shifting the load plane appropriately. This is purely dependent on the type of profile, but not on the size of the load (profile constant).

The positions d of the shear centres M are given below for a number of profiles.

Profile	Position d	Profile	Position d
	$d = \frac{h}{2}$	M a d	$d = \frac{a\sqrt{3}}{6}$
	$d = \frac{hb^3}{a^3 + b^3}$		$d = \frac{b}{2} \cdot \frac{3b+2h}{3b+h}$
	d = h		$d = \frac{a\sqrt{2}}{4}$
	$d = \frac{3 t b^2}{h t_s + 6 b t}$	M d d	$d = 2R \frac{\sin \alpha - \alpha \cos \alpha}{\alpha - \sin \alpha \cos \alpha}$ α in radians
	$d = \frac{h}{2}$		d = 2 R

Flat support types The following possible bearing reactions exist for flat support types:

Support type	Degrees of freedom	Bearing reactions	Explanation
Movable pivoting bearing	2	1	The beam coupled to the movable pivoting bearing can be moved in a horizontal direction and can be rotated about the pivot point. Consequently, it has two degrees of freedom. The bearing can only apply one reaction force acting perpendicular to the sliding direction.
Fixed pivoting bearing	1	2	In the case of a fixed pivoting bearing, the beam cannot be moved in any direction and can only be rotated about the joint. The effect that the fixed pivoting bearing has on the beam can generally be represented by a force in any direction that can be split into two independent components.
Fixed restraint	0	3	A securely clamped beam can neither be moved nor rotated. It has no degrees of freedom. The bearing arrangement can be loaded by forces and moments in any direction. The effect of the fixed restraint on the beam can therefore be represented by two forces and one restraining moment.
Pin support	2	1	The effect of a pin support on the beam coupled to it is equivalent to that of a movable pivoting bearing. Perpendicular to the pin support, the beam can be moved and rotated about the joint. A reaction force can only be transmitted to the beam in the direction of the support.
Three-hinged support	1	2	The effect of the three-hinged support corresponds to that of the fixed pivoting bearing. It prevents every translational movement in the plane clamped by the supports. Only one degree of freedom remains for rotation about the pivot point. The effect on the beam is covered by two independent forces.

The following possible intermediate conditions exist for intermediate Intermediate elements elements:

Intermediate element	Intermediate conditions	Intermediate reactions	Explanation
Joint ├	M _b = 0	Q = 0 N = 0	A joint supplies the intermediate condition that the bending moment on the joint must disappear if freedom from friction of the beam connection is presumed. Therefore, in the event of a section through the joint, only one transverse force and one normal force occur as cross-sectional values or intermediate reactions.
Sliding sleeve	N = 0	Q = 0 M _b = 0	A sliding sleeve cannot transmit a normal force. The disappearance of the normal force on it can be evaluated as an intermediate condition. Transverse force and bending moment can be transmitted as intermediate reactions. Once again, it is presumed that the connection is devoid of friction.

beams

Bending due It is possible to calculate bearing reactions, moment and transverse to transverse force force distributions for simple loaded beams and formulate equations for simple loaded for the elastic curve.

Bearing reactions, moment and transverse force distributions

The bearing reactions, moment and transverse force distributions are as follows for simple loaded beams:

distributions			
System	Bearing reactions	Bending moment distribution	Transverse force distribution
	$A_{v} = F \cdot \frac{b}{l}$ $B_{v} = F \cdot \frac{a}{l}$	F·a·b l x	F·a I F·b I
$\begin{array}{c c} & I \\ \hline & a \\ \hline & a \\ \hline & a \\ \hline & a \\ \hline & B \\ \hline & B_V \end{array} $	$A_{v} = F \cdot \frac{b}{a}$ $B_{v} = F \cdot \frac{l}{a}$	F·b	F·b a x

Continuation of table, see Page 253.

Continuation of table, Bearing reactions, moment and transverse force distributions, from Page 252.

Elastic curve equation If the elastic curve equations w(x) are formulated for simple loaded beams, the following applies:

Equation 20

$$w''(x) = -\frac{M_{by}(x)}{E \cdot I_{y}(x)}$$

and:

Equation 21

$$I_v(x) = const.$$

System	Elastic curve equation w(x)	w _{max}
y I II Fz II yz,w E-ly	$w_{l} = \frac{F_{z} \cdot l^{3}}{6 E \cdot I_{y}} \left(2 \frac{a \cdot x}{l^{2}} - 3 \frac{a^{2} \cdot x}{l^{3}} + \frac{a^{3} \cdot x}{l^{4}} \right)$	$w(a) = \frac{F_z \cdot a^2 \cdot b^2}{3 E \cdot I_y \cdot l}$
	$ + \frac{a \cdot x^{3}}{l^{4}} - \frac{x^{3}}{l^{3}} \right) $ $ w_{11} = \frac{F_{z} \cdot l^{3}}{l^{4}} \left(-\frac{a^{3}}{2} + 2\frac{a \cdot x}{2} + \frac{a^{3} \cdot x}{2} + a^$	$\begin{array}{ll} a > b \\ & W_{I,max} \\ & \text{where} \end{array} \qquad x = l \sqrt{\frac{2 a}{3 l} - \frac{a^2}{3 l^2}} \end{array}$
	$= 6 E \cdot l_{y} \left(l^{3} l^{2} l^{4} - 3 \frac{a \cdot x^{2}}{l^{3}} + \frac{a \cdot x^{3}}{l^{4}} \right)$	
	$w_{l} = \frac{F_{z} \cdot l^{3}}{6 E \cdot l_{y}} \left(\frac{a \cdot x}{l^{2}} - \frac{a^{2} \cdot x}{l^{3}} - \frac{x^{3}}{a \cdot l^{2}} + \frac{x^{3}}{l^{3}} \right)$	$w_{I, max} = \frac{\sqrt{3} \cdot F_z \cdot a^2 \cdot b}{27 E \cdot I_y}$
Fz III Fz III Fz III Fz III Fz III Fz III	$w_{II} = \frac{F_z \cdot l^3}{6 E \cdot l_y} \Biggl(\frac{a^2}{l^2} - 4 \frac{a \cdot x}{l^2} + \frac{a^2 \cdot x}{l^3} \Biggr)$	$w_{II, max} = \frac{F_z I \cdot b^2}{3 E \cdot I_y}$
	$+3\frac{x^2}{l^2}-\frac{x^3}{l^3}\right)$	
I Fz z,w E·ly	$w = \frac{F_z \cdot l^3}{6 E \cdot l_y} \left(3 \frac{x^2}{l^2} - \frac{x^3}{l^3} \right)$	$w_{max} = \frac{F_z \cdot l^3}{3 E \cdot l_y}$

Continuation of table, see Page 255.

System	Elastic curve equation w(x)	w _{max}
	$w_{1} = \frac{M_{y} \cdot l^{2}}{6E \cdot l_{y}} \left(6 \frac{a \cdot x}{l^{2}} - 2 \frac{x}{l} - 3 \frac{a^{2} \cdot x}{l^{3}} - \frac{x^{3}}{l^{3}} \right)$ $w_{11} = \frac{M_{y} \cdot l^{2}}{6E \cdot l_{y}} \left(-3 \frac{a^{2}}{l^{2}} + 2 \frac{x}{l} + 3 \frac{a^{2} \cdot x}{l^{3}} \right)$	$w_{l,max} = \frac{M_{y} \cdot l^{2}}{3 E \cdot l_{y}}$ $\cdot \left(-\frac{2}{3} + \frac{2 a}{l} - \frac{a^{2}}{l^{2}}\right)^{\frac{3}{2}}$
†z,w E∙l _y	$-3\frac{x^2}{l^2} + \frac{x^3}{l^3}\right)$	$w_{II, max} = \frac{M_y \cdot l^2}{3 E \cdot l_y} \left(\frac{1}{3} - \frac{a^2}{l^2}\right)^{\frac{3}{2}}$
	$w_{l} = \frac{M_{y} \cdot l^{2}}{6 E \cdot l_{y}} \left(\frac{a \cdot x}{l^{2}} - \frac{x^{3}}{a \cdot l^{2}} \right)$	$w_{l, max} = \frac{\sqrt{3} \cdot M_y \cdot a^2}{27 E \cdot l_y}$
v x Ø vz,w E·ly	$w_{II} = \frac{M_{y} \cdot l^{2}}{6 E \cdot l_{y}} \left(\frac{a^{2}}{l^{2}} - 4 \frac{a \cdot x}{l^{2}} + 3 \frac{x^{2}}{l^{2}} \right)$	$w_{II, max} = \frac{M_y \cdot l^2}{6 E \cdot I_y} \left(3 - \frac{4 a}{l} + \frac{a^2}{l^2} \right)$
x z,w E·ly My	$w = -\frac{M_y}{2E \cdot I_y} x^2$	$w_{max} = \frac{M_y \cdot l^2}{2 E \cdot I_y}$
y zx z,w E·ly	$w = \frac{q_z \cdot l^4}{24 E \cdot l_y} \left(\frac{x}{l} - 2\frac{x^3}{l^3} + \frac{x^4}{l^4} \right)$	$w_{max} = \frac{5 q_z \cdot l^4}{384 E \cdot l_y}$
a b b	$w_{1} = \frac{q_{2} \cdot l^{4}}{24 E \cdot l_{y}} \left(-2 \frac{a \cdot x}{l^{2}} + 4 \frac{a^{2} \cdot x}{l^{3}} - \frac{a^{3} \cdot x}{l^{4}} + 2 \frac{x^{3}}{2} - 4 \frac{x^{3}}{3} + \frac{x^{4}}{4} \right)$	$w_{II, max} = \frac{q_z \cdot I^4}{24E \cdot I_y} \cdot \left(3 - 8\frac{a}{1} + 6\frac{a^2}{12} - \frac{a^3}{13}\right)$
y to the second	$w_{II} = \frac{q_z \cdot l^4}{24 E \cdot l_y} \left(2 \frac{a^2}{l^2} - 8 \frac{a \cdot x}{l^2} + 4 \frac{a^2 \cdot x}{l^3} \right)$	(
	$-\frac{a^{-1}x}{l^{4}}+6\frac{x}{l^{2}}-4\frac{x^{2}}{l^{3}}+\frac{x^{2}}{l^{4}}\right)$	
z,w E·ly	$w = \frac{q_z \cdot l^4}{24 E \cdot l_y} \left(6 \frac{x^2}{l^2} - 4 \frac{x^3}{l^3} + \frac{x^4}{l^4} \right)$	$w_{max} = \frac{q_z \cdot l^4}{8 E \cdot l_y}$

Continuation of table, Elastic curve equation, from Page 254.

	Principle of passive deformation work
Area of application	The principle of passive deformation work is used to: calculate deformation (deflection, torsion) in systems with a statically determinate bearing arrangement
	 calculate bearing reactions in externally statically indeterminate systems
	calculate cross-sectional values in systems with a statically indeterminate internal structure
Checking	In every case, it is first necessary to check whether the system has an external statically determinate bearing arrangement and a statically determinate internal structure.
Example 1: Statically determinate system	 If the system is both externally and internally statically determinate, the following guidelines apply: Apply a unit force "1" (for deflection) and a unit moment "M" (for torsion) to the system, in the direction of the sought-after deformation, as an external load, at the point in the system where the sought-after deformation occurs (deflection or torsion). During the loading sequence, the system is only loaded using the unit value to start with and only then are the effective external forces applied (point 1).
	Determine normal force, transverse force (mostly negligible) and moment distributions (bending moment, torsion moment) separately for each external load, including the unit values. The same running coordinate x must be retained in order to determine all cross-sectional values. The cross-sectional values resulting from the unit values are identified by a dash (point 2).
	Specify the entire passive internal deformation work occurring in the system. Thus: external passive deformation work = internal passive deformation work (point 3):
Equation 22	$ \begin{array}{ccc} \textcircled{1} & \textbf{``1"} \cdot \textbf{w} = \\ \textcircled{2} & \textbf{``M"} \cdot \phi = \\ \end{array} \int \underbrace{M_b \cdot \overline{M}_b}{E \cdot l_a} \cdot dx + \int \underbrace{M_t \cdot \overline{M}_t}{G \cdot l_p} \cdot dx + \int \underbrace{N \cdot \overline{N}}{E \cdot A} \cdot dx + \textcircled{3} $
	 Deflection Torsion Passive spring work (transverse forces are ignored)
	 Evaluate the integrals with the aid of the integral tables or by mathematical calculation (observe the signs of the cross-sectional values) (point 4)
	Divide the resulting relationship by the unit value and calculate the desired value (point 5)

Example 2: Statically indeterminate system

System with statically indeterminate bearing arrangement

If the system is statically indeterminate, it may:

- have a statically indeterminate bearing arrangement
- have a statically indeterminate internal structure

If the system has a statically indeterminate bearing arrangement, the following guidelines apply:

- Make the system statically determinate by detaching surplus support joints and by applying the bearing reactions to the system as external impressed forces at these points. At the same time, a marginal condition must also be specified for this, which identifies the initial state (point 1).
- At the point where the marginal condition exists, apply a unit force "1" (for deflection) or a unit moment "M" (for torsion) (point 2).
- See points 2 to 4 for statically determinate systems (point 3).
- Apply the marginal condition, divide the relationship by the unit value and calculate the unknown bearing reaction (point 4).

System with a statically indeterminate internal structure If the system has a statically indeterminate internal structure, the following guidelines apply:

- Make the system statically determinate by installing joints or movable sleeves, or by guiding sections etc. Apply cross-sectional values as external impressed forces and define the marginal conditions.
- See points 1 to 4 for systems with statically indeterminate bearing arrangements.

In current practice, systems with statically indeterminate bearing arrangements are calculated numerically.

Tables of integralsThe following table shows a selection of sample calculations
for the integral: $\int M \cdot \overline{M} \cdot dx$

Sample calculations for the integral $\int M \cdot \overline{M} \cdot dx$ The moments M and \overline{M} are interchangeable. Their amounts are specified in the tables, their signs must be observed during the evaluation (s = parabola vertex).

-				
M l	M·M·l	M 1/2	0	
M	$\frac{1}{2}M\cdot\overline{M}\cdot l$	™	$\frac{2}{3}M\cdot\overline{M}\cdot l$	
M	$\frac{1}{2}M\cdot\overline{M}\cdot l$	M	$\frac{1}{3}M\cdot\overline{M}\cdot l$	
M	$\frac{1}{2}M\cdot\overline{M}\cdot l$	s M	$\frac{2}{3}M\cdot\overline{M}\cdot l$	
N/2	$\frac{1}{2}M\cdot\overline{M}\cdot l$	sM	$\frac{1}{3}M\cdot\overline{M}\cdot l$	
M ₁ M ₂	$\frac{1}{2}M\!\cdot\!\left(\overline{M}_{1}+\overline{M}_{2}\right)\!\cdot\!I$	S M	$\frac{2}{3}M\cdot\overline{M}\cdot l$	
\overline{M}_1 \overline{M}_2	$\frac{1}{2}M\cdot\left(\overline{M}_{1}+\overline{M}_{2}\right)\cdotI$			
M	$\frac{1}{3}M\cdot\overline{M}\cdot l$	M 1/2	$\frac{1}{6} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{l}$	
M	$\frac{1}{6} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{l}$	™	$\frac{5}{12}M\cdot\overline{M}\cdot l$	
a b	$\frac{1}{6} M \cdot \overline{M} \cdot l \cdot \left(1 + \frac{b}{l}\right)$	M	$\frac{1}{4}$ M · \overline{M} · l	
M	$\frac{1}{4}M\cdot\overline{M}\cdot l$	s M	$\frac{1}{4} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{l}$	
M ₁ M ₂	$\frac{1}{6}M\cdot \left(2\overline{M}_1 + \overline{M}_2\right)\cdot l$	sM	$\frac{1}{12} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{l}$	
\overline{M}_1	$\frac{1}{6} M \cdot \left(2 \overline{M}_1 + \overline{M}_2 \right) \cdot I$	S M	$\frac{1}{3}M\cdot\overline{M}\cdot I$	

Continuation of table, see Page 259.

Continuation of table, Tables of integrals $\int M \cdot \overline{M} \cdot dx$, from Page 258.

Sample calculations for the integral $\int M \cdot \overline{M} \cdot dx$ The moments M and \overline{M} are interchangeable. Their amounts are specified in the tables, their signs must be observed during the evaluation (s = parabola vertex).				
M_1 M_2 M_2				
M ₁ M ₂	$\frac{1}{6} \Big[M_1 \cdot \big(2\overline{M}_1 + \overline{M}_2 \big) \\ + M_2 \cdot \big(2\overline{M}_2 + \overline{M}_1 \big) \Big] \cdot I$	sM	$\frac{1}{12}\overline{M}\cdot \big(M_1 + 3M_2\big)\cdotI$	
M ₁	$ \begin{split} & \frac{1}{6} \Big[2 \Big(M_1 \cdot \bar{M}_1 + M_2 \cdot \bar{M}_2 \Big) \\ & + M_2 \cdot \bar{M}_1 + M_1 \cdot \bar{M}_2 \Big] \cdot \mathfrak{l} \end{split} $	<u> </u>	$\frac{1}{3}\overline{M} \cdot (M_1 + M_2) \cdot I$	
M 1/2	$\frac{1}{6} \overline{M} \cdot \left(M_1 + M_2 \right) \cdot l$	s M	$\frac{1}{12} \overline{M} \cdot \big(3M_1 + 5M_2 \big) \cdot l$	
M	$\frac{1}{12} \overline{M} \cdot (3 M_1 + M_2) \cdot I$	M S	$\frac{1}{12}\overline{M}\cdot\big(5M_1+3M_2\big)\cdotl$	
M ₁ M ₂				
\overline{M}_1 \overline{M}_1 \overline{M}_1 \overline{M}_2 \overline{M}_2	$\frac{1}{6} \Big[2 \Big(M_1 \cdot \bar{M}_1 + M_2 \cdot \bar{M}_2 \Big) \\ + M_2 \cdot \bar{M}_1 + M_1 \cdot \bar{M}_2 \Big] \cdot l$	S M	$\frac{1}{3}\overline{M}\cdot \big(M_1 + M_2\big)\cdotI$	
M 1/2	$\frac{1}{6} \overline{M} \cdot (M_1 - M_2) \cdot I$	s M	$\frac{1}{12}\overline{M}\cdot (3M_1+5M_2)\cdot l$	
M	$\frac{1}{12}\overline{M} \cdot (3M_1 + M_2) \cdot I$	M S	$\frac{1}{12}\overline{M} \cdot (5M_1 + 3M_2) \cdot l$	
sM	$\frac{1}{12} \overline{M} \cdot \big(M_1 + 3M_2\big) \cdot l$			

Continuation of table, see Page 260.

Sample calculations for the integral $\int M \cdot \overline{M} \cdot dx$ The moments M and \overline{M} are interchangeable. Their amounts are specified in the tables, their signs must be observed during the evaluation (s = parabola vertex).

Continuation of table, see Page 261.

Continuation of table, Tables of integrals $\int M \cdot \overline{M} \cdot dx$, from Page 260.

Continuation of table, see Page 262.

Continuation of table, Tables of integrals $\int M \cdot \overline{M} \cdot dx$, from Page 261.

Hertzian contact and pressure

Calculating The equations for calculating a number of important Hertzian **contact pairs** contact pairs are:

Contact type	General	Contact between curved surfaces	Point contact ball/ball
Hertzian pressure (general formula)	p _{max}	$p_{max} = \frac{3}{2} \cdot \frac{F}{\pi \cdot a b}$	$p_{max} = \frac{3}{2} \cdot \frac{F}{\pi \cdot a^2}$
Solid body combination Solid body 1, solid body 2 ¹)	$\sum \rho = \rho_{11} + \rho_{12}$ $+ \rho_{21} + \rho_{22}$ Calculation of the curvature total, see Page 265.	1), 2) Principal planes of curvature	Ball/ball F
Main axes of the "elliptical" contact area	a, b a = major semi-axis b = minor semi-axis	$a = \xi \sqrt[3]{\frac{3F(1-\nu^2)}{E \cdot \sum \rho}}$ $b = \eta \sqrt[3]{\frac{3F(1-\nu^2)}{E \cdot \sum \rho}}$ $\xi, \eta = f(\cos \eta)^{2/2}$	$a = b = \sqrt[3]{\frac{3F(1-\nu^2)}{4E\left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$
Maximum Hertzian pressure	P _{max}	$\begin{split} p_{max} &= \frac{1}{\xi \cdot \eta} \sqrt[3]{\frac{3 F \cdot E^2 \left(\sum \rho\right)^2}{8 \pi^3 \left(1 - \nu^2\right)^2}} \\ \xi, \eta &= f(\cos \tau)^{2j} \end{split}$	$p_{max} = \sqrt[3]{\frac{6F \cdot E^2}{\pi^3 (1 - \nu^2)^2} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)^2}$
Convergence of both solid bodies	δ	$\delta = \frac{\psi}{\xi} \sqrt[3]{\frac{9 F^2 \sum \rho \left(1 - \nu^2\right)^2}{8 E^2}}$ $\frac{\psi}{\xi} = f(\cos \tau)^{2}$	$\delta = \sqrt[3]{\frac{9F^2(1-\nu^2)^2}{2E^2}} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)$
Hertzian pressure for values from column "General"		$p_{max} = \frac{864}{\xi \cdot \eta} \sqrt[3]{F(\sum \rho)^2}$ $\xi \cdot \eta = f(\cos \tau)^{2}$	$p_{max} = 2176 \sqrt[3]{F\left(\frac{1}{d^1} + \frac{1}{d^2}\right)^2}$

Continuation of table, see Page 264.

1) If the solid bodies are composed of different materials with the elastic constants E_1 and ν_1 or E_2 and ν_2 ,

the term
$$\frac{1-\nu^2}{E}$$
 is replaced in all equations by $\frac{1}{2}\left(\frac{1-\nu_1^2}{E_1}+\frac{1-\nu_2^2}{E_2}\right)$

 $^{2)}$ Auxiliary value cos τ see Page 265.

Continuation of table	, Calculating contact	pairs, from Page 263.
-----------------------	-----------------------	-----------------------

Contact type	Point contact ball/plane	Line contact	
Hertzian pressure (general formula)	$p_{max} = \frac{3}{2} \cdot \frac{F}{\pi \cdot a^2}$	$p_{max} = \frac{4}{\pi} \cdot \frac{F}{2b \cdot l} = \frac{2}{\pi} \cdot \frac{F}{b \cdot l}$	
Solid body combination Solid body 1, solid body 2 ¹⁾	Ball/plane	Cylinder/cylinder $F = q \cdot l$ q q r $F = q \cdot l$ d_1 d_2	Cylinder/plane $F = q \cdot l$ d_1 d_2 l
Main axes of the "elliptical" contact area	$a = b = \sqrt[3]{\frac{3F(1-\nu^2)d_1}{4E}}$	$a = l$ $b = \sqrt{\frac{4 F (1 - \nu^2)}{\pi \cdot E \cdot l \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$	a = l b = $\sqrt{\frac{4 F (1 - v^2) d_1}{\pi \cdot E \cdot l}}$ Contact area = rectangle
Maximum Hertzian pressure	$P_{max} = \sqrt[3]{\frac{6 F \cdot E^2}{\pi^3 (1 - \nu^2)^2 \cdot d_1^2}}$	$p_{max} = \sqrt{\frac{F \cdot E}{\pi \cdot l(1 - \nu^2)} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}$	$p_{max} = \sqrt{\frac{F \cdot E}{\pi \cdot d_1 \cdot l \cdot (1 - \nu^2)}}$
Convergence of both solid bodies	$\delta = \sqrt[3]{\frac{9F^2(1-\nu^2)^2}{2E^2 \cdot d_1}}$	$\begin{split} \delta &= \frac{2 F}{\pi l} \bigg[\frac{1 - {\nu_1}^2}{E_1} \bigg(ln \frac{d_1}{b} + 0,407 \bigg) \\ &+ \frac{1 - {\nu_2}^2}{E_2} \bigg(ln \frac{d_2}{b} + 0,407 \bigg) \bigg] \end{split}$	$\delta = \frac{3,97}{10^5} \cdot \frac{F^{0,9}}{l^{0,8}}$ for steel/steel
Hertzian pressure for values from column "General"	$p_{max} = 2176 \sqrt[3]{\frac{F}{d_1^2}}$	$p_{max} = 271 \sqrt{\frac{F}{d_1 \cdot l} \left(1 + \frac{d_1}{d_2}\right)}$	$p_{max} = 271 \sqrt{\frac{F}{d_1 \cdot l}}$

¹⁾ If the solid bodies are composed of different materials with the elastic constants E_1 and ν_1 or E_2 and ν_2 ,

the term
$$\frac{1-\nu^2}{E}$$
 is replaced in all equations by $\frac{1}{2}\left(\frac{1-\nu_1^2}{E_1} + \frac{1-\nu_2^2}{E_2}\right)$

Hertzian coefficients for curved surfaces

Values for the coefficients ξ , η , $\xi \cdot \eta$, ψ/ξ according to Hertz are calculated below for contact between curved surfaces under load. The Hertzian coefficients ξ , η and ψ/ξ are also designated μ , ν and $2K/(\pi \mu)$, see publication Ball and Roller Bearings WLP.

Figure 4

Contact between curved surfaces under load

- Principal curvature plane 1
 Principal curvature plane 2
 Solid body 1
 - (4) Solid body 2

Calculation For

For the curvature ρ , the following applies:

$$\begin{split} \rho_{ij} &= \frac{1}{r_{ij}} > 0 \quad (\text{convex}) \qquad \rho_{ij} &= \frac{1}{r_{ij}} < 0 \quad (\text{concave}) \\ \sum \rho &= \rho_{11} + \rho_{12} + \rho_{21} + \rho_{22} = \frac{1}{r_{11}} + \frac{1}{r_{12}} + \frac{1}{r_{21}} + \frac{1}{r_{22}} \end{split}$$

Equation 24

and for the auxiliary value
$$\cos \tau$$
:

$$\cos \tau = \frac{\left| \rho_{11} - \rho_{12} + \rho_{21} - \rho_{22} \right|}{\sum \rho}$$

The axes a, b of the contact ellipse are calculated using:

Equation 25

$$a = \xi \sqrt[3]{\frac{3 F \left(1 - \nu^2\right)}{E \cdot \sum \rho}} \qquad \qquad b = \eta \sqrt[3]{\frac{3 F \left(1 - \nu^2\right)}{E \cdot \sum \rho}}$$

For the maximum Hertzian pressure, the following applies:

Equation 26

$$p_{max} = \frac{1}{\xi \cdot \eta} \sqrt[3]{\frac{3F \cdot E^2 (\sum \rho)^2}{8\pi^3 (1-\nu^2)^2}}$$

and for the convergence of solid bodies: Equation 27

$$\sqrt{2} \sum_{n=1}^{\infty} (1 - n^2)^2$$

s_ψ ₃	$9 F^2 \cdot \sum \rho \left(1 - \nu^2\right)^2$	
0 - ξ	8 E ²	

Table: The coefficients ξ , η , $\xi \cdot \eta$, ψ/ξ according to Hertz for contact between Hertzian coefficients curved surfaces under load are thus:

COS Τ	ξ	η	ξ·η	ψ/ξ	COS Τ	ξ	η	ξ·η	ψ/ξ
0,9995	23,95	0,163	3,91	0,171	0,987 0	7,02	0,301	2,11	0,411
0,9990	18,53	0,185	3,43	0,207	0,986 5	6,93	0,303	2,10	0,416
0,9985	15,77	0,201	3,17	0,230	0,986 0	6,84	0,305	2,09	0,420
0,9980	14,25	0,212	3,02	0,249	0,985 5	6,74	0,307	2,07	0,423
0,9975	13,15	0,220	2,89	0,266	0,985 0	6,64	0,310	2,06	0,427
0,9970	12,26	0,228	2,80	0,279	0,984 5	6,55	0,312	2,04	0,430
0,9965	11,58	0,235	2,72	0,291	0,984 0	6,47	0,314	2,03	0,433
0,9960	11,02	0,241	2,65	0,302	0,983 5	6,40	0,316	2,02	0,437
0,9955	10,53	0,246	2,59	0,311	0,983 0	6,33	0,317	2,01	0,440
0,9950	10,15	0,251	2,54	0,320	0,982 5	6,26	0,319	2,00	0,444
0,994 5	9,77	0,256	2,50	0,328	0,9820	6,19	0,321	1,99	0,447
0,994 0	9,46	0,260	2,46	0,336	0,9815	6,12	0,323	1,98	0,450
0,993 5	9,17	0,264	2,42	0,343	0,9810	6,06	0,325	1,97	0,453
0,993 0	8,92	0,268	2,39	0,350	0,9805	6,00	0,327	1,96	0,456
0,992 5	8,68	0,271	2,36	0,356	0,9800	5,94	0,328	1,95	0,459
0,9920	8,47	0,275	2,33	0,362	0,979 5	5,89	0,330	1,94	0,462
0,9915	8,27	0,278	2,30	0,368	0,979 0	5,83	0,332	1,93	0,465
0,9910	8,10	0,281	2,28	0,373	0,978 5	5,78	0,333	1,92	0,468
0,9905	7,93	0,284	2,25	0,379	0,978 0	5,72	0,335	1,92	0,470
0,9900	7,76	0,287	2,23	0,384	0,977 5	5,67	0,336	1,91	0,473
0,9895	7,62	0,289	2,21	0,388	0,977 0	5,63	0,338	1,90	0,476
0,9890	7,49	0,292	2,19	0,393	0,976 5	5,58	0,339	1,89	0,478
0,9885	7,37	0,294	2,17	0,398	0,976 0	5,53	0,340	1,88	0,481
0,9880	7,25	0,297	2,15	0,402	0,975 5	5,49	0,342	1,88	0,483
0,9875	7,13	0,299	2,13	0,407	0,975 0	5,44	0,343	1,88	0,486

Continuation of table, see Page 267.

cos τ	ξ	η	ξ·η	ψ/ξ	cos τ	ξ	η	ξ·η	ψ/ξ
0,9745	5,39	0,345	1,86	0,489	0,918	3,36	0,441	1,48	0,650
0,9740	5,35	0,346	1,85	0,491	0,916	3,33	0,443	1,47	0,653
0,9735	5,32	0,347	1,85	0,493	0,914	3,30	0,445	1,47	0,657
0,9730	5,28	0,349	1,84	0,495	0,912	3,27	0,448	1,46	0,660
0,9725	5,24	0,350	1,83	0,498	0,910	3,23	0,450	1,45	0,664
0,9720 0,9715 0,9710 0,9705 0,9700	5,20 5,16 5,13 5,09 5,05	0,351 0,353 0,354 0,355 0,357	1,83 1,82 1,81 1,81 1,81 1,80	0,500 0,502 0,505 0,507 0,509	0,908 0,906 0,904 0,902 0,900	3.20 3,17 3,15 3,12 3,09	0,452 0,454 0,456 0,459 0,461	1,45 1,44 1,44 1,43 1,42	0,667 0,671 0,674 0,677 0,680
0,9690	4,98	0,359	1,79	0,513	0,895	3,03	0,466	1,41	0,688
0,9680	4,92	0,361	1,78	0,518	0,890	2,97	0,471	1,40	0,695
0,9670	4,86	0,363	1,77	0,522	0,885	2,92	0,476	1,39	0,702
0,9660	4,81	0,365	1,76	0,526	0,880	2,86	0,481	1,38	0,709
0,9650	4,76	0,367	1,75	0,530	0,875	2,82	0,485	1,37	0,715
0,9640	4,70	0,369	1,74	0,533	0,870	2,77	0,490	1,36	0,721
0,9630	4,65	0,371	1,73	0,536	0,865	2,72	0,494	1,35	0,727
0,9620	4,61	0,374	1,72	0,540	0,860	2,68	0,498	1,34	0,733
0,9610	4,56	0,376	1,71	0,543	0,855	2,64	0,502	1,33	0,739
0,9600	4,51	0,378	1,70	0,546	0,850	2,60	0,507	1,32	0,745
0,9590	4,47	0,380	1,70	0,550	0,840	2,53	0,515	1,30	0,755
0,9580	4,42	0,382	1,69	0,553	0,830	2,46	0,523	1,29	0,765
0,9570	4,38	0,384	1,68	0,556	0,820	2,40	0,530	1,27	0,774
0,9560	4,34	0,386	1,67	0,559	0,810	2,35	0,537	1,26	0,783
0,9550	4,30	0,388	1,67	0,562	0,800	2,30	0,544	1,25	0,792
0,9540	4,26	0,390	1,66	0,565	0,750	2,07	0,577	1,20	0,829
0,9530	4,22	0,391	1,65	0,568	0,700	1,91	0,607	1,16	0,859
0,9520	4,19	0,393	1,65	0,571	0,650	1,77	0,637	1,13	0,884
0,9510	4,15	0,394	1,64	0,574	0,600	1,66	0,664	1,10	0,904
0,9500	4,12	0,396	1,63	0,577	0,550	1,57	0,690	1,08	0,922
0,948 0	4,05	0,399	1,62	0,583	0,500	1,48	0,718	1,06	0,938
0,946 0	3,99	0,403	1,61	0,588	0,450	1,41	0,745	1,05	0,951
0,944 0	3,94	0,406	1,60	0,593	0,400	1,35	0,771	1,04	0,962
0,942 0	3,88	0,409	1,59	0,598	0,350	1,29	0,796	1,03	0,971
0,940 0	3,83	0,412	1,58	0,603	0,300	1,24	0,824	1,02	0,979
0,9380	3,78	0,415	1,57	0,608	0,250	1,19	0,850	1,01	0,986
0,9360	3,73	0,418	1,56	0,613	0,200	1,15	0,879	1,01	0,991
0,9340	3,68	0,420	1,55	0,618	0,150	1,11	0,908	1,01	0,994
0,9320	3,63	0,423	1,54	0,622	0,100	1,07	0,938	1,00	0,997
0,9300	3,59	0,426	1,53	0,626	0,050	1,03	0,969	1,00	0,999
0,928 0,926 0,924 0,922 0,920	3,55 3,51 3,47 3,43 3,40	0,428 0,431 0,433 0,436 0,438	1,52 1,51 1,50 1,50 1,49	0,630 0,634 0,638 0,642 0,646	0	1	1	1	1

Continuation of table, Table: Hertzian coefficients, from Page 266.

Hertzian pressure in rolling bearings in rolling bearings:

Deep groove ball bearings	1) D w	$\Sigma = 2 \left(\begin{array}{c} \gamma & D_{w} \end{array} \right)$
ball – outer ring	$\gamma = \frac{\alpha}{d_{M}} \cdot \cos \alpha$	$\sum \rho = \frac{1}{D_{w}} \left(2 - \frac{1}{1 + \gamma} - \frac{1}{2 \cdot r_{a}} \right)$
d _M	$r_a \approx 0.53 \cdot D_w$	$\cos \tau = \frac{-\frac{\gamma}{1+\gamma} + \frac{D_w}{2 \cdot r_a}}{2 - \frac{\gamma}{1+\gamma} - \frac{D_w}{2 \cdot r_a}}$
Deep groove ball bearings	1) D w	$\Sigma = 2 \left(2 \cdot \gamma \cdot D_{W} \right)$
ball – inner ring	$\gamma = \frac{m}{d_{\rm M}} \cdot \cos \alpha$	$\sum \rho = \frac{1}{D_{w}} \cdot \left(2 + \frac{1}{1 - \gamma} - \frac{1}{2 \cdot r_{i}}\right)$
	$r_i \approx 0,52 \cdot D_w$	$\cos \tau = \frac{\frac{\gamma}{1-\gamma} + \frac{D_w}{2 \cdot r_i}}{2 + \frac{\gamma}{1-\gamma} - \frac{D_w}{2 \cdot r_i}}$
Self-aligning ball bearings	1) D w	$\Sigma = 4 \begin{pmatrix} 1 \end{pmatrix}$
ball – outer ring	$\gamma = \frac{1}{d_{M}} \cdot \cos \alpha$	$\sum \rho = \frac{1}{D_{w}} \left(\frac{1+\gamma}{1+\gamma} \right)$
d _M r _a D _w	$r_{a} = \frac{d_{M} + D_{w}}{2}$	cos τ = 0
Axial ball bearings	D _w cos a	$\Sigma_0 = \frac{2}{2} \left(2 - \frac{D_w}{D_w} \right)$
ball – bearing ring	$\gamma = \frac{1}{d_M} \cdot \cos \alpha$	$\Delta P D_{W} \begin{pmatrix} 2 & 2 \cdot r_{L} \end{pmatrix}$
	$r_L \approx 0.54 \cdot D_w$	$\cos \tau = \frac{1}{4 \cdot \frac{r_L}{D_w} - 1}$
Barrel roller bearings,	$\gamma = \frac{D_w}{D_w} \cos \alpha$	$1 + \gamma \cdot \left(\frac{r_A}{r_A} - 1\right)$
roller – outer ring	d _M	$\sum \rho = \frac{1 + \gamma \left(r_{\rm R} \right)}{1 + \gamma}$
d _M r _a d _W	$r_{a} = \frac{d_{M} + D_{w}}{2}$	$\cos \tau = \frac{1 - \gamma \cdot \left(\frac{f_a}{r_R} - 1\right)}{1 + \gamma \cdot \left(\frac{f_a}{r_R} - 1\right)}$

¹⁾ $\overline{\alpha}$ is the nominal contact angle of the bearing.

Stress state under Hertzian contact

According to Hertz's theory, stresses and deformations occur due to the effect of compressive forces where there is contact (point type or linear) between two solid bodies.

Point contact ball – plane Figure 5 Point contact ball – plane

For the radius of the contact area, the following applies:

Equation 28

$$a = \sqrt[3]{\frac{3F(1-\nu^2) \cdot d}{4E}}$$

The stress state (for r = 0) is calculated using:

Equation 29

$$\frac{\sigma_z}{p_{max}} = -\frac{1}{\left(\frac{z}{a}\right)^2 + 1}$$
$$\frac{\sigma_r}{p_{max}} = -(1+\nu) \left[1 - \frac{z}{a} \arctan\left(\frac{a}{z}\right) \right] + \frac{1}{2 \left[\left(\frac{z}{a}\right)^2 + 1 \right]}$$
$$\frac{\tau}{p_{max}} = -\frac{3}{4} \cdot \frac{1}{\left(\frac{z}{a}\right)^2 + 1} + \frac{1+\nu}{2} \left[1 - \frac{z}{a} \arctan\left(\frac{a}{z}\right) \right]$$

Line contact roller – plane Figure 6 Line contact roller – plane (planar stress state)

In the event of roller – plane line contact (planar stress state),

For the half width of the contact area, the following applies:

Equation 30

h – .	$4 \operatorname{F}(1-\nu^2) \cdot \mathrm{d}$	
5 – J	π·E·l	

The stress state (for y = 0) is calculated using:

$$\frac{\sigma_z}{p_{max}} = -\frac{1}{\sqrt{1 + \left(\frac{z}{b}\right)^2}}$$
$$\frac{\sigma_y}{p_{max}} = 2\left(\frac{z}{b}\right) - \frac{1 + 2\left(\frac{z}{b}\right)^2}{\sqrt{1 + \left(\frac{z}{b}\right)^2}}$$
$$\frac{\tau}{p_{max}} = \frac{z}{b} - \frac{\left(\frac{z}{b}\right)^2}{\sqrt{1 + \left(\frac{z}{b}\right)^2}}$$

In the event of roller – plane line contact (spatial stress state), the following relationships apply:

The stress state (for x = y = 0) is calculated using:

Equation 32

$$\frac{\sigma_{x}}{p_{max}} = -2\nu \left[\sqrt{1 + \left(\frac{z}{b}\right)^{2}} - \left(\frac{z}{b}\right) \right]$$
$$\frac{\sigma_{y}}{p_{max}} = -\left[\frac{1 + 2\left(\frac{z}{b}\right)^{2}}{\sqrt{1 + \left(\frac{z}{b}\right)^{2}}} - 2\left(\frac{z}{b}\right) \right]$$
$$\frac{\sigma_{z}}{p_{max}} = -\frac{1}{\sqrt{1 + \left(\frac{z}{b}\right)^{2}}}$$

These equations represent the maximum stresses for the coordinates x = y = 0. They are based on the assumption of a plane deformation state ($\varepsilon_x = 0$).

Equivalent stress As strength hypotheses for calculating an equivalent stress, the following hypotheses have generally gained acceptance and proved effective:

- shear stress hypothesis according to Tresca and St. Venant
- distortion energy hypothesis according to Hencky and von Mises

Shear stress According to the shear stress hypothesis, it is assumed that the material begins to flow when the maximum shear stress at any one point reaches a critical value.

The equivalent stress is calculated as:

Equation 33

	$\sigma_z - \sigma_y$
$\sigma_{vS}=2\tau_{max}=max$	$\sigma_z - \sigma_x$
	$\sigma_y - \sigma_x$

Distortion energy By contrast, according to the distortion energy hypothesis, hypothesis plastic deformation sets in when the distortion energy that can be absorbed elastically in a volume element is exceeded.

The equivalent stress is calculated as:

Equation 34

$$\sigma_{vG} = \sqrt{\frac{1}{2} \left[\left(\sigma_{x} - \sigma_{y} \right)^{2} + \left(\sigma_{y} - \sigma_{z} \right)^{2} + \left(\sigma_{z} - \sigma_{x} \right)^{2} \right]}$$

with the principal normal stresses σ_x , σ_y , σ_z .

Material strength According to both the shear stress hypothesis and the distortion energy hypothesis, the maximum equivalent stress within the material is:

Shear stress hypothesis	Distortion energy hypothesis							
$\sigma_{vS max} = 0,60 \cdot p_{max}$	$\sigma_{vG max} = 0.56 \cdot p_{max}$							
at a depth z = 0,78 · b	at a depth z = 0.71 · b							

If the equivalent stress according to the shear stress hypothesis is assumed, the material strain is:

Equation 35

 $\sigma_{vS max} = 0.60 \cdot p_{max}$

In order to prevent plastic deformation, according to the shear stress hypothesis, in the material under static loading (constant strength over the whole cross-section), the following must be fulfilled:

Equation 36

 $\sigma_{\rm vS\,max} < R_{\rm p0,2}$

In a given material with the yield point $\rm R_e$ or substitute proof stress $\rm R_{p0,2},$ this gives a permissible maximum Hertzian pressure of:

Equation 37

 $p_{max per} < 1,67 \cdot R_{p0,2}$

For case, flame or induction hardened materials, an adequate hardening depth must be ensured. The hardening depth according to DIN EN ISO 2639:2002 is the depth of hardened surface zone which has a hardness of at least 550 HV. The hardness curve to the core of the material must also be such that the strength and yield point of the material which can be derived from the hardness is above the equivalent stress curve at all points.

Figure 8 shows where deformation zones can form in the material when comparing the material strain with the yield point of the material:

- In zone ①, the yield point of the material is exceeded in the area of maximum stress in a material with constant strength, respectively through hardening, as well as surface layer hardening. This deformation occurs at sufficiently high Hertzian pressure in all materials and for all hardening processes.
- In zone ②, the material deforms plastically if the chosen hardening depth is too low.
- In zone ③, plastic deformation occurs if the hardness or the yield stress of the core material is too low.

A steep hardness gradient, which may occur particularly with flame or induction hardening, leads under the same nominal hardening depth to an expansion of the deformation zones.

Figure 8 Deformation zones

 σ_v = equivalent stress σ_F = yield stress z = surface distance

 (1), (2), (3) Deformation zones
 (4) For small case hardening depth
 (5) For large case hardening depth
 (6) Low core strength
 (7) High core strength

Hardening depth

Case, flame or induction hardened raceways must have a surface hardness of 670 HV to 840 HV and a sufficiently large hardening depth (for case hardening: case hardening depth CHD; for flame or induction hardening: surface hardening depth SHD).

The hardness curves are shown in Figure 9; the required hardness curve is determined by converting the equivalent stress curve into Vickers hardness (see conversion table in the chapter Engineering materials, Page 317).

The following curves are produced for surface hardness:

z = distance from surface CHD = case hardening depth SHD = surface hardening depth

> Flame or induction hardening
> Case hardening
> Required hardness

The required minimum hardening depth depends essentially on the rolling element diameter, material loading, core strength and the hardening process.

For raceways loaded up to the static load carrying capacity C₀, in which a Hertzian pressure of $p_{max} = 4000 \text{ N/mm}^2$ is present for line contact, the hardening depths can be calculated from the following relationships.

The surface hardening depth for flame or induction hardening is:

The case hardening depth for case hardening is:

Equation 38

D_w = rolling element diameter

Eauation 39

 $SHD \ge 140 \cdot D_w / R_{p0.2}$

 $CHD \ge 0.052 \cdot D_w$

Material selection for rolling bearing raceways

When selecting materials for rolling bearing raceways, it is necessary to bear in mind that in order to achieve the full static and dynamic load carrying capacity of the bearing location, an adequate case or surface hardness, adequate hardness zone formation, and a good degree of cleanliness corresponding to the usual standard for rolling bearing steels, are required. An adequate hardness is usually between 58 HRC (654 HV) and 64 HRC (800 HV); conversion of the hardness values takes place in accordance with DIN EN ISO 18265.

For all of the steels listed below, larger component cross-sections usually call for an increased alloy content in the steel.

The following are particularly suitable for rolling bearing rings and rolling elements:

through hardening steels

(for example 100Cr6 or 100CrMnSi6-4 to DIN EN ISO 683-17). Surface layer hardening, in particular induction surface layer hardening, of these steels or of country-specific equivalents such as SAE52100 is also feasible in special cases. Either martensitic or bainitic hardening is used.

case hardening steels

(for example 17MnCr5 to DIN EN ISO 683-17 or 16MnCr5 to DIN EN 10084). The necessary surface hardness and the hardness depth profile must be adjusted through the diffusion of carbon or carbon and nitrogen prior to actual martensitic hardening. Appropriate calculation tools such as Bearinx are available for determining the necessary hardness profiles. This process is more costly and energy-intensive than through hardening.

steels for induction hardening

(for example C56E2 to DIN EN ISO 683-17). This hardening method usually only hardens the raceway. The initial state recommended for the steel is quenched. The process requires coordination of the inductor, process parameters and design; preliminary tests are usually necessary. Slippage, i.e. areas that are heated twice and therefore become soft, can often be expected. Laser hardening is increasingly being used and, only rarely, flame hardening in the place of induction hardening.

Dynamic loading – geometrical stability

Component loading The stress distributions for component loading are as follows:

Load case	l static	II purely pulsating	III purely alternating	I + III general oscillating
	o o t	σ σ _{sch}	ar i+ow	o ov t
Maximum stress	$\sigma_{\rm st}$ = const.	$\sigma_{\rm o}$ = $\sigma_{\rm sch}$	$\sigma_0 = +\sigma_w$	$\sigma_{o} = \sigma_{m} + \sigma_{a}$
Mean stress	-	$\sigma_{\rm m}$ = $\sigma_{\rm sch}/2$	$\sigma_{\rm m}$ = 0	$\sigma_{\rm m}$ = $\sigma_{\rm V}$ (preload)
Minimum stress	-	$\sigma_u = 0$	$\sigma_u = -\sigma_w$	$\sigma_u = \sigma_m - \sigma_a$

Strength characteristic of the material that is decisive for component calculation

Breaking strength R _m (brittle material)	Fatigue strength under pulsating stresses $\sigma_{\rm Sch}$	Fatigue strength under reversed stresses $\sigma_{\rm W}$	Amplitude strength σ_{A}					
Yield point R _e ; R _{p0,2} (tough material)	Fatigue limit characteristic σ_D (general) or low cycle fatigue strength for low cycle fatigue design, for example σ_{Sch-N} , σ_{W-N}							

Wöhler's diagram

Figure 10 Wöhler's diaaram

 σ_a = stress amplitude N = load cycles $\sigma_{\rm D}$ = fatigue limit $\sigma(N) = low cycle fatigue$ strength $\sigma_{\rm B}$ = stress at fracture

> (1) Wöhler curve (2) Damage line

The following diagram shows Wöhler's diagram for the example

If the load falls below the damage line, the material will not be subjected to any preliminary damage.

Fatigue strength is illustrated in the diagram according to Smith.

Fatigue strength diagram in accordance with Smith

Figure 11

Fatique strength diagram in accordance with Smith

 $\sigma_{\rm D}$ = fatigue limit σ_m = mean stress σ_W = fatigue strength under reversed stresses σ_A = amplitude strength σ_{Sch} = fatigue strength under pulsating stresses σ_0 = maximum stress $\sigma_{\rm II}$ = minimum stress R_m = breaking strength $R_{e} = yield point$

(1) Strength characteristics (2) Reverse stress domain, pulsating stress domain

of tension – compression.

The influence of size and surface on component strength (+ material strength) is illustrated in the diagrams in Figure 12 and Figure 13. The following applies:

Equivalent stress on the component		Permissible load	Geometrical stability of the shape				
σ_{v}	≦	σ_{per} =	$\frac{\sigma_{D} \cdot b_{o} \cdot b_{d}}{S_{min} \cdot \beta_{k}}$				
where	σ_{D}	= decisive fatigue limi of the material	t value				
	b _o	= surface factor (≤ 1)					
	b _d	= size factor (≤ 1)					
	$\boldsymbol{\beta}_k$	= fatigue notch factor	(≧ 1)				
	S _{min}	= minimum safety (1,2	2 2)				

 $b_d = size factor$ d = component diameter

(1) For bending and torsion ② For tension/ compression

Figure 13 Influence of surface quality on fatigue strength

 $b_0 = surface factor$ Rt = roughness depth R_m = breaking strength of the material

> (1) Surfaces with rolling scale

Fatigue strength diagrams for general structural steels Fatigue strength diagrams for general structural steels (DIN 17100 and DIN EN 10025) are illustrated below.

The following applies:

- load case I: stationary loading
- load case II: pure pulsating loading
- load case III: pure alternating loading

For cold drawn material (for example E295GC), the yield point values may be up to 50% higher, whereas the fatigue strength under pulsating and under completely reversed stress may only be assumed to be about 10% higher than the table values. Cold forming reduces the material's ability to stretch, and its sensitivity to cleavage fracture is higher.

Under tensile and compressive loading we arrive at:

Tensile and compressive loading Figure 14 Fatigue strength of general structural steels: tensile and compressive loadina

$$\begin{split} \sigma_{D} &= \text{fatigue limit} \\ \sigma_{m} &= \text{mean stress} \\ \sigma_{zdW} &= \text{fatigue strength} \\ \text{under reversed tensile} / \\ \text{compressive stresses} \\ \sigma_{zdSch} &= \text{fatigue strength} \\ \text{under pulsating tensile} \\ \text{stresses} \\ R_{e} &= \text{yield point} \end{split}$$

1 E360 2 E335 3 E295 4 S275 5 S235

Source: Steinhilper, W.; R. Röper: Maschinen- und Konstruktionselemente. Springer-Verlag, Berlin, Heidelberg, New York (2002).

Source: Steinhilper, W.; R. Röper: Maschinen- und Konstruktionselemente. Springer-Verlag, Berlin, Heidelberg, New York (2002).

Source: Steinhilper, W.; R. Röper: Maschinen- und Konstruktionselemente. Springer-Verlag, Berlin, Heidelberg, New York (2002).

A selection of significant engineering materials is presented on the following pages – starting with various steel grades (including their heat treatment), via cast iron, cast steel and non-ferrous metals through to plastics.

Steel

Steel grades Various grades of steel are defined in standards (DIN, EN, ISO). A selection of steels is described in more detail below:

- unalloyed structural steels
- quenched and tempered steels
- case hardening steels
- stainless steels
- rolling bearing steels
- free-cutting steels

System of material designations The standard DIN EN 10027-1:2017 gives short names for steels. The whole standard is very extensive. For this reason, the system of engineering steels is presented as an example.

	Main sy	nbol	S		Ado for	dditional symbols Additional symbols for steel product			S]		
	G E n n n ar					••	+a	n +an	1)			
						ł				•		
Main symbols						Additional symbols						
Letter	Mech	anica	ıl pro	opert	ies	For steel		For steel				
						Group 1			Group 2	products		
G = Cast steel (if necessary)	nnn =	Defi min	ned imu	n yie	ld	G = Other feature with one or tw	s, if vo c	necessary consecutive	C = Suitability for cold	y Symbols for the treated		

(initianity i cita	men one or the consecutive	101 0010	for the treated
E = Engineering steels	strength ²⁾	numbers	drawing	condition:
	in MPa ³⁾	or		see standard
	for the smallest	if notched bar impact properties		DIN EN 10027-
	thickness value	are defined, in accordance		1:2017,
		with the following rules		Table 18
		according to table Notched bar		
		impact work, Page 283		

¹⁾ $\overline{n = number}$, a = letter, an = alphanumeric.

²⁾ The term "yield strength" is defined, in accordance with the information in the relevant product standard, as the upper or lower yield strength (R_{eH} or R_{eL}) or the proof stress under non-proportional elongation (R_p) or proof stress under complete elongation (R_i).

³⁾ 1 MPa = 1 N/mm².

Notched bar The following table shows the notched bar impact work in accordance with DIN EN 10027-1:2017 Table 1, Group 1.

Notched bar impact		Test temperature			
J (Joule)			°C		
27 J	40 J	60 J			
JR	KR	LR	+20		
JO	КО	LO	0		
J2	К2	L2	-20		
J3	К3	L3	-30		
J4	К4	L4	-40		
J5	К5	L5	-50		
J6	К6	L6	-60		

Examples of short names

Some examples of short names in accordance with EN 10027-1 are as follows:

Standard	Short name	Standard	Short name
EN 10025-2	E295	EN 10293	GE240
	E295GC	EN 10296-1	E355K2
	E335		
	E360		

Unalloyed structural steels

 According to the standard DIN EN 10025-2:2019, unalloyed structural steels are long and flat products made from hot-rolled, unalloyed, base and quality steels. They are characterised by their chemical composition and mechanical properties, see table, Mechanical properties, Page 284.

Unalloyed structural steels are used in building construction, civil engineering, bridge construction, hydraulic construction, tank and container construction and in vehicle and machine construction for example.

The steels referred to in this standard are not suitable for heat treatment. Stress relief annealing is permissible. Mechanical properties The following table gives the mechanical properties of a number of unalloyed structural steels as an extract from the corresponding standard.

Steel grade designation	e n	Tensile stren R _m ¹⁾ for nominal t mm	gth hickness valu	les	Yield strength R _{eH} ¹⁾ for nominal thickness values mm							
Short name	Material number	< 3	> 3 ≦ 100	> 100 ≦ 150	≦16	>16 ≦40	> 40 ≦ 63	>63 ≦80	> 80 ≦ 100	>100 ≦150		
		MPa			min. MPa							
S185	1.0035	310 540	290 510	280 500	185	175	175	175	175	165		
S235JR S235J0 S235J2	1.0038 1.0114 1.0117	360 510	360 510	350 500	235	225	215	215	215	195		
S275JR S275J0 S275J2	1.0044 1.0143 1.0145	430 580	410 560	400 540	275	265	255	245	235	225		
S355JR S355J0 S355J2 S355K2	1.0045 1.0553 1.0577 1.0596	510 680	470 630	450 600	355	345	335	325	315	295		
E295 ²⁾	1.0050	490 660	470 610	450 610	295	285	275	265	255	245		
E335 ²⁾	1.0060	590 770	570 710	550 710	335	325	315	305	295	275		
E360 ²⁾	1.0070	690 900	670 830	650 830	360	355	345	335	325	305		

For further mechanical and technological properties and information on the chemical composition of steels see DIN EN 10025.

 The values given in the table for the tensile test apply to longitudinal test pieces I. For strip, plate and wide flat steel with widths ≥ 600 mm, transverse test pieces t are applicable.

²⁾ These steel grades are not normally used for channels, angles and sections.

 Quenched and tempered steels
 Standards DIN EN ISO 683-1:2018 and DIN EN ISO 683-2:2018 list the mechanical properties of steels in the quenched and tempered condition (+ QT).

 Definition of the dimension limits does not mean that full martensitic quenching and subsequent tempering is possible up to the defined sampling point. The hardening depth is the result of the course of the end quenching curves.

Mechanical properties The following table gives the mechanical properties of a number of unalloyed quenched and tempered steels as an extract from the corresponding standard.

Steel designation			eld s 1) ,2%	trengtl proof s	h stress)	Tensile strength R _m			Elongation at fracture ²⁾ A			Red in a at fi Z	uctio rea ractu	n re	Notched bar impact work (Charpy test piece) ³⁾ KV				
		m M	in. Pa			МРа			min. %			min. %			min. J				
Short name	Material number	Di m	iamet m	er															
		ΛV	- 16	16 40	40 100	- 16	16 40	40 100	- 16	16 40	40 100	- 16	16 40	40 100	- 16	16 40	40 100		
C25 C25E C25R	1.0406 1.1158 1.1163		370	320	-	550 700	500 650	-	19	21	-	-	-	-	- 35 35	- 35 35	-		
C30 C30E C30R	1.0528 1.1178 1.1179		400	350	300 ⁴⁾	600 750	550 700	500 650 ⁴⁾	18	20	214)	-	-	-	- 30 30	- 30 30	- 30 ⁴⁾ 30		
C35 C35E C35R	1.0501 1.1181 1.1180		430	380	320	630 780	600 750	550 700	17	19	20	40	45	50	- 25 25	- 25 25	- 25 25		
C40 C40E C40R	1.0511 1.1186 1.1189		460	400	350	650 800	630 780	600 750	16	18	19	35	40	45	- 20 20	- 20 20	- 20 20		
C45 C45E C45R	1.0503 1.1191 1.1201		490	430	370	700 850	650 800	630 780	14	16	17	35	40	45	- 15 15	- 15 15	- 15 15		
C50 C50E C50R	1.0540 1.1206 1.1241		520	460	400	750 900	700 850	650 800	13	15	16	-	-	-	-	-	-		
C55 C55E C55R	1.0535 1.1203 1.1209		550	490	420	800 950	750 900	700 850	12	14	15	30	35	40	-	-	-		
C60 C60E C60R	1.0601 1.1221 1.1223		580	520	450	850 1000	800 950	750 900	11	13	14	25	30	35	-	-	-		
28Mn6	1.1170		590	490	440	800 950	700 850	650 800	13	15	16	40	45	50	25	30	30		

¹⁾ $\overline{R_{e:}}$ upper yield strength or, if there is no marked yield strength, 0,2% proof stress $R_{p0,2}$.

²⁾ Elongation at fracture: initial length $L_0 = 565 \cdot \sqrt{S_0}$ (S₀ = original cross section).

³⁾ Minimum notched bar impact work must be agreed if testing with a Charpy U-notch test piece is required.

⁴⁾ Valid for diameters up to 63 mm or for thicknesses up to 35 mm.

The following table gives the mechanical properties of a number of alloyed guenched and tempered steels as an extract from the corresponding standard.

Steel designation		Yield strength R _e ¹⁾ (0,2% proof stress)				Tensile R _m	Tensile strength R _m				Elongation at fracture ²⁾ A			Reduction in area at fracture Z			Notched bar impact work (Charpy test piece) ³⁾ KV		
			in. Pa			MPa			min. %			min. %			min. J				
Short name	Material number	D m	iamet m	er															
		$^{\vee}$	-	16	40	-	16	40	-	16	40	-	16	40	-	16	40		
		VII	16	40	100	16	40	100	16	40	100	16	40	100	16	40	100		
34Cr4	1.7033		700	590	460	900	800	700	12	14	15	35	40	45	-	40	40		
340154	1./03/					 1100	 950	 850											
37Cr4	1.7034		750	630	510	950	850	750	11	13	14	35	40	40	I	35	35		
37CrS4	1.7038					 1150	 1000	 900											
41Cr4	1.7035		800	660	560	1000	900	800	11	12	14	30	35	40	-	35	35		
410/54	1.7039					 1200	 1100	 950											
25CrMo4	1.7218		700	600	450	900	800	700	12	14	15	50	55	60	-	50	50		
25CrMoS4	1./213					 1100	 950	 850											
34CrMo4	1.7220		800	650	550	1000	900	800	11	12	14	45	50	55	I	40	45		
34Cr/054	1./226					 1200	 1100	 950											
42CrMo4	1.7225		900	750	650	1100	1000	900	10	11	12	40	45	50	-	35	35		
42CrM054	CrMoS4 1.7227					 1300	 1200	 1100											
50CrMo4	1.7228		900	780	700	1100	1000	900	9	10	12	40	45	50	-	30	30		
						 1300	 1200	 1100											

Continuation of table, see Page 287.

¹⁾ $\overline{R_e: upper yield}$ strength or, if there is no marked yield strength, 0,2% proof stress $R_{p0,2}$. ²⁾ Elongation at fracture: initial length $L_0 = 565 \cdot \sqrt{S_0}$ (S₀ = original cross section).

³⁾ Minimum notched bar impact work must be agreed if testing with a Charpy U-notch test piece is required.

designation		R _e ¹⁾ (0,2% proof stress)			R _m		at fracture ²⁾ A		in area at fracture Z		Notched bar impact work (Charpy test piece) ³⁾ KV						
		m M	in. Pa		MPa min. mi %					min %	n. min. J						
Short name	Material number	D m	iame m	eter													
		>	-	16	40	-	16	40	-	16	40	-	16	40	-	16	40
		SII (16	40	100	16	40	100	16	40	100	16	40	100	16	40	100
36CrNiMo4	1.6511		900	800	700	1100	1000	900	10	11	12	-	-	-	-	-	-
						 1300	 1200	 1100									
34CrNiMo6	1.6582	1	000	900	800	1200	1100	1000	9	10	11	40	45	50	I	45	45
						 1400	 1300	 1200									
30CrNiMo8	1.6580		850	850	800	1030	1030	980	12	12	12	40	40	45	-	30	35
						 1230	 1230	 1800									
51CrV4	1.8159		900	800	700	1100	1000	900	9	10	12	40	45	50	-	30	30
						 1300	 1200	 1100									

Continuation of table. Mechanical properties (quenched and tempered steels), from Page 286.

¹⁾ $\overline{R_{a:}}$ upper yield strength or, if there is no marked yield strength, 0,2% proof stress $R_{p0,2}$.

²⁾ Elongation at fracture: initial length $L_0 = 565 \cdot \sqrt{S_0}$ (S₀ = original cross section).

³⁾ Minimum notched bar impact work must be agreed if testing with a Charpy U-notch test piece is required.

Case hardening steels According to the standard DIN EN ISO 683-3:2022, case hardening steels are structural steels with a relatively low carbon content. They are used for components whose surface zones are usually carburised or carbonitrided prior to hardening.

> After hardening, these steels exhibit a high degree of hardness in the surface zone and good resistance to wear. The core zone primarily exhibits a high degree of toughness, however, this requires coordination of the cross-section to be hardened, the hardening process and the steel composition.

> The standard DIN EN ISO 683-3 applies to semi-finished products. for example: cogs, roughed slabs, billets, hot-rolled wire, hot-rolled or forged steel bar (round, rectangular, hexagonal, octagonal and flat steel), hot-rolled wide flat steel, hot or cold-rolled sheet and strip, open die and drop forgings.

Brinell hardness The following table gives the Brinell hardness of a number of case hardening steels in various treated conditions as an extract from the corresponding standard.

Steel designation	ı	Hardness	s in treated	l condition ¹⁾	
Short name	Material	+S ²⁾	+A ³⁾	+TH ⁴⁾	+FP ⁵⁾
	number	max. HBW	max. HBW	HBW	HBW
C10E	1.1121	-	131	-	-
C10R	1.1207	-	131	-	-
C15E	1.1141	-	143	-	-
C15R	1.1140	-	143	-	-
17Cr3	1.7016	-	174	-	-
17CrS3	1.7014	-	174	-	-
28Cr4	1.7030	255	217	166 217	156 207
28CrS4	1.7036	255	217	166 217	156 207
16MnCr5	1.7131	-	207	156 207	140 187
16MnCrS5	1.7139	-	207	156 207	140 187
20MnCr5	1.7147	255	217	170 217	152 201
20MnCrS5	1.7149	255	217	170 217	152 201
20MoCr4	1.7321	255	207	156 207	140 187
20MoCrS4	1.7323	255	207	156 207	140 187
20NiCrMo2-2	1.6523	-	212	161 201	149 194
20NiCrMoS2-2	1.6526	-	212	161 201	149 194
17NiCrMo6-4	1.6566	255	229	179 229	149 201
17NiCrMoS6-4	1.6569	255	229	179 229	149 201

1) Hardness requirements for the products supplied in the following conditions.

²⁾ Treated to improve shearability.

3) Soft-annealed.

⁴⁾ Treated for strength.

⁵⁾ Treated to ferrite-pearlite structure.

Stainless steels The standard DIN EN 10088:2014 gives the chemical composition and mechanical properties of stainless steels.

Stainless steels are particularly resistant to chemically aggressive substances. They contain at least 10,5% Cr and no more than 1,2% C. The property "corrosion-resistant" requires a heat treatment that is adapted to the steel. This applies in particular to martensitic-hardened steels. In accordance with their essential use characteristics, they are further subdivided into:

- Corrosion-resistant steels: material numbers 1.40xx to 1.46xx
- Heat-resistant steels: material numbers 1.47xx and 1.48xx
- Creep-resistant steels: material numbers 1.49xx

Stainless steels can also be classified in accordance with their microstructure into:

Ferritic steels: good suitability for welding, creec

good suitability for welding, creep-resistant, special magnetic properties, poor suitability for machining by cutting, suitable for cold forming, not resistant to intercrystalline corrosion, E = 220 000 MPa

Martensitic steels:

hardenable, good suitability for machining by cutting, high strength, magnetic, weldable under certain conditions, $E = 216\,000$ MPa

- Precipitation hardening steels: hardenable by precipitation hardening, suitability for machining by cutting dependent on hardness, magnetic, E = 200 000 MPa
- Austenitic steels: good suitability for welding, good suitability for cold forming, difficult to machine by cutting, non-magnetic, E = 200 000 MPa
- Austenitic-ferritic steels (duplex steels): resistant to stress corrosion cracking, high erosion resistance and high fatigue strength, E = 200 000 MPa

Mechanical properties The following table gives the mechanical properties of a number of stainless steels as an extract from the corresponding standard.

Steel designation		Elongation	Tensile	Yield strength,	Examples of application			
Short name	Material number	at fracture A min. %	strength for d _N ¹⁾ R _{mN} min. MPa	0,2% proof stress for d _N ¹⁾ R _{eN} , R _{p0,2N} min. MPa				
Stainless steels in (semi-finished pro	accordance oducts, bars	with DIN EN 1 and profiles)	.0088-3	<u>.</u>	Characterised by better resistance to chemically aggressive substances			
Treated condition	Ferritic stee	els: annealed	(+A)		(compared with low-alloy steels); the resistance is based			
	Martensitio quenched	steels: and tempered	mple QT700)	on the formation of covering layers due to the chemical attack				
	Austenitic solution an	and austenitic inealed (+AT)	-ferritic steels	5:				
Practically no influ	uence on siz	e due to techn						
Ferritic steels								
X2CrMoTiS18-2	1.4523	15	430	280	Acid-resistant parts in the textile industry			
X6CrMoS17	1.4105	20	430	250	Free-cutting steels; bolts, fasteners			
X6Cr13	1.4000	20	400	230	Chip carriers, cutlery, interior fittings			
X6Cr17	1.4016	20	400	240	Connectors, deep drawn formed parts			
Martensitic steels	5							
X20Cr13	1.4021	13	700	500	Armatures, flanges, springs, turbine parts			
X39CrMo17-1	1.4122	12	750	550	Tubes, shafts, spindles, wear parts			
X14CrMoS17	1.4104	12	650	500	Free-cutting steel; turned parts, apparatus fittings			
X12CrS13	1.4005	12	650	450	Connectors, cutting tools,			
X3CrNiMo13-4	1.4313	15	780	620	components subjected to wear			
X17CrNi16-2	1.4057	14	800	600				

Continuation of table, see Page 291.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

Guide values for fatigue strength: $\sigma_{bW} \approx 0.5 \cdot R_m$, $\sigma_{zdW} \approx 0.4 \cdot R_m$, $\tau_{tW} \approx 0.3 \cdot R_m$.

¹⁾ d_N: reference dimension (diameter, thickness) of semi-finished product in accordance with the relevant material standard.

 $R_{mN},\,R_{eN},\,R_{p0,2N}$: standard values for tensile strength, yield strength and 0,2% proof stress measured relative to d_{N}

Continuation of table, Mechanical properties (stainless steels), from Page 290.

Steel designation		Elongation	Tensile	Yield strength,	Examples of application
Short name	Material number	at fracture A	strength for d _N ¹⁾ R _m	0,2% proof stress for d _N ¹⁾ R _{eN} , R _{p0,2N}	
		min. %	min. MPa	min. MPa	
Austenitic steels					
X5CrNi18-10	1.4301	45	500	190	Universal use; building, vehicle construction, foodstuffs industry
X8CrNiS18-9	1.4305	35	500	190	Free-cutting steel; machine and connecting elements
X6CrNiTi18-10	1.4541	40	500	190	Household goods, photography industry, sanitary use
X2CrNiMo17-12-2 X2CrNiMoN17-13-3	1.4404 1.4429	40 40	500 580	200 280	Offshore engineering, pressure vessels, welded construction parts; pins, shafts
X2CrNiMo17-12-2	1.4401	40	500	200	Bleaching equipment, foodstuffs, oil and dyeing industry
X6CrNiMoTi17-12-2	1.4571	40	500	200	Containers (tanker trucks), heating vessels, synthetic resin and rubber industry
All austenitic grades col	d hardened				
Tensile strength step	C700 C800	20 12	700 800	350 500	Load-bearing components
Austenitic-ferritic steels	duplex ste	els)			
X2CrNiMoN22-5-3	1.4462	25	650	450	Components for high chemical
X2CrNiN23-4	1.4362	25	600	400	water and wastewater
X2CrNiMoCuWN25-7-4	1.4501	25	730	530	engineering, offshore engineering, pulp and chemicals industry, tank construction, centrifuges, conveying equipment

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

 d_N: reference dimension (diameter, thickness) of semi-finished product in accordance with the relevant material standard.

 $R_{mN}, R_{eN}, R_{p0,2N}$ standard values for tensile strength, yield strength and 0,2% proof stress measured relative to $d_N.$

Guide values for fatigue strength: $\sigma_{bW} \approx 0.5 \cdot R_m$, $\sigma_{zdW} \approx 0.4 \cdot R_m$, $\tau_{tW} \approx 0.3 \cdot R_m$.

- Rolling bearing steels According to the standard DIN EN ISO 683-17:2015, rolling bearing steels are steels for components of rolling bearings. They are subjected first and foremost to high local alternating stresses and wear during operation. In the used condition they exhibit a hardening microstructure (at least in the surface zone).
 - Hardness The following table gives the hardness in the soft annealed delivered condition as an extract from the corresponding standard. In the final state after martensitic or bainitic hardening, the surface hardness is usually above 58 HRC.

Steel designation		Hardne	ess in th	e delivered co	ndition			Previous	
Short name	Material number	+S	+A	+HR	+AC ¹⁾	+AC ¹⁾ +C	+FP	designation	
		max. HBW	max. HBW	HBW	max. HBW	max. HBW	HBW		
Through hardening rolling bearing steels									
100Cr6	1.3505	2)	-	-	207	241 ³⁾⁴⁾⁵⁾	-	100 Cr 6	
100CrMnSi6-4	1.3520	2)	-	-	217	251 ⁴⁾⁵⁾	-	100 CrMn 6	
100CrMo7	1.3537	2)	-	-	217	251 ⁴⁾⁵⁾	-	100 CrMo 7	
100CrMo7-3	1.3536	2)	-	-	230	-	-	100 CrMo 7 3	
100CrMnMoSi8-4-6	1.3539	2)	-	-	230	-	-	100 CrMnMo 8	
Case hardening rolling	g bearing s	teels							
17MnCr5	1.3521	6)	207	156 207	170	7)	140 187	17 MnCr 5	
19MnCr5	1.3523	255	217	170 217	179	7)	152 201	19 MnCr 5	
18NiCrMo14-6	1.3533	255	-	-	241	7)	-	17 NiCrMo 14	

Continuation of table, see Page 293.

- 2) If this condition is necessary, the maximum hardness value and the requirements concerning the structure are to be agreed upon when the enquiry and order are placed.
- ³⁾ The hardness of wire for needle roller bearings should not exceed 331 HBW.
- ⁴⁾ The hardness of cold-finished tubes should not exceed 321 HBW.
- $^{5)}$ The hardness value for bright steel products with a diameter < 13 mm should be < 320 HBW.
- ⁶⁾ Under suitable conditions, this grade is shearable in the untreated condition.
- ⁷⁾ Depending on the degree of cold forming, the values may exceed those for the condition +AC by up to approx. 50 HBW.

¹⁾ For case hardening steels, this condition is applied if cold forming operations are intended. For through hardening, stainless and high-temperature rolling bearing steels, this condition is also used if the steel is processed further by machining operations.

Steel designation		Hardn	ess in tł	ne deliver	red cond	lition		Previous	
Short name	Material number	+S	+A	+HR	+AC ¹⁾	+AC ¹⁾ +C	+FP	designation	
		max. HBW	max. HBW	HBW	max. HBW	max. HBW	HBW		
Induction hardening rolling bearing steels									
C56E2	1.1219	255 ²⁾	229	-	-	-	-	Cf 54	
43CrMo4	1.3563	255 ²⁾	241	-	-	-	-	43 CrMo 4	
Stainless rolling be	aring steels								
X47Cr14	1.3541	3)	-	-	248	4)	-	X 45 Cr 13	
X108CrMo17	1.3543	3)	-	-	255	4)	-	X 102 CrMo 17	
X89CrMoV18-1	1.3549	3)	-	-	255	4)	-	X 89 CrMoV 18 1	
High-temperature re	olling bearing steel	5							
80MoCrV42-16	1.3551	3)	-	-	248	4)	-	80 MoCrV 42 16	
X82WMoCrV6-5-4	1.3553	3)	-	-	248	4)	-	X 82 WMoCrV 6 5 4	
X75WCrV18-4-1	1.3558	3)	-	-	269	4)	-	X 75 WCrV 18 4 1	

Continuation of table, Hardness, from Page 292.

¹⁾ For case hardening steels, this condition is applied if cold forming operations are intended. For through hardening, stainless and high-temperature rolling bearing steels, this condition is also used if the steel is processed further by machining operations.

²⁾ Depending on the chemical composition of the cast and the dimensions, condition +A may be necessary.

³⁾ In general, shearability will only apply in condition +AC.

⁴⁾ Depending on the degree of cold forming, the values may exceed those for the condition +AC by up to approx. 50 HBW.

Free-cutting steels According to the standard DIN EN ISO 683-4:2018, free-cutting steels are characterised by good cutting properties and good chip brittleness. These are essentially achieved by higher sulphur contents and with further additives (for example, lead) where required.

Bright free-cutting steels differ from the hot formed free-cutting steels by virtue of the fact that they have obtained a smooth, bright surface and a significantly higher dimensional accuracy through cold forming (drawing) or machining (pre-turning, rough grinding).

Mechanical properties The following table gives the mechanical properties of a number of free-cutting steels as an extract from the corresponding standard.

Steel designati	on	Diamet	ter d	Untreated		Quenched a	and tempere	d
Short name	Material number	over	incl.	Hardness ¹⁾	Tensile strength R _m	Yield strength R _e	Tensile strength R _m	Elongation A
		mm	mm	max. HBW	MPa	min. MPa	MPa	min. %
Free-cutting ste	els not inter	ided for	heat trea	atment				
11SMn30	1.0715	5	10	169	380 570	-	-	-
11SMnPb30 11SMn37	1.0718 1.0736	10	16	169	380 570	-	-	-
11SMnPb37	1.0737	16	40	169	380 570	-	-	-
		40	63	169	370 570	-	-	-
		63	100	154	360 520	-	-	-
Case hardening	steels							
10S20	1.0721	5	10	156	360 530	-	-	-
10SPb20	1.0/22	10	16	156	360 530	-	-	-
		16	40	156	360 530	-	-	-
		40	63	156	360 530	-	-	-
		63	100	146	350 490	-	-	-
15SMn13	1.0725	5	10	181	430 610	-	-	-
17SMn20		10	16	178	430 600	-	-	-
		16	40	178	430 600	-	-	-
		40	63	172	430 580	-	-	-
		63	100	160	420 540	-	-	-

Continuation of table, see Page 295.

1) In cases of dispute, the tensile strength values are decisive. The hardness values are for information only.

		from	nuatioi Page 2	n of table, Me 94.	echanical proj	perties (free	e-cutting steel	S),	
Steel designat	ion	Diame	ter d	Untreated		Quenched and tempered			
Short name	Material number	over	incl.	Hardness ¹⁾	Tensile strength R _m	Yield strength R _e	Tensile strength R _m	Elongatior A	
		mm	mm	max. HBW	MPa	min. MPa	MPa	min. %	
Quenched and	tempered st	eels							
35S20	1.0726	5	10	210	550 720	430	630 780	15	
35SPb20 1.0756	10	16	204	550 700	430	630 780	15		
		16	40	198	520 680	380	600 750	16	
		40	63	196	520 670	320	550 700	17	
		63	100	190	500 650	320	550 700	17	
36SMn14	1.0764	5	10	225	580 770	480	700 850	14	
36SMnPb14	1.7065	10	16	225	580 770	460	700 850	14	
		16	40	219	560 750	420	670 820	15	
		40	63	216	560 740	400	640 700	16	
		63	100	216	550 740	360	570 720	17	
38SMn28	1.0760	5	10	228	580 780	480	700 850	15	
38SMnPb28	1.0761	10	16	219	580 750	460	700 850	15	
		16	40	213	560 730	420	700 850	15	
		40	63	213	560 730	400	700 850	16	
		63	100	204	550 700	380	630 800	16	

¹⁾ In cases of dispute, the tensile strength values are decisive. The hardness values are for information only.

in the form of flake graphite.

Flake graphite cast iron

Cast iron and cast steel According to the standard DIN EN 1561:2012, flake graphite cast iron is a casting alloy based on iron-carbon, where the carbon is chiefly present

The properties of flake graphite cast iron are dependent on the form and distribution of the graphite and on the metallic matrix.

Tensile strength The following table gives the tensile strength of a number of grades of flake graphite cast iron as an extract from the corresponding standard.

Material design	ation	Decisive thicknes	wall s value	Tensile strengt R _m	th		Previous designation
				Values that must be m	naintained ¹⁾	Expected values	
Short designation	Material number	over	incl.	in test piece cast separately ²⁾	st piece in integrally cast test rately ²⁾ piece ³⁾		
		mm	mm	MPa	min. MPa	min. MPa	
EN-GJL-100	5.1100	5	40	-	100	-	GG-10 EN-JL 1010
EN-GJL-150	5.1200	2,5 ⁵⁾	50	150 250	150	135	GG-15
		50	100		130	120	EN-JL 1020
		100	200		110	110	
EN-GJL-200	5.1300	2,5 ⁵⁾	50	200 300	200	180	GG-20
		50	100		180	160	EN-JL 1030
		100	200		160	145	
EN-GJL-250	5.1301	5 ⁵⁾	50	250 350	250	225	GG-25
		50	100		220	200	EN-JL 1040
		100	200		200	185	
EN-GJL-300	5.1302	10 ⁵⁾	50	300 400	300	270	GG-30
		50	100		260	245	EN-JL 1050
		100	200		240	220	
EN-GJL-350	5.1303	10 ⁵⁾	50	350 450	350	320	GG-35
		50	100		310	290	EN-JL 1060
		100	200		280	260	

1) If proof of tensile strength has been agreed for an order, the nature of the test piece must be specified in the order.

²⁾ The values refer to test pieces with an unfinished casting diameter of 30 mm. If nothing can be defined for a specific wall thickness range, this is identified by a dash.

³⁾ The values refer to samples that have been machined from cast test pieces.

⁴⁾ Guide values for the tensile strength of samples created using test pieces taken from the casting. If nothing can be defined for a specific wall thickness range, this is identified by a dash. The values are for information purposes.

⁵⁾ This dimension is included as the lower limit of the wall thickness range.

Spheroidal graphite
cast ironAccording to the standard DIN EN 1563:2019, spheroidal graphite cast iron
is a casting material based on iron-carbon, where the carbon is chiefly
present in the form of spheroidal graphite particles.
Spheroidal graphite cast iron is also known as ductile cast iron.

Mechanical properties The following table (extract from the standard) lists the mechanical properties of a number of spheroidal graphite cast irons, measured on samples machined from test pieces.

Material designation		Decisive thicknes	e wall ss value	Guaranteed	Guaranteed properties			
Designation	Material number	over	incl.	Tensile strength R _m	0,2% proof stress R _{p0,2}	Elongation at fracture A		
		mm	mm	min. MPa	min. MPa	min. %		
Ferritic to pearlitic gra	ades							
EN-GJS-350-22-LT	5.3100	-	30	350	220	22	GGG-35.3	
(LT: for low temperatures)		30	60	330	210	18	EN-JS1015	
		60	200	320	200	15		
EN-GJS-350-22-RT (RT: for room temperature)	5.3101	-	30	350	220	22	EN-JS1014	
		30	60	330	220	18		
		60	200	320	210	15		
EN-GJS-400-18-LT	5.3103	-	30	400	240	18	GGG-40.3	
(L1: for low temperatures)		30	60	380	230	15	EN-JS1025	
1 2		60	200	360	220	12		
EN-GJS-400-18-RT	5.3104	-	30	400	250	18	EN-JS1024	
(R1: for room temperature)		30	60	390	250	15		
		60	200	370	240	12		
EN-GJS-400-15	5.3106	-	30	400	250	15	GGG-40	
		30	60	390	250	14	EN-JS1030	
		60	200	370	240	11		
EN-GJS-600-3	5.3201	-	30	600	370	3	GGG-60	
		30	60	600	360	2	EN-JS1060	
		60	200	550	340	1		

Continuation of table, see Page 298.

Material designation Decisive wall thickness value			e wall ss value	Guaranteed prop	Previous desig-			
Designation	Material number	over	incl.	Tensile strength R _m	0,2% proof stress R _{p0,2}	Elongation at fracture A	nation	
		mm	mm	min. MPa	min. MPa	min. %		
Solid-solution strengthened ferritic grades								
EN-GJS-450-18	5.3108	-	30	450	350	18	-	
		30	60 ¹⁾	430	340	14		
EN-GJS-500-14	5.3109	-	30	500	400	14	-	
		30	60 ¹⁾	480	390	12		
EN-GJS-600-10	5.3110	- 30		600	470	10	-	
		30	60 ¹⁾	580	450	8		

Continuation of table, Mechanical properties (Spheroidal graphite cast iron), from Page 297.

1) Properties for wall thicknesses > 60 mm must be agreed between the manufacturer and buyer.

The following table (extract from the standard) shows minimum values for impact energy measured on V-notch test pieces, which were manufactured from specimens by means of machining.

Material designation	ı	Decisiv	ve wall	Minimun	n values for i	impact en	ergy		
		thickne value	ess	Room tei RT (23 ±	mperature 5) ℃	Low tem LT (–20 ±	peratures : 2) °C	Low tem LT (–40 ±	peratures : 2) °C
Short designation	Material number	over	incl.	Mean value ¹⁾	Individual value	Mean value ¹⁾	Individual value	Mean value ¹⁾	Individual value
		mm	mm	J	J	J	J	J	J
EN-GJS-350-22-LT	5.3100	I	30	I	-	I	-	12	9
(LT: for low temperatures)		30	60	I	-	I	-	12	9
		60	200	I	-	I	-	10	7
EN-GJS-350-22-RT	5.3101	-	30	17	14	-	-	-	-
(RT: for room temperature)		30	60	17	14	I	-	I	-
		60	200	15	12	I	-	I	-
EN-GJS-400-18-LT	5.3103	-	30	-	-	12	9	-	-
(LT: for low temperatures)		30	60	I	-	12	9	I	-
		60	200	I	-	10	7	I	-
EN-GJS-400-18-RT	5.3104	-	30	14	11	-	-	-	-
(RT: for room temperature)		30	60	14	11	-	-	-	-
		60	200	12	9	-	-	-	-

1) Mean value from 3 tests.

Integrally cast test pieces The properties of an integrally cast test piece cannot accurately reproduce the properties of the actual casting. Improved approximate values can, however, be achieved in this instance compared with a test piece that is cast separately.

The following table (extract from the standard) lists guide values for the mechanical properties of a number of spheroidal graphite cast irons, measured on samples taken from the casting.

Material designation	Decisive thicknes	e wall ss value	Guarantee	Previous designation				
Short designation	Material number	over	incl.	Tensile strength R _m	0,2% proof stress R _{p0,2}	Elongation at fracture A		
		mm	mm	min. MPa	min. MPa	min. %		
Ferritic to pearlitic grad	les							
EN-GJS-350-22C-LT	5.3100	-	30	350	220	22	GGG-35.3	
(LT: for low temperatures)		30	60	330	210	18	EN-JS1015	
		60	200	320	200	15		
EN-GJS-350-22C-RT (RT: for room temperature)	5.3101	-	30	350	220	22	EN-JS1029	
		30	60	330	220	18		
		60	200	320	210	15		
EN-GJS-400-18C-LT	5.3103	-	30	400	240	18	GGG-40.3 EN-JS1025	
(L1: for low temperatures)		30	60	380	230	15		
		60	200	360	220	12		
EN-GJS-400-18C-RT	5.3104	-	30	400	250	18	EN-JS1059	
(RI: for room temperature)		30	60	390	250	15		
		60	200	370	240	12		
EN-GJS-400-15C	5.3106	-	30	400	250	15	GGG-40	
		30	60	390	250	14	EN-JS1030	
		60	200	370	240	11		
EN-GJS-600-3C	5.3201	-	30	600	370	3	GGG-60	
		30	60	600	360	2	EN-JS1060	
		60	200	550	340	1		

Continuation of table, see Page 300.

Material designation		Decisive wall thickness value		Guarantee	Previous designation			
Short designation	Material number	over mm	incl. mm	Tensile strength R _m min. MPa	0,2% proof stress R _{p0,2} min. MPa	Elongation at fracture A min. %		
Solid-solution strength	nened ferritic g	rades						
EN-GJS-450-18C	5.3108	I	30	350	440	16	-	
		30	60	340	420	16		
		60	200	Guide valu by the man				
EN-GJS-500-14C	5.3109	I	30	400	480	12	-	
		30	60	390	460	10		
		60	200	Guide valu by the man				
EN-GJS-600-10C	5.3110	I	30	450	580	8	-	
		30	60	430	560	6		
		60	200	Guide valu by the man				

Continuation of table, Integrally cast test pieces (Spheroidal graphite cast iron), from Page 299.

If a higher material strength is required for a cast construction, this can be achieved with an ADI grade (austempered ductile (cast) iron). The heat treatment required for this purpose comprises either intermediate transformation (austempering) or quenching by means of hardening and tempering.

The most common ADI grades offer the following properties in accordance with DIN EN 1564:2012:

Material designation	Hardnes	s	Yield	Tensile	Elongation	
Short name			point R _e	strength R _m	at fracture A	
	min. HBW	max. HBW	min. MPa	min. MPa	min. %	
EN-GJS-800-8	260	320	500	800	8	
EN-GJS-1000-5	300	360	700	1000	5	
EN-GJS-1200-2	340	440	850	1200	2	
EN-GJS-1400-1	380	480	1100	1400	1	

Cast steel In accordance with the standard DIN EN 10293:2015, the mechanical for general and magnetic properties of a number of cast steel grades are listed **applications** in the following table as an extract.

Cast ste	el grade	Heat treat- ment symbol ¹⁾	Decisive wall thickness value		Decisive wall Tensile thickness strength value R _m		0,2% proof stress R _{p0,2}	Elon- gation at fracture ²⁾ A	Notched bar impact work KV	Magnetic induction ⁴⁾ at a field strength of		ngth of
Short name	Material number		over	incl.				at RT ³⁾	25 A/cm	50 A/cm	100 A/cm	
			mm	mm	MPa	min. MPa	min. %	min. J	min. T	min. T	min. T	
GE200	1.0420	+N	I	300	380 530	200	25	27	1,45	1,60	1,75	
GE240	1.0446	+N	I	300	450 600	240	22	27	1,40	1,55	1,70	
GE300	1.0558	+N	I	30	600 750	300	15	27	1,30	1,50	1,65	
			30	100	520 670	300	18	31				
GS200	1.0449	+N	-	100	380 530	200	25	35	-	-	-	
GS240	1.0455	+N	1	100	450 600	240	22	31	-	-	-	

1) +N means: normalising.

²⁾ Elongation at fracture: initial length $L_0 = 5d_0$.

3) RT stands for: room temperature (23 ± 5) °C.

⁴⁾ These values apply only by arrangement.

Creep-resistant In accordance with the standard DIN EN 10213:2016. **cast steel** the mechanical properties for a number of creep-resistant cast steels are listed in the following table as an extract.

Cast steel grade		Heat treat-	leat Tensile reat- strength		0,2% proof stress R _{p0,2} at a temperature of							Notched bar
Short name	Material number	ment symbol ¹⁾	R _m	20 °C	200 °C	300 ℃	350 ℃	400 ℃	450 ℃	500 ℃	at frac- ture A	impact work KV
			MPa	MPa							%	J
GP240GH	1.0619	+N	420600	240	175	145	135	130	125	-	22	27
		+QT	420600	240	175	145	135	130	125	-	22	40
GP280GH	1.0625	+N	480 640	280	220	190	170	160	150	-	22	27
		+QT	480 640	280	220	190	170	160	150	-	22	35
G20Mo5	1.5419	+QT	440 590	245	190	165	155	150	145	135	22	27
G17CrMo5-5	1.7357	+QT	490 690	315	250	230	215	200	190	175	20	27
G17CrMo9-10	1.7379	+QT	590 740	400	355	345	330	315	305	280	18	40
G12CrMoV5-2	1.7720	+QT	510 660	295	244	230	-	214	-	194	17	27
G17CrMoV5-10	1.7706	+QT	590 780	440	385	365	350	335	320	300	15	27
GX15CrMo5	1.7365	+QT	630 760	420	390	380	-	370	-	305	16	27
GX8CrNi12	1.4107	+QT1	540 690	355	275	265	-	255	-	-	18	45
		+QT2	600 800	500	410	390	-	370	-	-	16	40
GX4CrNi13-4	1.4317	+QT	760 960	550	485	455	440	-	-	-	15	27
GX23CrMoV12-1	1.4931	+QT	740880	540	450	430	410	390	370	340	15	27
GX4CrNiMo16-5-1	1.4405	+QT	760 960	540	485	455	-	-	-	-	15	60

1) +N means: normalising.

+QT means: quenching and tempering (hardening in air or liquid + tempering).

If alternative heat treatments are available, the required alternative should be specified in the order, for example GX8CrNi12 +QT1 or 1.4107 +QT.

Malleable cast iron According to the standard DIN EN 1562:2019, malleable cast iron is an iron-carbon cast material whose castings solidify largely without graphite if the design is appropriate for the material involved.

Depending on the type of heat treatment used for the unfinished casting, we arrive at:

- blackheart malleable cast iron (non-decarburised)
- whiteheart malleable cast iron (decarburised)

After annealing treatment, the iron carbide (cementite) present in the structure disappears completely. With the exception of fully decarburised, whiteheart malleable cast iron, both groups contain free carbon in the form of graphite, known as temper carbon. Both groups have material grades with structures that can range from ferrite to pearlite and/or other transformation products of austenite.

The chemical composition of the unfinished malleable cast iron and the nature of the temperature-dependent and time-dependent annealing process define the structural constitution and consequently the properties of the material.

The materials are designated in terms of tensile strength and elongation. This takes place relative to a 12 mm diameter test piece for whiteheart malleable cast iron and 12 mm or 15 mm diameter test pieces for blackheart malleable cast iron. However, comparative values of tensile strength and elongation after fracture are also given for other test piece diameters.

If welding work is to be carried out during the course of production or when using malleable iron castings, this must be agreed between the purchaser and the manufacturer of the casting. Heat treatment is required after repair welding.

Distortion as the result of heat treatment must be eliminated by straightening. Hot straightening or stress relief annealing can be agreed upon in special cases.

Malleable cast iron is easy to machine. The suitability of individual grades depends on the respective structural constitution.

The following shrinkage dimensions are valid for model production:

- 1% to 2% for whiteheart malleable cast iron
- 0% to 1,5% for blackheart malleable cast iron

The average density of the material is 7,4 kg/dm³.

Mechanical properties The following table gives the mechanical properties of malleable cast iron as an extract from the corresponding standard.

Material D designation the v		Decisive wall thickness value		ive wall Nominal ness diameter of the		0,2% proof stress	Elon- gation at frac-	Brinell hard- ness ¹⁾	Minimum values for impact energy		Previous designation
Short desig- nation	Material number	over	incl.	sample d		R _{p0,2}	ture A _{3,4}		Average from 3 test pieces	Indi- vidual value	
		mm	mm	mm	min. MPa	min. MPa	min. %	max. HBW	min. J	min. J	
Whitehear	t malleabl	e (deca	rburise	d) cast iron	I						
EN-GJMW-	5.4200	-	3	6	270	-	10	230	-	-	GTW-35-04
350-429		3	5	9	310	-	5	230	-	-	EN-JM1010
		5	7	12	350	-	4	230	-	-	
		7	-	15	360	-	3	230	-	-	
EN-GJMW-	5.4201	-	3	6	280	_3)	16	200	14	10	GTW-S-38-12
360-12-9		3	5	9	320	170	15	200	14	10	EN-JW1020
		5	7	12	360	190	12	200	14	10	
		7	-	15	370	200	8	200	14	10	
EN-GJMW-	5.4202	-	3	6	300	_3)	12	220	7	5	GTW-40-05
400-5-7		3	5	9	360	200	8	220	7	5	EN-JM1030
		5	7	12	400	220	5	220	7	5	
		7	-	15	420	230	4	220	7	5	
EN-GJMW-	5.4203	-	3	6	330	_3)	12	220	10	7	GTW-45-07
450-7-2		3	5	9	400	230	10	220	10	7	EN-J/M1040
		5	7	12	450	260	7	220	10	7	
		7	-	15	480	280	4	220	10	7	
EN-GJMW-	5.4204	-	3	6	-	_3)	-	250	-	-	-
550-4		3	5	9	490	310	5	250	-	-	
		5	7	12	550	340	4	250	-	-	
		7	-	15	570	350	3	250	-	-	

Continuation of table, see Page 305.

1) The values are for information purposes.

²⁾ Material approved for pressure equipment in accordance with European legislation, see standard.

3) Values and methods must be agreed.

Continuation of table, Mechanical properties (malleable cast iron), from Page 304.

Material designatio	'n	Decisive wall thickness value		sive wall Nominal kness diameter e of the		0,2% proof stress	0,2% Elon- proof gation stress at frac-		Minimum values for impact energy		Previous designation
Short desig- nation	Material number	over	incl.	sample d		R _{p0,2}	ture A _{3,4}		Average from 3 test pieces	Indi- vidual value	
		mm	mm	mm	min. MPa	min. MPa	min. %	max. HBW	min. J	min. J	
Blackheart malleable (non-decarburised) cast iron											
EN-GJMB- 300-6 ²⁾	5.4100	-	-	12 or 15	300	-	6	150	-	-	-
EN-GJMB- 350-10 ³⁾	5.4101	-	-	12 or 15	350	200	10	150	14	10	GTS-35-10 EN-JM1130
EN-GJMB- 450-6 ³⁾	5.4205	-	-	12 or 15	450	270	6	150 200	10	7	GTS-45-06 EN-JM1140
EN-GJMB- 500-5	5.4206	-	-	12 or 15	500	300	5	165 215	1	I	-
EN-GJMB- 550-4	5.4207	-	-	12 or 15	550	340	4	180 230	1	I	GTS-55-04 EN-JM1160
EN-GJMB- 600-3	5.4208	-	-	12 or 15	600	390	3	195 290	1	I	-
EN-GJMB- 650-2 ³⁾	5.4300	-	-	12 or 15	650	430	2	210 260	5	3,5	GTS-65-02 EN-JM1180
EN-GJMB- 700-2 ⁴⁾⁵⁾	5.4301	-	-	12 or 15	700	530	2	240 290	-	-	GTS-70-02 EN-JM1190
EN-GJMB- 800-1 ⁵⁾	5.4302	-	-	12 or 15	800	600	1	270 320	-	-	-

1) The values are for information purposes.

²⁾ Not suitable for pressure equipment applications.

³⁾ Material approved for pressure equipment in accordance with European legislation, see standard.

⁴⁾ Quenched in oil and subsequently tempered.

⁵⁾ When this grade is quenched in air, the 0,2 % proof stress must be at least 430 MPa.

Heat treatment processes – hardening	Hardening refers to the release of carbon from carbides against the equilibrium state (soft annealed state). This requires heating to a temperature range above 800 °C (depending on the composition), during which the carbides partially dissolve. Either bainite and pearlite or martensite are formed from the released carbon through the appropriate temperature control.
	Martensite formation requires the released carbon to be held in a solution until it has cooled to at least room temperature. For the formation of bainite and pearlite, the released carbon must be separated out into fine or extremely fine iron carbide components.
	Due to the changes in the structure, heat treatment always results in a dimension change, which is often also accompanied by distortion.
	The most important heat treatment processes in the field of "hardening" are presented below.
Hardening over the entire cross-section	During the hardening process, the material is heated up to the hardening or austenitising temperature first, in order to produce the austenitic structure and partially dissolve carbides. This temperature is then maintained for a defined period, after which the material is cooled or quenched to room temperature or below at a sufficient speed. The appropriate speed can be found in the time-temperature- transformation curve for the respective steel. The speed must be chosen so as to avoid undesirable transformations. Depending on the composition, hardening may be complete and austenite may remain (residual austenite).
Tempering	Tempering is a heat treatment process which is applied in order to make the martensitic-hardened and relatively brittle material tougher. This involves increasing the temperature in the region of +160 °C to +650 °C with an adequate holding period and subsequent cooling to room temperature.
	Tempering reduces the hardness, the strength decreases and the ductility and toughness increase. Depending on the type of steel, any residual austenite present is converted at temperatures of and above +200 °C.
	During the tempering of steels, dimensional changes and visually different temper colours are again produced as a function of the tempering temperature, see table, Annealing and temper colours, Page 310.
Quenching and tempering	The combination of hardening and tempering at a temperature in excess of $+500$ °C is referred to as quenching and tempering. Quenching and tempering is intended to produce an optimum ratio between strength and toughness.
Surface layer hardening	In the case of surface layer hardening, austenitisation and hardening are restricted to the surface layer of the workpiece. In most cases, the material is heated by electric induction (medium or high-frequency alternating current) or by lasers. The material is quenched by dipping or spraying.
----------------------------	--
	Through the surface layer hardening of components that have already been quenched and tempered, a high basic strength can be combined with a high surface hardness in areas that are subjected to particularly high loads. The thickness of the hardened surface layer results from the hardness profile as the surface hardening depth SHD in mm (synonym: surface layer hardening depth); cf. standard DIN EN 10328:2016.
Case hardening	Case hardening (carburising, carbonitriding) involves carburising or carbonitriding followed by hardening. This hardening either takes place directly afterwards (direct hardening), or after the material concerned has been subjected to intermediate cooling and re-heated to an appropriate hardening temperature (single hardening).
	Depending on the required use characteristics and the subsequent machining requirements, the material is tempered, or deep-cooled and tempered, after hardening.
	Case hardening gives the surface layer of workpieces a significantly higher level of hardness and the entire workpiece improved mechanical properties. To this end, the surface layer is enriched with carbon (carburising) or carbon and nitrogen (carbonitriding) before hardening. In comparison with carburisation, additional enrichment with nitrogen results in increased hardenability (by changing the transformation behaviour in the surface layer) and, after hardening, in improved annealing resistance.
Bainitic hardening	During bainitic hardening (isothermal transformation in the bainite stage), the material is first heated to and maintained at the austenitising temperature. The material is cooled to a temperature of between +200 °C and +350 °C, depending on the steel, and kept at this temperature until the steel structure has transformed to bainite. The material is then cooled to room temperature. In this state, the hardness is less than that of martensite, but toughness is increased. One variant of production is to only partially convert the material into bainite, then cool and temper it.
	Bainitic hardening is regarded as an alternative to martensitic hardening if a high level of toughness is required without a high level of hardness, and if distortion and dimensional changes have to be minimised. Bainitic-hardened workpieces have high temperature stability.

Heat treatment processes – annealing	Annealing involves heating a workpiece to a temperature above 600 °C and up to 1 300 °C, depending on the purpose of the annealing process. The aim of this is mainly to influence and optimise the processing characteristics of the material.
	Annealing treatment consists of heating the material up to the required annealing temperature, holding the material at this temperature for a sufficiently long period and cooling it to a temperature that is appropriate to the respective objective of the annealing treatment.
	The most important heat treatment processes in the field of "annealing" are presented below.
Stress relief annealing	Intrinsic stresses resulting from structural transformations or cold deformations can occur in workpieces. These are caused by irregular heating or cooling processes. In order to reduce these intrinsic stresses in workpieces, tools or blanks (as a result of plastic deformations), stress relief annealing is carried out at temperatures of between +600 °C and +650 °C. After an annealing time of 0,5 h, the material should be cooled as slowly as possible to ensure that no new stresses arise.
Soft annealing	In order to improve the deformability of C steels and facilitate machining, the material is soft annealed at temperatures in the range of Ac ₁ . This also applies to workpieces that have been strengthened by hardening, precipitation hardening or cold forming. The temperature depends on the material (this is +650 °C to +800 °C for steel or a value lower than this for non-ferrous metals).
	If a specific structural state, characterised by spheroidising of the carbides, is to be achieved, then "annealing to spheroidised cementite" (abbreviation: GKZ annealing) is applied. The spheroidal shape of the cementite can also be achieved by austenitisation and controlled cooling.

Recrystallisation annealing	The possibility of cold forming a material is limited by the increase in hardness and the decrease in formability with the strain caused by deformation.
	Recrystallisation annealing is applied to formed workpieces in order to eliminate any strain hardening that may have occurred and bring about a new formation of the grains. This re-enables or facilitates subsequent forming.
	The temperature depends on the degree of deformation and, in the case of steel, is generally around +550 $^{\rm o}{\rm C}$ to +730 $^{\rm o}{\rm C}.$
Normalising	Normalising is carried out at austenitisation temperature, in other words at a temperature a little above Ac_3 (in the case of hypereutectoid steels, above Ac_1). After an adequate holding period, the material is cooled at an appropriate rate so that a structure consisting of ferrite and pearlite is created at room temperature.
	Normalising is used to refine a coarse-grained structure (for example in steel castings and welds) and to achieve as homogeneous a ferrite-pearlite distribution as possible. It should be applied instead of recrystallisation annealing if a coarse-grained structure is to be feared in the case of subcritically deformed workpieces.
	If an excessive austenitisation temperature is chosen, the γ -mixed crystals grow, which also leads to a coarse-grained structure after transformation. An excessively slow cooling process can also result in a coarse ferrite grain.
Homogenising	Homogenising takes place at temperatures of between 1030 °C and 1300 °C. It serves to eliminate segregation zones in ingots and strands. If the material is not subjected to hot forming after homogenising, it must be normalised in order to eliminate the coarse grain. Homogenising is rarely used in steel production today.
Precipitation hardening	Precipitation hardening consists of solution annealing, quenching and ageing above room temperature (hot ageing). Ageing results in the segregation and separation of intermetallic compounds made up of specific solution elements dissolved in the base material. This changes material properties, for example hardness, strength, ductility and toughness. Precipitation hardening is predominantly used with high-alloy austenitic steels.

Annealing and The following table shows the characteristic annealing and temper colours which occur at specific temperatures during the heat treatment of steel.

¹⁾ In the case of high alloy steels, these temper colours only occur at higher temperatures. The temper colour is also influenced by the tempering time: longer tempering at a lower temperature results in the same temper colour as shorter tempering at a higher temperature.

Iron-carbon phase diagram

Figure 1

Iron-carbon metastable system If we show the states of different iron grades as a function of their carbon content and the temperature, this gives the iron-carbon phase diagram.

The structure uniformly solidifying at the lowest solidification point of all melts (point C) is known as the eutectic point.

Iron crystal lattice

The elementary cell of iron has the following structure in the crystal lattice: body-centred cubic: α -iron (ferrite)

face-centred cubic: γ-iron (austenite)

Figure 2

Crystal lattic structure

 Body-centred cubic crystal lattice
 Face-centred cubic crystal lattice

Heat treatment of steel *Figure 3* Heat treatment of steel

Heat treatment (hardening, annealing) gives the steel the required properties.

Case hardening

The usual temperatures and heat treatments associated with the case hardening of case hardening steels are listed in the following tables.

Temperatures According to the standard DIN EN ISO 683-3, the following temperatures for case hardening are defined for the case hardening of case hardening steels:

Steel designation		Austenitising	Carburis-	Direct or	Double harde	Temper-	
Short name	Material number	temperature for end quench test ¹⁾	ing tem- perature ²⁾	single hardening temperature 3)4)	Core hard- ness tem- perature ⁴⁾	Surface hard- ness tem- perature ⁴⁾	ing ^{oj}
		°C	°C	°C	°C	°C	°C
Unalloyed steel	s						
C10E C10R	1.1121 1.1207	-	880 980	830 870	880 920	780 820	150 200
C15E C15R	1.1141 1.1140	-	880 980	830 870	880 920	780 820	150 200
C16E C16R		-	880 980	830 870	880 920	780 820	150 200
Alloyed steels							
17Cr3 17CrS3	1.7016 1.7014	880 ± 5	880 980	820 860	860 900	780 820	150 200
20Cr4 20CrS4		900 ± 5	880 980	820 860	860 900	780 820	150 200
28Cr4 28CrS4	1.7030 1.7036	850 ± 5	880 980	820 860	860 900	780 820	150 200
16MnCr5 16MnCrS5	1.7131 1.7139	900 ± 5	880 980	820 860	860 900	780 820	150 200
20MnCr5 20MnCrS5	1.7147 1.7149	900 ± 5	880 980	820 860	860 900	780 820	150 200
20MoCr4 20MoCrS4	1.7321 1.7323	910 ± 5	880 980	820 860	860 900	780 820	150 200
20NiCrMo2-2 20NiCrMoS2-2	1.6523 1.6526	900 ± 5	880 980	820 860	860 900	780 820	150 200
17NiCrMo6-4 17NiCrMoS6-4	1.6566 1.6569	900 ± 5	880 980	810 850	830 870	780 820	150 200

The temperatures specified for carburising, direct or single hardening, core hardening and surface hardening are guide values; the temperatures actually selected should be chosen with a view to meeting the set requirements.

1) Austenitisation duration (guide value): no less than 30 min.

²⁾ The carburising temperature depends on the chemical composition of the steel, the mass of the product and the carburising agent. In direct hardening of steels, a temperature of 950 °C is generally not exceeded. For special processes, e.g. those performed in a vacuum, higher temperatures (e.g. 1020 °C to 1050 °C) are not uncommon.

³⁾ The type of quenching agent is determined, for example, by the shape of the product, the cooling conditions and the fill level of the furnace.

⁴⁾ Steels which undergo single hardening and are at risk of distortion should be quenched at a temperature between the core hardness temperature and surface hardness temperature.

⁵⁾ Tempering duration not less than 1 h (guide value).

Heat treatment The usual heat treatments associated with case hardening correspond during case hardening to the following processes:

A Direct hardening or double hardening	B Single hardening	C Hardening after isothermal transformation
a c	∫ ^a ↓ ^b _c	J e c
Direct hardening from carburising temperature	Single hardening from core or surface hardness temperature	Hardening after isothermal transformation in the pearlite stage (e)
Direct hardening after cooling to hardening temperature	Single hardening after intermediate annealing (d) (soft annealing)	Hardening after isothermal transformation in the pearlite stage (e) and
		cooling to room temperature

Double hardening
(1) Surface zone

- a = carburising temperature.
- b = hardening temperature.
- c = tempering temperature.
- d = intermediate annealing (soft annealing) temperature.
- e = transformation temperature in the pearlite stage.

Heat treatment steels

The following table shows common temperatures encountered of rolling bearing in heat treatment.

Steel designation		Hardening temperature for end quench test	Normal- ising	Preheat- ing tem- perature	Harden- ing in oil ¹⁾	Harden- ing in water ¹⁾	Tem- pering	Previous designation
Short name	Material number	℃ ±5℃	°C	°C	°C	°C	°C	
Through hardenin	ig rolling b	earing steels						
100Cr6	1.3505	-	-	-	830 870	-	>150	100 Cr 6
100CrMnSi6-4	1.3520	-	-	-	830 870	-	>150	100 CrMn 6
100CrMo7	1.3537	-	-	-	840 880	-	>150	100 CrMo 7
100CrMo7-3	1.3536	-	-	-	840 880	-	>150	100 CrMo 7 3
100CrMoSi8-4-6	1.3539	-	-	-	840 880	-	>150	100 CrMnMo 8
Case hardening ro	olling bear	ing steels						
17MnCr5	1.3521	900	-	-	810 840	-	>150	17 MnCr 5
19MnCr5	1.3523	900	-	-	810 840	-	> 150	19 MnCr 6
18NiCrMo14-6	1.3533	830	-	-	780 820	-	> 150	17 NiCrMo 14

Continuation of table, see Page 316.

These are guide values.

From an operational perspective, the temperatures and other conditions should be selected in such a way that the required properties are achieved.

¹⁾ A hot salt bath is used in place of oil.

Water with polymer additives is also used for case hardening steels.

Continuation of table, Heat treatment of rolling bearing steels, from Page 315.

Steel designation		Hardening tempera- ture for end quench test	Normal- ising	Preheat- ing tem- perature	Harden- ing in oil ¹⁾	Harden- ing in water ¹⁾	Tem- pering	Previous designation
Short name	Material number	℃ ±5℃	°C	°C	°C	°C	°C	
Induction hardenin	g rolling b	earing steels						
C56E2	1.1219	840	830 860	-	815 845	805 835	>150	Cf 54
43CrMo4	1.3563	850	840 880	-	830 860	820 850	> 150	43 CrMo 4
Stainless rolling be	earing stee	els						
X47Cr14	1.3541	-	-	-	1020 1070	-	>100	X 45 Cr 13
X108CrMo17	1.3543	-	-	-	1030 1080	-	>100	X 102 CrMo 17
X89CrMoV18-1	1.3549	-	-	-	1030 1080	-	>100	X 89 CrMoV 18 1
High-temperature	rolling bea	ring steels						
80MoCrV42-16	1.3551	-	-	750 875	1070 1120	1	500 580 ²⁾	80 MoCrV 42 16
X82WMoCrV6-5-4	1.3553	-	-	750 875	1180 1230	-	500 580 ²⁾	X 82 WMoCrV 6 5 4
X75WCrV18-4-1	1.3558	-	-	750 875	1220 1270	-	500 580 ²⁾	X 75 WCrV 18 4 1

With the exception of the hardening temperatures for the end quench test, these are guide values. From an operational perspective, the temperatures and other conditions should be selected in such a way that the required properties are achieved.

²⁾ Tempering duration ² h, recommended repetition 2 – 3 times.

Stainless rolling bearing steels and high-temperature rolling bearing steels are usually hardened in vacuum hardening furnaces.

The data for Vickers hardness, Brinell hardness, Rockwell hardness and tensile strength cannot be converted directly into one another. Therefore comparative values are given in the following (conversion) table:

Vickers hardness,
Brinell hardness,
Rockwell hardness,
tensile strength

		-									
Tensile strength	Vickers hard- ness ¹⁾	Brinell hard- ness ²⁾	Rockwell hardness		Tensile Vickers strength hard- ness ¹⁾		Brinell hard- ness ²⁾	Rockwel	well hardness		
MPa	HV	HBW	HRB	HRC	HRA	MPa	MPa HV		HRB	HRC	HRA
255	80	76,0	-	-	-	640	200	190	91,5	-	-
270	85	80,7	41,0	-	-	660	205	195	92,5	-	-
285	90	85,5	48,0	-	-	675	210	199	93,5	-	-
305	95	90,2	52,0	-	-	690	215	204	94,0	-	-
320	100	95,0	56,2	-	-	705	220	209	95,0	-	-
335	105	99,8	-	-	-	720	225	214	96,0	-	-
350	110	105	62,3	-	-	740	230	219	96,7	-	-
370	115	109	-	-	-	755	235	223	-	-	-
385	120	114	66,7	-	-	770	240	228	98,1	20,3	60,7
400	125	119	-	-	-	785	245	233	-	21,3	61,2
415	130	124	71,2	-	-	800	250	238	99,5	22,2	61,6
430	135	128	-	-	-	820	255	242	-	23,1	62,0
450	140	133	75,0	-	-	835	260	247	(101)	24,0	62,4
465	145	138	-	-	-	850	265	252	-	24,8	62,7
480	150	143	78,7	-	-	865	270	257	(102)	25,6	63,1
495	155	147	-	-	-	880	275	261	-	26,4	63,5
510	160	152	81,7	-	-	900	280	266	(104)	27,1	63,8
530	165	156	-	-	-	915	285	271	-	27,8	64,2
545	170	162	85,0	-	-	930	290	276	(105)	28,5	64,5
560	175	166	-	-	-	950	295	280	-	29,2	64,8
575	180	171	87,1	-	-	965	300	285	-	29,8	65,2
595	185	176	-	-	-	995	310	295	-	31,0	65,8
610	190	181	89,5	-	-	1030	320	304	-	32,2	66,4
625	195	185	-	-	-	1060	330	315	-	33,3	67,0

Continuation of table, see Page 318.

The numbers in parentheses are hardness values that lie outside the range of the standardised hardness testing methods but which, in practical terms, are frequently used as approximated values.

¹⁾ Test force: $F \ge 98$ N.

²⁾ Degree of load: $0,102F/D^2 = 30$ MPa.

Continuation of table, Vickers hardness, Brinell hardness, Rockwell hardness, tensile strength, from Page 317.

Tensile strength	Vickers hard- ness ¹⁾	Brinell hard- ness ²⁾	Rockwell hardness			Tensile strength	Vickers hard- ness ¹⁾	Brinell hard- ness ²⁾	Rockwe hardnes	ll ss
MPa	HV	HBW	HRB	HRC	HRA	MPa	HV	HBW	HRC	HRA
1095	340	323	-	34,4	67,6	1920	580	(551)	54,1	78,0
1125	350	333	-	35,5	68,1	1955	590	(561)	54,1	78,4
1155	360	342	-	36,6	68,7	1995	600	(570)	55,2	78,6
1190	370	352	-	37,7	69,2	2030	610	(580)	55,7	78,9
1220	380	361	-	38,8	69,8	2070	620	(589)	56,3	79,2
1255	390	371	-	39,8	70,3	2105	630	(599)	56,8	79,5
1290	400	380	-	40,8	70,8	2145	640	(608)	57,3	79,8
1320	410	390	-	41,8	71,4	2180	650	(618)	57,8	80,0
1350	420	399	-	42,7	71,8	-	660	-	58,3	80,3
1385	430	409	-	43,6	72,3	-	670	-	58,8	80,6
1420	440	417	-	44,5	72,8	-	680	-	59,2	80,8
1455	450	428	-	45,3	73,3	-	690	-	59,7	81,1
1485	460	437	-	46,1	73,6	-	700	-	60,1	81,3
1520	470	447	-	46,9	74,1	-	720	-	61,0	81,8
1555	480	(456)	-	47,7	74,5	-	740	-	61,8	82,2
1595	490	(466)	-	48,4	74,9	-	760	-	62,5	82,6
1630	500	(475)	-	49,1	75,3	-	780	-	63,3	83,0
1665	510	(485)	-	49,8	75,7	-	800	-	64,0	83,4
1700	520	(494)	-	50,5	76,1	-	820	-	64,7	83,8
1740	530	(504)	-	51,1	76,4	-	840	-	65,3	84,1
1775	540	(513)	-	51,7	76,7	-	860	-	65,9	84,4
1810	550	(523)	-	52,3	77,0	-	880	-	66,4	84,7
1845	560	(532)	-	53,0	77,4	-	900	-	67,0	85,0
1880	570	(542)	-	53,6	77,8	-	920	-	67,5	85,3
						-	940	-	68,0	85,6

The numbers in parentheses are hardness values that lie outside the range of the standardised hardness testing methods but which, in practical terms, are frequently used as approximated values.

¹⁾ Test force: $F \ge 98$ N.

²⁾ Degree of load: $0,102F/D^2 = 30$ MPa.

Non-ferrous metals

 Non-ferrous
 The following tables compile a small selection of non-ferrous metals

 metal grades
 (NF metals) for general machine building, covering:

- copper alloys
- aluminium alloys
- magnesium alloys

In the case of cast components it should be noted that, according to many standards, the mechanical properties of materials apply solely to "test bars cast separately".

Copper alloys The following table gives the mechanical properties of a number of copper alloys as an extract from the corresponding standards.

Material designat	ion	Con- dition ¹⁾	Thick- ness or	Elon- gation at	Tensile strength	0,2% proof	Modulus of elasticity, properties and examples of use
Short name	Number		diameter	fracture A min.	R _m ²⁾ min.	stress R _{p0,2N} ²⁾ min.	
			mm	%	MPa	MPa	

Wrought copper-zinc alloys in accordance with DIN EN 12163

CuBe2	CW101C	R420 R600 R1150	2 80 25 80 2 80 Round rods	35 10 2	420 600 1150	140 480 1000	E = 122000 MPa; good solderability, optimum precipitation hardening time; springs of all types, membranes, tension bands, non-magnetic design parts, bearing blocks, worm and spur gears, turned clockmaking parts, injection moulding dies, spark-proof tools
CuCr1Zr	CW106C	R200	8 80	30	200	60	E = 120 000 MPa;
CuCr1	CW105C	R400 R470	50 80 4 25 Round rods	7	400 470	310 380	high electrical conductivity, high softening temperature and creep rupture strength, negligible weldability and solderability, high temperature resistance, precipitation hardenable; continuous casting moulds, springs and contacts for conduction of current, electrodes for resistance welding, continuously cast profiles

Continuation of table, see Page 320.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

Material desi	Material designation		Thick-	Elon-	Tensile	0,2%	Modulus of elasticity,		
Short name	Number	dition ¹⁾ ness or diameter	gation at fracture A min.	strength R _m ²⁾ min. MPa	proof stress R _{p0,2N} ²⁾ min. MPa	properties and examples of use			
Wrought cop	Wrought conner-zinc based multiple element alloys in accordance with DIN EN 12163								
CuZn31Si1	CW708R	R460 R530	5 40 5 14 Round rods	22 12	460 530	250 330	E = 109 000 MPa; good sliding characteristics even under heavy loads, suitable for cold forming, suitable for soldering and welding under certain conditions; bearing bushes, sliding elements, guide systems, drop forged parts		
Wrought copper-tin alloys in accordance with DIN EN 12163									
CuSn6	CW452K	R340 R400 R470 R550	2 60 2 40 2 12 2 6 Round rods	45 26 15 8	340 400 470 550	230 250 350 500	E = 118 000 MPa; highly suitable for cold forming, good suitability for welding and soldering, resistant to seawater and industrial atmospheres; springs of all types, hosepipes and coiled pipes, membranes, mesh and sieve wire, gears, bushes, parts for the chemicals industry		
Wrought cop	per-zinc-le	ad alloys	in accorda	nce with DI	N EN 1216	4			
CuZn37Mn3 Al2PbSi ³⁾	CW713R	R540 R590 R620	6 80 6 50 15 50 Round rods	15 12 8	540 590 620	280 320 350	E = 93 000 MPa; high strength, high wear resistance, good resistance to atmospheric corrosion, resistant to oil corrosion; design parts. in machine building, plain bearings, valve guides, gearbox parts, piston rings		

Continuation of table, Copper alloys, from Page 319.

Continuation of table, see Page 321.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

³⁾ Pb-alloyed materials should be replaced as soon as possible.

Material designation		Con- Thick-	Thick-	ick- Elon- 1	Tensile	0,2%	Modulus of elasticity,
Short name	Number	aition-	ness or diameter	gation at fracture A	icture $R_m^{(2)}$	proof stress R _{p0,2N} ²⁾	properties and examples of use
			mm	min. %	min. MPa	min. MPa	
Wrought copper	-aluminiun	n alloys in	n accordanc	e with DIN	EN 12163		
CuAl10Fe3Mn2	CW306G	R590 R690	10 80 10 50 Round rods	12 6	590 690	330 510	E = 120 000 MPa; high fatigue strength under reversed stresses even under corrosive conditions, good corrosion resistance, resistant to seawater, resistant to scaling, erosion and cavitation, creep-resistant; design parts for chemical apparatus construction, scale-resistant parts, screws, shafts, gears, valve seats
Wrought copper	-nickel allo	ys in acc	ordance wi	th DIN EN 1	2163		
CuNi10Fe1Mn	CW352H	R280 R350	10 80 2 20 Round rods	30 10	280 350	90 150	E = 134 000 MPa; excellent resistance to erosion, cavitation and corrosion insensitive to stress corrosion cracking, tendency to pitting under foreign deposition, good suitability for cold forming and soldering; pipework, brake pipes, plates and bases for heat exchangers, condensers, apparatus construction, freshwater processing plant

Continuation of table, Copper alloys, from Page 320.

Continuation of table, see Page 322.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

Material designa	tion	Con-	Thick-	Elon-	Tensile	0,2%	Modulus of elasticity,
Short name	Number	dition ¹⁾	ness or dia- meter mm	gation at fracture A min. %	strength R _m ²⁾ min. MPa	proof stress R _{p0,2N} ²⁾ min. MPa	properties and examples of use
Cast copper-tin a	lloys (cast	tin bronz	e) in acco	rdance wit	h DIN EN 1	982	
CuSn12-C	CC483K	GS GM GC GZ	-	7 5 6 5	260 270 300 280	140 150 150 150	E = 94 000 MPa to 98 000 MPa; standard alloy with good sliding and wear characteristics together with good corrosion resistance, very good emergency running characteristics; bushes, sliding elements, sliding strips, bearing shells
Cast copper-zinc	alloys in a	ccordanc	e with DIM	I EN 1982			
CuZn37Al1-C	CC766S	GM	-	25	450	170	E = 100 000 MPa; moderate strength; design and conducting material in machine building and precision engineering, gravity diecast parts for machine building and electrical engineering
Cast copper-tin-z cast copper-tin-le	inc-(lead) ead alloys	alloys (gu (cast tin-	unmetal) a lead bron:	and ze) in accor	rdance wit	h DIN EN :	1982
CuSn7Zn4Pb7-C	CC483K	GS GM GC, GZ	-	15 12 12	230 230 260	120 120 120	E = 95 000 MPa; standard sliding material with excellent emergency running characteristics, moderate strength and hardness; plain bearings for hardened and unhardened shafts, sliding plates and strips, printing rollers, propeller shaft sleeves

Continuation of table, Copper alloys, from Page 321.

Continuation of table, see Page 323.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

Material designation		Con- Thick-	Elon-	Tensile	0,2%	Modulus of elasticity,		
Short name	Number	dition	ness or gation at dia- fracture meter A min.	strength proof $R_m^{(2)}$ stress $R_{p0,2N}^{(2)}$ min. min.	properties and examples of use			
			mm	%	MPa	MPa		
Cast copper-aluminium alloys (cast aluminium bronze) in accordance with DIN EN 1982								

13

7

13

13

600

650

650

650

250

280

280

280

 $E = 120\,000$ MPa;

very good fatigue strength under

corrosive conditions (seawater), high resistance to cavitation and erosion, long term loading up to 250 °C, weldable to S235; ships' propellers, stern tubes, impellers, pump housings

reversed stresses even under

Continuation of table, Copper alloys, from Page 322.

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

CuAl10Fe5Ni5-C

CC333G GS

GM

GΖ

GC

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

Aluminium alloys The following table gives the mechanical properties of a number of aluminium alloys as an extract from the corresponding standards.

Material designation		Con- Thick-	Elon-	Tensile	0,2%	Modulus of elasticity,	
Short name	Number	dition*	ness or dia- meter mm	gation at fracture A min. %	strength R _m ²⁾ min. MPa	proof stress R _{p0,2N} ²⁾ min. MPa	properties and examples of use

Aluminium and wrought aluminium alloys, not precipitation hardened, in accordance with DIN EN 485-2, DIN EN 754-2, DIN EN 755-2³⁾

ENAW-(Al99,5)	ENAW- 1050A	O/H111 H14 H18	≤ 50 ≤ 25 ≤ 3 Sheets	>20 26 2	65 105 140	20 85 120	E = 70 000 MPa; good corrosion resistance, highly suitable for cold and hot forming, good suitability for welding and soldering, poor machinability, surface protection by means of anodising; apparatus, containers, pipes for food- stuffs and beverages, deep drawn, pressed and sheet metal formed parts, busbars, overhead power lines, narkapine

Wrought aluminium alloys, precipitation hardenable, in accordance with DIN EN 485-2, DIN EN 754-2, DIN EN 755-2

ENAW- AlZn4,5Mg1	ENAW- 7020	T6	≦40 Profiles	10	350	290	E = 70 000 MPa; construction alloys of series 7000 with very high strength and low resist- ance, good cold forming suitability in the soft condition (0), self- hardening by fusion welding process, but sensitive to notching and ageing; profiles, tubes and sheets for welded supporting structures in building construction, vehicle engineering and machine building.

Cast aluminium alloys in accordance with DIN EN 1706

		_						
ENAC-AlSi9Mg	ENAC- 43300	S K	T6 T6	-	2 4	230 290	190 210	E = 75 000 MPa; for complicated, thin-walled castings of high strength, good toughness and very good weather resistance, precipi- tation hardenable, good weldability; and solderability, good machinability; engine blocks, gearbox and converter housings

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

2) The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

³⁾ DIN EN 485-2: sheet, plate. DIN EN 754-2: cold drawn rod/bar and tube. DIN EN 755-2: extruded rod/bar and tube

Magnesium alloys The following table gives the mechanical properties of a number of magnesium alloys as an extract from the corresponding standards.

Material designat	tion	Con-	Thick-	Elon-	Tensile	0,2%	Modulus of elasticity,
Short name	Number	dition ¹⁾	ness or dia- meter	ess or gation at ia- fracture neter A		proof stress R _{p0,2N} ²⁾	properties and examples or use
			mm	min. %	min. MPa	min. MPa	
Wrought magnes	ium alloys ir	accordar	nce with I)IN 1729 ai	nd DIN 971	15	
MgAl8Zn	3.5812.08	F27 F29 F31	- ≦10 ≦10	8 10 6	270 290 310	195 205 215	E = 43 000 MPa to 45 000 MPa; very high strength, vibration- resistant, not weldable; components subjected to vibrations and shocks
Cast magnesium	alloys in acc	ordance v	vith DIN E	N 1753			
EN-MCMgAl8Zn1	EN-MC 21110	S, K F S, K T4 D F	-	2 8 1 7	160 240 200 250	90 90 140 170	E = 41000 MPa to 45 000 MPa; good castability, weldable, good sliding characteristics, suitable for dynamic loading; components subjected to vibrations and shocks, gearbox and engine housings, oil trays

Source: according to Roloff/Matek Maschinenelemente Band 2, Springer Fachmedien Wiesbaden, 25. Auflage 2021.

¹⁾ Condition designations and casting methods, see table Condition designations and casting methods, Page 326.

²⁾ The mechanical and physical properties of the materials are heavily influenced by fluctuations in the alloy composition and the structural state. The strength characteristics stated can only be taken as valid for particular dimension ranges.

Condition Some examples of condition designations and casting methods for non-ferrous metals are given in the following two tables.

Strength	Description	Strength	Description		
Copper allo	ys	Wrought ma	ignesium alloys		
R600	Minimum tensile strength R _m = 600 MPa	F22	Minimum tensile strength $R_m = 10 \cdot 22 \text{ MPa} = 220 \text{ MPa}$		
Casting methods	Description	Condition	Description		
Copper allog	<i>y</i> 5	Wrought aluminium alloys, precipitation hardenable			
GS	Sand casting	T3	Solution annealed, cold formed and cold aged		
GM	Gravity diecasting	T351	Solution annealed, stress relieved by controlled stretching and cold aged		
GZ	Centrifugal casting	T4	Solution annealed and cold aged		
GC	Continuous casting	T5	Quenched and hot aged		
GP	Pressure diecasting	T6	Solution annealed and completely hot aged		
Cast alumin	ium and cast magnesium alloys	Wrought aluminium alloys, not precipitation hardenable			
S	Sand casting	0	Soft annealed		
К	Gravity diecasting	F	Cast condition		
D	Pressure diecasting	H111	Annealed with subsequent slight work hardening		
L	Investment casting	H12	Work hardened, 1/4 hard		
		H14	Work hardened, 1/2 hard		
		H16	Work hardened, 3/4 hard		
		H18	Work hardened, 4/4 hard		
		H22	Work hardened and post-annealed, 1/4 hard		
		H24	Work hardened and post-annealed, 1/2 hard		

Plastic

Structure and properties Plastics are macromolecular, organic materials that are produced artificially from monomers by chemical means, in other words they do not occur in nature.

Depending on the synthesis process, plastics can be subdivided into: polycondensation products

- polymerides
- polyaddition compounds

Due to their different chemical structures, polymers can also be subdivided into:

- thermoplastics
- elastomers
- thermosets
- Thermoplastics Thermoplastics occur as amorphous and semi-crystalline polymers. Depending on the type of plastic in question, they consist of linear or ramified macromolecules. Thermoplastics can soften or melt when heated and solidify when cooled. processes that may be repeated. During the original shaping process, they undergo reversible changes of state. Thermoplastics can be shaped in the free-flowing state by means of various types of processing technology, for example injection moulding, extrusion and calendering, thus arriving at complex components or semi-finished products. Semi-finished products made of (hard) thermoplastics can largely be shaped whilst hot. Thermoplastics are weldable. The mechanical properties are temperature-dependent, with a continuous operating temperature range of 60 °C to 250 °C and a short-term maximum operating temperature of up to 300 °C depending on the thermoplastic used. The type of plastic used determines possible chemical resistance to oils/greases, acids/alkalis and organic solvents. Elastomer plastics The structure of elastomers is based on a network of widely meshed macromolecules. In the operating temperature range above the glass temperature, they have a rubber-elastic behaviour. In other words, low stresses result in considerable deformations which recede almost completely once the stress has been removed. In the event of a temperature increase, they exhibit a rubber-elastic behaviour up to the limit temperature of the irreversible, thermochemical degradation of the (cross-linked) polymer structure.

Elastomers are obtained, for example, through the polymerisation of dienes (NBR) or are the result of polycondensation and polyaddition reactions in starting materials (for example PUR). Elastomers are generally processed in the plastic state, before cross-linking with the addition of vulcanisation agents or cross-linking accelerators.

 Thermoplastic
 Thermoplastic elastomers are polymers that can be processed

 elastomers (TPE)
 thermoplastically with elastomer-like properties.

 They are not chemically cross-linked.
 TPEs are mostly block copolymers with "hard" and "soft" ranges.

 The hard segments form aggregated zones. Owing to secondary compounds, these result in physical cross-linking points in the amorphous matrix, which reversibly dissolve at a temperature that is determined by the chemical structure. These polymers become thermoplastically free-flowing above this temperature.

 Thermosetting plastics
 In the original shaping process, thermosets come into being by virtue of the fact that free-flowing preproducts of a low molecular weight react with one another, forming chemically narrow cross-linked macromolecules. Up to the limit temperature of thermochemical degradation, the physical properties of the irreversibly "cured" thermosets are not – unlike thermoplastics or TPE – very dependent on the temperature. They are not weldable, are not soluble in organic solvents when cured and some of them are capable of swelling.

Thermosetting preproducts can be obtained as "moulding compounds" for processing by means of melting and with subsequent thermal curing. They are also available as liquid "reaction resins" that can be processed and catalytically cured at room temperature. Moulding compounds consist of the base resin and a number of fillers, such as glass fibres and/or glass beads, mineral fillers and processing aids.

In addition to liquid reaction resins, thermosets can also be present and processed in powder form.

Recycling Corresponding to their chemical structure, polymer materials are open to diverse recycling possibilities or disposal concepts. Besides being suitable for more cost-intensive, chemical recycling (for example hydrolysis, hydrogenation or pyrolysis to produce monomers), thermoplastics are also suitable for mostly economical, physical recycling. Cross-linked polymers can only be recycled chemically, or used as fillers after grinding.

Application	 Depending on the application area, thermoplastics are subdivided into: so-called mass plastics (for example PE, PS, PVC, PP, ABS, SAN) engineering plastics (for example PA, PBT, PET, PC, POM) high-performance/high-temperature plastics (for example PPS, PEEK, PEI, PPA, LCP) Engineering, machine construction, the electrical industry and chemicals and plant engineering. In order to improve the level of the physical and mechanical properties, glass or carbon fibres are frequently added to the base polymers
	as reinforcements and glass balls or minerals (for example talcum, mica or silica sand, etc.) are added as fillers. The sliding/friction properties can be improved through modification with graphite or teflon (PTFE). Thermosets are also often used in the stated areas of engineering.
	For further information on plastics for rolling bearings, please see chapter Design elements, section Rolling bearings, Page 617.
Classification of plastics	Plastics can be subdivided into: fully synthetic plastics

modified natural substances (technically low relevance)

The following table lists a number of plastics and the corresponding manufacturing method.

Description	Thermoplastics	Hardenable plastics	Manufacturing method
Fully synthetic plas	tics		
Polycondensation products	Linear polyester resins, polyamides, mixed polyamides	Phenolic plastics, carbamide polymers, melamine plastics, silicones, polyester resins, alkyd resins	 Polycondensation During polycondensation, various basic, monomeric building blocks combine with each other, accompanied by the separation of water and other volatile substances of low molecular weight (for example ammonia), to form: linear macromolecules, if monomers with two groups that are capable of reacting are present. spatially cross-linked macromolecules if two or more groups capable of reacting are present. Most thermosets are an important example of this. In such cases, the process often takes place at an increased temperature and under pressure.

Continuation of table, see Page 330.

Description	Thermoplastics	Hardenable plastics	Manufacturing method
Fully synthetic	plastics		
Polymerides	Polyethylenes, polyvinyl chlorides, polystyrenes, polyisobutylenes, polymethacrylates, polyacrylonitriles, polyfluorethylenes	Alkyl resins, unsaturated polyester resins	Polymerisation When the double bonds split, the liquid or gaseous initial products, which are mostly equally monomeric, deposit themselves on one another, producing filamentary molecules. No cleavage products are produced. The process is started by initiators (radical or ion generators) and then continues to run exothermally. During this process, the polymeride becomes tenacious and ultimately solid as the molecular weight rises. Most thermoplastics are obtained through polymerisation.
Polyaddition products	Linear polyurethanes	Cross-linked polyurethanes, epoxy resins	Polyaddition As a result of the intermolecular repositioning (for example hydrogen), various basic, monomeric building blocks with reactive groups combine to form macromolecules. The process is very similar to that of polycondensation but, in this case, no cleavage products of low molecular weight are produced. Depending on the choice of preproducts, polymers that are either cross-linked or not cross-linked can also be synthesised here. Depending on the starting material, the properties of the products can be intentionally adjusted within wide limits.
Modified natur	ral substances		
Natural substances of high molecular weight	Cellulose ester, cellulose ether	Casein resins	Chemical transformation The oldest plastics are modified natural substances such as casein plastics, vulcanised fibre, celluloid, cellophane and artificial silk. High water absorption and associated dimensional changes prevent such substances from being used for technical parts.

Continuation of table, Classification of plastics, from Page 329.

Strength characteristics and dimensional stability

The following tables give the strength characteristics and dimensional stability values for thermoplastics and thermosetting plastics.

Unreinforced The following values are valid for the strength characteristics and thermoplastics dimensional stability of a number of unreinforced thermoplastics:

Plastic	Desig- nation	Tensile strength	Tensile modulus of elasticity (30 s)	Indentation hardness	Flexural strength	Impact strength	Notched impact strength	Dimensional stability (Vicat B)
		MPa	MPa	MPa	MPa	kJ/m ²	kJ/m ²	°C
Polyethylene, hard	PE-HD	18 35	700 1400	40 65	36			60 70
Polyethylene, soft	PE-LD	8 23	200 500	13 20	-	•	•	<40
Polypropylene	PP	21 37	1100 1300	36 70	43		3 17	85 100
Polyvinyl chloride, hard	PVC-U	50 75	2 500 3 500	75 155	110		2 50	75 110
Polyvinyl chloride, soft	PVC-P	10 25	<100	A90 ¹⁾	-	•	•	40
Polystyrene	PS	45 65	3 200 3 250	140 150	90	15 20	2 2,5	78 99
Styrene/acrylo- nitrile copolymer	SAN	75	3 600	160 170	100	16 20	2 3	100 115
Acrylonitrile- butadiene-styrene copolymer	ABS	32 60	1900 2700	80 120	75	70	7 20	95 110
Polymethyl methacrylate	PMMA	50 77	2 700 3 200	180 200	105	18	2	70 100
Polyoxymethylene	POM	62 80	3 200	150 170	110		8	160 173
Polytetrafluoro- ethylene	PTFE	25 36	410	27 35	18		13 15	-
Polyamide 6 ²⁾	PA6	70 85	1400	75	50			180
Polyamide 66 ²⁾	PA66	77 84	2 000	100	50		15 20	200
Polyamide 11 ²⁾	PA11	40	1000	75	-		3040	175
Polyamide 12 ²⁾	PA12	40	1200	75	-		1020	165
Polycarbonate	PC	56 67	2100 2400	110	100		2030	160 170
Cellulose acetate (432)	CA	40	1600	50	50		15	50 63
Cellulose acetate butyrate (413)	CAB	35	1600	55	38		20	60 75

No fracture.

1) Shore hardness scale A.

2) Conditioned at +23 °C and 50% relative humidity.

Reinforced The following values are valid for the strength characteristics and thermoplastics dimensional stability of a number of reinforced thermoplastics:

Plastic	Desig- nation	Tensile strength	Tensile modulus of elas- ticity	Elon- gation at tear	Flexural strength	Impact strength	Notched impact strength	Dimensional stability (Vicat B) ¹⁾
		MPa	MPa	%	MPa	kJ/m^2	kJ/m ²	°C
Polypropylene	PP GF30 ²⁾	50	5 500	5	65	16 ⁵⁾	6 ⁵⁾	110
Polybutylene terephthalate	PBT GF30	145	10500	2,5	210	50 ⁶⁾	8,5 ⁶⁾	205
Polyethylene terephthalate	PET GF30	175	11000	2	228	32 ⁶⁾	10 ⁶⁾	260
Polyamide 6 ³⁾	PA6 GF30	180	8 500	3	250	60 ⁶⁾	12 ⁶⁾	210
Polyamide 46 ³⁾	PA46 GF30	210	10000	3,5	300	80 ⁵⁾	12 ⁵⁾	290
Polyamide 66 ³⁾	PA66 GF30	190	10000	3	270	45 ⁶⁾	8,5 ⁶⁾	250
Polyoxy- methylene	POM GF30	130	10000	3	170	32 ⁶⁾	5,5 ⁶⁾	160
Polyphenylene sulphide	PPS GF40 ⁴⁾	180	14000	1,6	240	35 ⁶⁾	6,5 ⁵⁾	255
Polysulfone	PSU GF30	125	10000	1,8	160	20 ⁶⁾	7 ⁶⁾	190
Polyethersulfone	PESU GF30	150	10 500	2,1	200	30 ⁶⁾	8 ⁶⁾	215
Polyetherimide	PEI GF30	160	9 000	3	220	35 ⁵⁾	8 ⁵⁾	220
Polyetherketone	PEEK GF30	190	12000	2,5	280	55 ⁵⁾	7,5 ⁵⁾	> 300
Liquid crystal polymer	LCP GF30	200	23 000	1	-	20 ⁵⁾	12 ⁵⁾	170

1) Tested at 50 °C/h with 50 N.

²⁾ GF30 = filled with 30% glass fibre.

³⁾ Values specifically dry.

⁴⁾ 30% not commercially available.

5) Charpy test method.

⁶⁾ Izod test method.

 Thermosetting plastics
 The following values are valid for the strength characteristics and dimensional stability of a number of thermosetting plastics:

Type of resin	Group	Туре	Filler	Flexural strength	Impact strength	Notched impact strength	Dimensional stability (Martens)			
				min. MPa	min. kJ/m ²	min. kJ/m ²	°C			
Phenol	I	31	Wood flour	70	6	1,5	125			
	II	85	Wood flour	70	5	2,5	125			
		51	Cellulose	60	5	3,5	125			
		83	Cotton fibres	60	5	3,5	125			
		71	Cotton fibres	60	6	6	125			
		84	Cotton fabric shreds	60	6	6	125			
		74	Cotton fabric shreds	60	12	12	125			
		75	Artificial silk skeins	60	14	14	125			
	Ш	12	Asbestos fibres	Hardly any a	sbestos produ	lucts are now offered				
		15	Asbestos fibres	in the marke						
		16	Asbestos rope							
	IV	11,5	Rock flour	50	3,5	1,3	150			
		13	Mica	50	3	2	150			
		13,5	Mica	50	3	2	150			
		30,5	Wood flour	60	5	1,5	100			
		31,5	Wood flour	70	6	1,5	125			
		51,5	Cellulose	60	5	3,5	125			
		HP 2061	Paper webs	150	20	15	-			
		Hgw 2081	Cotton fabric, coarse	100	18	15	-			
		Hgw 2082	Cotton fabric, fine	130	30	15	-			
		Hgw 2083	Cotton fabric, extremely fine	150	35	15	-			

Continuation of table, see Page 334.

Group I: types for general use.

Group II: types with increased notched impact strength.

Group III: types with increased dimensional stability under heat.

Group IV: types with increased electrical characteristics.

Type of resin	Group	Туре	Filler	Flexural strength	Impact strength	Notched impact strength	Dimensional stability (Martens)			
				min. MPa	min. kJ/m²	min. kJ/m ²	°C			
Aminoplastic	I	131	Cellulose	80	6,5	1,5	100			
and aminoplastic		150	Wood flour	70 6 1,5		1,5	120			
phenol		180	Wood flour	80	6	1,5	120			
	Ш	153	Cotton fibres	60 5 3,5		3,5	125			
		154	Cotton fabric shreds	60	6	6	125			
	Ξ	155	Rock flour	40	2,5	1	130			
		156	Asbestos fibres	Hardly any asbestos products are now offered						
		157	Asbestos fibres + wood flour	in the marketplace.						
		158	Asbestos fibres	1						
	IV	131,5	Cellulose	80	6,5	1,5	100			
		152	Cellulose	80	7	1,5	120			
		181	Cellulose	80	7	1,5	120			
		181,5	Cellulose	80	7	1,5	120			
		182	Wood and rock flour	70	4	1,2	120			
		183	Cellulose + rock flour	70	5	1,5	120			
Polyester		801	Glass fibres	60	22	22	125			
		802	Glass fibres	55	4,5	3	140			
		830	Glass fibre mats	120	50	40	-			
		832	Glass fibre mats	160	70	60	-			
Ероху		870	Rock flour	50	5	1,5	110			
		871	Glass fibres	80	8	3	120			
		872	Glass fibres	90	15	15	125			

Continuation of table, Thermosetting plastics, from Page 333.

Group I: types for general use.

Group II: types with increased notched impact strength.

Group III: types with increased dimensional stability under heat.

Group IV: types with increased electrical characteristics.

Processing and use A number of processing procedures and special uses of the most important plastics are presented below.

Plastic	Shaping, reshaping and joining behaviour for workpieces									
	Creating shape by							Shape- changing		
	Melt-on, casting and spraying methods	Low-pressure procedures for reinforced plastics	Injection moulding	Blow moulding	Pressing	Extrusion	(Hot) shaping	Welding		
Thermoplastics										
Polyolefins	++	-	+++	+++	(+)	+++	+	+++		
Styrene polymers	(+)	-	+++	+	-	++	++	+		
Vinyl chloride polymers (hard)	(+)	-	+	++	(+)	+++	++	+++		
Polyvinyl chloride (soft)	+	-	+	(+)	+++	++	+	++		
Fluorine-containing polymers	+	-	+	-	(+)	(+)	I	+		
Poly(meth)acrylic plastics	++	(+)	++	-	-	++	++	I		
Heteropolymers	+	-	++	+	-	+	(+)	+		
Cellulose ester, cellulose ether	+	-	++	++	-	++	+	-		
Cellulose hydrate (viscose sheet, cellophane)	-	-	-	1	-	-	(+)	-		
High-temperature plastics										
Polyarylenes, polyarylamides (PARA), polyesters, polyoxides, polyimides	+	+	(+)	-	+	-	-	(+)		
Thermosetting plastics										
Phenolic resins, cresylic resins and furan resins	+	(+)	++	-	++	(+)	(+)	-		
Urea-formaldehyde resins	-	-	+	-	+	(+)	-	-		
Melamine resins	-	-	+	-	++	-	(+)	-		
Casein plastics and similar casein products	-	-	-	-	-	(+)	-	-		
Unsaturated polyesters	++	+++	+	-	++	(+)	-	-		
Epoxy resins	+++	++	++	-	+	(+)	-	-		
Special reaction resins	+	(+)	(+)	-	+	-	-	-		
Isocyanate resins (PIR)	+++	-	(+)	-	-	-	-	-		

Continuation of table, see Page 336.

- = not possible or not common.

+, ++, +++ = corresponds to growing importance.

(+) = special case.

Continuation of table, Processing and use, from Page 335.

Plastic	Shaping, reshaping and joining behaviour for workpieces								
	Special uses								
	Film and fabric synthetic leather	Packaging and insulating films	Foam plastics	Adhesives	Paints and coating materials	Fibres and filaments			
Thermoplastics									
Polyolefins	-	+++	+	-	-	+			
Styrene polymers	-	++	+++	-	+	(+)			
Vinyl chloride polymers (hard)	-	++	+	(+)	(+)	(+)			
Polyvinyl chloride (soft)	+++	+	++	-	+	-			
Fluorine-containing polymers	-	(+)	(+)	-	-	-			
Poly(meth)acrylic plastics	-	-	(+)	+	+	-			
Heteropolymers	(+)	++	(+)	(+)	(+)	+++			
Cellulose ester, cellulose ether	-	++	-	+	+	++			
Cellulose hydrate (viscose sheet, cellophane)	-	+++	-	-	-	++			
High-temperature plastics									
Polyarylenes, polyarylamides (PARA), polyesters, polyoxides, polyimides	-	+	+	+	+	(+)			
Thermosetting plastics									
Phenolic resins, cresylic resins and furan resins	-	-	+	++	+	-			
Urea-formaldehyde resins	-	-	++	+++	+	-			
Melamine resins	-	-	(+)	+	+	-			
Casein plastics and similar casein products	-	-	-	(+)	(+)	(+)			
Unsaturated polyesters	-	-	(+)	++	++	-			
Epoxy resins	-	-	-	+++	+	-			
Special reaction resins	-	-	-	+	(+)	-			
Isocyanate resins (PIR)	++	-	+++	+	+	(+)			

- = not possible or not common.

+, ++, +++ = corresponds to growing importance.

(+) = special case.

Material selection In this chapter, the essential engineering materials, their properties and most important characteristic values have been presented. The task of design engineers and product developers is to select the right materials for the components in a technical system, as there is no one material available which can be used universally.

The following criteria play a decisive role in material selection:

- safety (strength characteristics)
- specific gravity (weight expenditure)
- price
- availability
- workability (castable, hot or cold forming properties, machinable, weldable)
- hardness and hardenability
- elongation and toughness
- damping capability
- corrosion resistance
- surface condition and treatment
- behaviour at high and low temperatures
- resistance to ageing

The optimum material constitutes a compromise between the requirements and possibilities of the various areas:

- Development and Design (use characteristics)
- Production (production characteristics)
- Material and Business Administration (costs)
- Planning and Scheduling (dates)

Product development

Product development

Introduction and principles

Developing and manufacturing products that meet customer requirements and prove successful on the market are among the key tasks of manufacturing companies. Today, product developers are faced with a variety of challenges, such as increasing product complexity. an aging society and increasing demands on economic and ecological sustainability, which not only require them to possess an array of individual skills but also to apply extensive specialist knowledge in their work. In addition, the progressive shortening of product life times. the eclectic and complex relationships between the features and properties of mechatronic and cybertronic products, and the large number of players involved require a targeted, orchestrated and systematic approach to product development.

Design phases According to Pahl and Beitz, product development is typically divided into the following four design phases:

- planning
- conceptual design
- embodiment design
- detail design

A distinction can be made between various design types based on whether all or just some of these phases are completed, examples of which include:

- new design
- adaptive design
- variant design

according to Pahl and Beitz and various design types Source

FAU Erlanaen-Nurembera. Institute of Engineering Desian (KTmfk)

Development and problem-solving methods

The development of technical products requires product developers to overcome and manage various problems and tasks. The distinction typically made between design tasks and problems in this context is that, with design tasks, both the objectives and the means required to achieve them are clear and sufficiently known, whereas with design problems, at least one of these two aspects is unclear or unknown.

To systematically solve these design tasks and problems, product developers have various problem-solving and product discovery methods at their disposal. These can be divided into intuitive and discursive methods and are often grouped together as innovation methods. Patent research, benchmarking and reverse engineering can also serve as inspiration in the development process.

The following representation shows a classification of various product discovery methodologies according to **Gausemeier et. al.** (Produktinnovation, 2001).

Product development

Evaluation of technical products

As technical products often have to meet contradictory target criteria and several possible solutions are usually obtained during product development, systematic evaluation methods are required. These allow the product developers to identify the best solutions. Examples of suitable methods include the value analysis in accordance with DIN EN 12973:2020 and/or VDI 2808 and the technical/economic evaluation in accordance with VDI 2225 Sheet 3:1998. These methods enable a systematic comparison of different technical products or product alternatives.

The SWOT analysis also serves to identify strengths, weaknesses, opportunities and threats.

The requirements for these evaluation methods include:

- finally coordinated requirements lists
- clearly defined criteria
- adequate information base
- knowledge of all necessary details of the products or product variants to be evaluated
- implementation of the evaluation in interdisciplinary teams

Design methodology process models

Global competition, with simultaneous development activities spanning multiple personnel and areas, combined with rising levels of product and process complexity increasingly require the planning, design, monitoring and control of development processes. Design methodology process models provide fundamental approaches for solving specific tasks and objectives, thus enabling the structuring, planning and control of development processes. Although an ideal process model for all development processes is not achievable due to the diverse nature of the various factors influencing the development process, design methodology process models can play a significant role in supporting product developers.

In addition to the comparatively generic structuring of the product development process according to **Pahl** and **Beitz** into the planning, conceptual design, embodiment design and detail design phases, the process models according to VDI 2221 and VDI 2206 ("V model") are also often used.

The following representation shows the V model according to VDI/VDE 2206:2021.

Rationalisation in product development

The variety of products on offer is increasing in many industries due to customised requirements, which is leading to increased internal complexity. Series, modular systems, platforms and modules are available to reduce this complexity.

Series A series (in this context) is characterised as a technical construct that fulfils the same function with the same solution in several size levels, ideally under identical production conditions, in a wide range of applications. Series are typically derived from a basic design using similarity laws and geometric standard numbers (see table Basic series, Page 359).

Product development

- Modular system A modular system describes machine parts or assemblies which, as building blocks with often different solutions, fulfil various overall functions when used in combination, and are connected as building blocks to provide detachable or non-detachable solutions. These building blocks are usually divided into basic, auxiliary, special and customisation building blocks.
 - Platform The platform strategy pursues the goal of a version-neutral product platform with product-specific or variant-specific add-ons. This enables the use of identical parts and structures for different products without making the relationship between them visible to the outside world.
 - **Module** The module strategy can be seen as a further development of the platform strategy, as the same modules are again used in different products in order to customise what is perceptible to the customer and standardise what is not perceptible.

Virtual product development and use of CAx

The efficient implementation of product development processes is now heavily reliant on the use of modern information and communication technology. The collective name for all computer support systems used in a company is "CAx system". CAx systems consist of hardware (e.g. computers and associated peripheral equipment) and software (e.g. the operating system and application software).

The application tools most commonly encountered in the context of product development and design include computer aided design (CAD) and various design, calculation and optimisation tools, which are grouped together under the term computer aided engineering (CAE). CAE includes calculation tools used in the finite element method (FED) and computational fluid dynamics (CFD) as well as mathematical optimisation methods (computer aided optimisation, CAO). Modern product development processes also call for computer aided manufacturing (CAM) or computer aided quality (CAQ) tools.
Figure 4 Current CAx landscape according to Vanja et al.

According to Vania et al. (CAx für Ingenieure, 2018) the current CAX

CAD modelling

A particularly important technology in this context is 3D product modelling using CAD tools, the principles and systematic application of which are set out in VDI 2209, for example. This technology is typically used at the beginning of the design phase in product development. In the use of CAD tools, an additional distinction is made between conventional, parametric, feature-based or knowledge-based CAD modelling.

Figure 5

3D modelling principles – overview

> Source: VDI Guideline 2209

Knowledge-based CAD

Ability to draw conclusions from the current design situation (geometry and background information)

Feature-based CAD

Recording and processing of geometry and stored information (semantics), e.g. function, production technology

CAD (parametric)

Recording and processing of geometric elements with variable datums

a) chronology-based: editable modelling history

b) constraint-based: editable systems of equations

CAD (conventional)

Recording and processing of geometric elements with fixed values

Product development

Data exchange and management	In practice, the exchange of data between various CAD and CAE tools can take place either via direct or neutral interfaces. While direct interfaces provide a direct link between the various software tools, neutral interfaces are based on neutral data formats, such as the STEP format in accordance with ISO 10303 (Standard for the Exchange of Product Model Data) or the JT format in accordance with ISO 14306 (Jupiter Tesselation). Nowadays, the holistic and computer-aided design and management of the product life and exchange of data across the life cycle under the terms of product lifecycle management is largely carried out by interlinking product data management systems (PDM), enterprise resource planning systems (ERP) and manufacturing execution systems (MES).
	Knowledge-based engineering and knowledge processing As previously described, the development of technical products requires extensive design knowledge which not only encompasses theoretical specialist knowledge (knowledge of facts and methods) and heuristic empirical knowledge but also explicit and implicit knowledge.
Knowledge-based engineering (KBE)	In this context, knowledge-based engineering (KBE) and knowledge-based systems help to preserve existing knowledge and improve the exchange of knowledge within a company. These knowledge- based systems are intelligent information systems, which map and render knowledge usable using knowledge representation and knowledge modelling methods. The essential steps and elements involved in the development and operation of KBE applications are described, for example, in VDI 5610 Sheet 2. These applications use inference and various search and problem-solving strategies in order to process knowledge.

_

Product development

The following table shows sample solutions for KBE solutions in accordance with VDI 5610-2.

	Required employees	Required skills and knowledge	Required licences and software	Required expenditure	Potential users
CAD systems and inte	grated program functio	ons			
Application to derive gearbox concept designs	A designer	Basic programming experience	CAD system, SQL database	Minimal main- tenance and testing outlay	Students, training participants
Automated design of window lift kinematics using intelligent features	Application developers, component specialists, designers	Internal CAD programming language	CAD system and KWA licence	Moderate maintenance, training and testing outlay	Global designers
Development of a KBE application using CAD programming interface	Product developers, designers, production planners, knowledge engineers or programmers	Good program- ming knowledge, interview techniques	ERP/PLM and CAD system, UDFs and programming interface as on-board tools	Gathering of expert knowledge, moderate maintenance outlay	Designers and internal sales force (configur- ation)
KBE modules and sys	tems				
Design of a cutter head based on customer- specific diagrams	Designers, sales employees, knowledge engineers or programmers, external consultants	Good knowledge of the program- ming language, particularly of the commercial KBE module	Commercial KBE module of a CAD system, possibly licence to design the user interface	Moderate maintenance, training and testing outlay	Designers and sales employees
Training example for learning basic KBE functions in CAD	Designers, knowledge engineers or programmers, external consultants where appropriate	Good program- ming knowledge	KBE module with on-board CAD system tools, UDFs, design table, spread- sheet software	Moderate maintenance, training and testing outlay	Designers
Product configurators	and design automation	n			
Knowledge-based configuration of elevator systems	Designers, knowledge engineers or programmers, product managers	Good program- ming knowledge (e.g. for XML interface)	ERP/PLM system, CAD system with integrated constraint-based configurator	Moderate maintenance, training and testing outlay	Designers and sales employees
Web portal with configurator for stairs, platforms and crossovers	Designers, production planning, production, knowledge engineers or programmers, marketing	Good program- ming knowledge, knowledge of rules and relationships, knowledge of business processes	CAD, PDM, CRM and ERP system, integrated 3D viewing system, commercial authoring tool	Minimal main- tenance, training and testing outlay	Sales employees, customers, technical departments

Knowledge discovery in databases and data mining

In addition to the introduction and application of human knowledge, product development activities increasingly require product developers to view, evaluate and interpret large quantities of data. The methods used to generate such data include simulations or other validation measures. The area of knowledge discovery in databases (KDD) provides methods and processes that use computer-based support to extract knowledge from data and prepare it for product developers.

The three main steps involved in knowledge discovery in databases are:

- data pre-processing
- data mining using machine learning methods
- data post-processing

The KDD process according to **Fayyad** and the Cross-Industry Standard Process for Data Mining (CRISP-DM) also propose more detailed approaches to knowledge discovery in databases.

The following representation shows the main steps of a KDD process according to **Tan** (Introduction to Data Mining, 2006):

The actual data mining itself is carried out using various machine learning methods, which can be divided into the following three areas:

- supervised learning
- unsupervised learning
- reinforced learning

Figure 6 Main steps of a KDD process according to Tan The choice of machine learning method is essentially determined by the specific goal and task set and by the available data.

Supervised learning methods are often used in the context of product development to predict target values based on known input values. This requires the data set under analysis to contain a sufficiently large number of both the input values and the resulting target value. Overfitting and underfitting of the machine learning model to the available data during the process known as training should be avoided.

The predictive quality of the model can also be determined and evaluated using various validation parameters, examples of which include:

- coefficient of determination
- accuracy
- precision
- recall
- root mean square error

Technical	drawing	guideline
-----------	---------	-----------

Representation of technical objects

Representation options	There are various possibilities for the clear representation of technical objects, from a freehand drawing through a technical drawing to a digital data set in a 3-D CAD system.
Technical product documentation (TPD)	In the past, technical drawing encompassed the technical drawings used in various engineering disciplines such as civil engineering, ship building, mechanical engineering and electrical engineering. In particular, the increasing importance of 3-D dimensioning, as applied in computer aided design (CAD), has resulted in Technical Product Documentation (TPD) being increasingly influenced by the Geometrical Product Specification (ISO GPS). The specification is defined by the function of the component and is intended to be unambiguous and consistent with the verification process and the manufactured component, Thus enabling the specification to provide usable data in production and quality assurance along the entire value chain. For further information, see the chapter Tolerances and fits.
	The technical drawing principles for two-dimensional specification in TPD are expanded for three-dimensional specification and model-based definition (MBD) to include the practices necessary for digital product definition data, as defined in ISO 16792.
Representation of technical objects	The following descriptions are focussed exclusively on the area of technical drawing. The technical drawing as an information carrier serves in the case of a production order as a binding means of communication and legal document between Design and Production and between supplier and customer. In addition to the pictorial representation of the object and its dimensioning, it also contains technological and organisational information (cf. ISO 10209:2012).
	Projection methods
Orthogonal projection	Orthogonal projection is normally used in technical drawings. The body is depicted and dimensioned in several two-dimensional views (2-D views). These are always perpendicular parallel projections.
	As a result of different projection methods, there are different arrangements of views on the drawing. The standards ISO 128-3:2022 and ISO 5456-2:1996 give more detailed explanations of the basic rules governing views and orthogonal projection in technical drawings.
	Descriptions are given here of three projection methods: arrow method
	first angle projection
	third angle projection

Basic rules The basic rules of orthogonal projection are as follows:

- The most informative view is always selected as the front view or main view.
- The body is to be depicted in the main view as far as possible in its operating position, manufacturing position or mounting position.
- The number of additional views and sections should be restricted to what is necessary.

Views of body	Direction of o	observation	Description of views		
	View from	View in direction	Letter	Name	
b	front	a	A	Front view, main view	
f d	above	b	В	Top view	
	left	с	С	Lateral view from left	
	right	d	D	Lateral view from right	
e	below	e	E	Bottom view	
	rear	f	F	Rear view	

The following table shows the standardised descriptions of the views:

Arrow method In the arrow method according to ISO 5456-2:1996, the views on the technical drawing in relation to the main view can be in any arrangement but are individually marked.

Rules for the arrow method:

- Arrows with any letters, predominantly in the main view, indicate the direction of observation of the other views.
- Each view except the main view must be marked at the top by means of the corresponding upper case letter.
- In the drawing, no graphical symbol is necessary for this method (in contrast to first and third angle projection).

First angle projection method

The first angle projection method is used in preference in the Germanspeaking world and substantial parts of Europe and is applied in ISO GPS.

The body is positioned between the observer and the surface that represents the plane of projection. Each view is projected in a perpendicular manner through the body onto the plane at the rear. The planes of projection of all 6 views form a cube, the inner faces of which bear the projected views.

The technical drawing corresponds to the internal surface of this cube arrangement, which means that the views can be placed on the drawing area in this arrangement without any further description. The title block on the drawing contains a symbol indicating the first angle projection method.

Figure 3

First angle projection method, arrangement of views

① Graphical symbol (doubled in size)

Third angle projection method

The third angle projection method is used in the ASME (The American Society of Mechanical Engineers).

The body is positioned, from the observer's perspective, behind the plane of projection. Each of the 6 views is projected perpendicular to the plane in front, which is closer to the observer. All the planes of projection form a cube on which the projected views are shown.

The technical drawing corresponds to the external surface of the cube arrangement. The views are arranged on the drawing area in this way without any further description. The title block on the drawing contains a symbol indicating the third angle projection method.

① Graphical symbol (doubled in size)

Pictorial representation

The pictorial representation of an object gives a three-dimensional view (3-D view). It conveys the impression of a three-dimensional object, is easier to understand than 2-D views and is therefore used in a supporting capacity in technical drawings.

Axonometric representations The standard ISO 5456-3:1996 shows axonometries for technical drawings. Axonometries are parallel projections that create a threedimensional view of a three-dimensional object. Lines that run parallel in the 3-D object remain parallel in axonometric representations.

Two common methods of axonometric representation, isometric projection and dimetric projection, are explained here.

Figure 6 Axonometric representations

Isometric projection
 Dimetric projection

Isometric projection

- In isometric projection, see Figure 6 Part (1), the following apply: representation of a cube and the circles in three views
 - ratio of sides a:b:c = 1:1:1
 - α = β = 30°
 - ellipse E₁: large axis horizontal
 - ellipses E₂ and E₃: large axes at 30° to perpendicular
 - ratio of the axes of the three ellipses 1:1,7

Dimetric projection In dimetric projection, see Figure 6 Part (2), the following apply:

- representation of a cube and the circles in three views
- ratio of sides a:b:c = 1:1:0,5
- α = 7° and β = 42°
- ellipse E₁: large axis horizontal
- ellipses E₁ and E₂: large axes at 7° to perpendicular
- ellipses E₁ and E₂ have ratio of axes of 1:3.
- ellipse E₃ becomes a circle for the purposes of simplicity.

Indication of cuts and sections

Representation in accordance with DIN

Cuts and sections allow insights into the interior of components or hollow bodies such as housings, workpieces with holes or openings. A virtual cut through the relevant body provides clarity. Its representation is implemented in accordance with ISO 128-3:2022.

Areas of cuts and sections are indicated by hatching: parallel narrow continuous lines at an angle of 45°.

Types of sections

- The types of sections can be classified as follows, see Figure 8:
 Complete cut or section: Complete cut or section of the relevant component.
- Cut/section of symmetrical parts: Showing both a cut or section and a view.
- Local cut or section: Internal contours exposed only in certain selected areas.
 - Break: A local cut or section is limited to the area to be indicated. Hatching is limited by a continuous narrow line with zigzags or freehand curve, see Figure 9, Page 354.
 - Cut: representation of a detail and associated with a magnification. The hatching lines end at a straight virtual edge, see Figure 9, Page 354.

Figure 8 Types of sections

Complete cut or section

 2 Cut/section
 of symmetrical parts
 3 Local cut or section

A local cut/section and cut can be represented as follows:

Local cut/section
 Cut

If unambiguity is given, a section can be revolved in a simplified form in the relevant view, see Figure 10. In this case, the outline of the section shall be drawn with continuous narrow lines. Further identification is not necessary.

Solid workpieces are not drawn in longitudinal section, see Figure 11. These include, for example, shafts, studs, rivets, pins, screws, nuts, washers, feather keys, splines, rolling bearing bodies as well as ribs on castings and knobs on handwheels.

Figure 11 Longitudinal sections

Identification In the case of more complex components, the cutting line can be of the cutting plane represented more specifically by means of:

- representation of cutting planes
- several cutting planes in order to represent all features
- identification within one cutting plane by means of capital letters
- arrangement of sections or cuts on the projection axis, possibly below the projection axis, see Figure 12
- representation of the cutting line, especially where the cutting plane ends or changes direction, see Figure 13
- change of cutting plane direction, when applied in several cutting planes
- change of cutting plane direction away from the 90° angle, see Figure 14, Page 356
- outlines and edges behind the cutting plane can be omitted if they do not contribute to the clarification of the drawing.

Figure 13 Change of cutting plane direction

Figure 14 Change of cutting plane direction away from the 90° angle

The following example shows a more complex cross-section.

Example of a section and cut representation

Figure 15 Example of a section and cut representation

Basic elements in drawings

Standard font In technical drawings, standard fonts are used for labelling. The standard ISO 3098:2015 defines the fonts A, B, CA and CB (CA and CB only for CAD applications) in either a vertical (V) or inclined (S) form as appropriate.

The Roman alphabet (L), which also contains numbers and characters, the Greek alphabet (G) and the Cyrillic alphabet (K) are defined.

The following diagram shows the preferred font for manual labelling. In the case of the font size of 5 mm shown here, this font is designated as follows: font ISO 3098 – BVL – 5.

Figure 16 Font B, vertical (V), Roman alphabet (L), with German characters

Labelling feature		Ratio	Dimer mm	ision					
Font size, height of upper case letters	h	(10/10) h	2,5	3,5	5	7	10	14	20
Height of lower case letters (x height)	c ₁	(7/10) h	1,75	2,5 ¹⁾	3,5	5 ¹⁾	7	10 ¹⁾	14
Descenders of lower case letters	c ₂	(3/10) h	0,75	1,05	1,5	2,1	3	4,2	e
Ascenders of lower case letters	c3								
Range of diacritical characters	f	(4/10) h	1	1,4	2	2,8	4	5,6	8
Line thickness	d	(1/10) h	0,25	0,35	0,5	0,7	1	1,4	14
Minimum spacing be	etwe	en:							
Characters	а	(2/10) h	0,5	0,7	1	1,4	2	2,8	4
Base lines 1 ²⁾	b_1	(19/10) h	4,75	6,65	9,5	13,3	19	26,6	38
Base lines 2 ³⁾	b_2	(15/10) h	3,75	5,25	7,5	10,5	15	21	30
Base lines 3 ⁴⁾	b ₃	(13/10) h	3,25	4,55	6,5	9,1	13	18,2	26
	ρ	(6/10) h	1,5	2,1	3	4,2	6	8,4	12

Font B For font B (d = h/10) in the standard font, the dimensions are as follows:

³⁾ In the use of upper case and lower case letters without diacritical characters.
 ⁴⁾ Only upper case letters or numerals are used, diacritical characters are not used.

• Only upper case letters or numerals are used, diacritical characters are not

Preferred numbers and preferred number series

In accordance with the standard DIN 323:1974, the structure of the preferred number series is based on geometric number sequences with 5, 10, 20 or 40 elements in each group of ten.

Eauation 1

Starting from the basic series

 $a \cdot q^0$, $a \cdot q^1$, $a \cdot q^2$, ..., $a \cdot q^{n-1}$

the individual preferred number series are determined as having the increment steps q:

Equation 2

$q = \sqrt[5]{10} = 1,6$	for R 5	$q = \sqrt[20]{10} = 1,12$	for R 20
$q = \sqrt[10]{10} = 1,25$	for R 10	$q = \sqrt[40]{10} = 1,06$	for R 40

Main v Basic s	Main value Basic series		Sequence number	Mantissa	Precise value	Deviation of main value from precise value	
R 5	R 10	R 20	R 40	N			%
1,00	1,00	1,00	1,00	0	000	1,0000	0
			1,06	1	025	1,0593	+0,07
		1,12	1,12	2	050	1,1220	-0,18
			1,18	3	075	1,1885	-0,71
	1,25	1,25	1,25	4	100	1,2589	-0,71
			1,32	5	125	1,3353	-1,01
		1,40	1,40	6	150	1,4125	-0,88
			1,50	7	175	1,4962	+0,25
1,60	1,60	1,60	1,60	8	200	1,5849	+0,95
			1,70	9	225	1,6788	+1,26
		1,80	1,80	10	250	1,7783	+1,22
			1,90	11	275	1,8836	+0,87
	2,00	2,00	2,00	12	300	1,9953	+0,24
			2,12	13	325	2,1135	+0,31
		2,24	2,24	14	350	2,2387	+0,06
			2,36	15	375	2,3714	-0,48
2,50	2,50	2,50	2,50	16	400	2,5119	-0,47
			2,65	17	425	2,6607	-0,40
		2,80	2,80	18	450	2,8184	-0,65
			3,00	19	475	2,9854	+0,49
	3,15	3,15	3,15	20	500	3,1623	-0,39
			3,35	21	525	3,3497	+0,01
		3,55	3,55	22	550	3,5481	+0,05
			3,75	23	575	3,7584	-0,22

Basic series The following table gives the basic series (main values and precise values).

Continuation of table, see Page 360.

The method of writing preferred numbers without trailing zeroes is also used internationally.

Main value Basic series		Sequence number	Mantissa	Precise value	Deviation of main value from precise value		
R 5	R 10	R 20	R 40	N			%
4,00	4,00	4,00	4,00	24	600	3,9811	+0,47
			4,25	25	625	4,2170	+0,78
		4,50	4,50	26	650	4,4668	+0,74
			4,75	27	675	4,7315	+0,39
	5,00	5,00	5,00	28	700	5,0119	-0,24
			5,30	29	725	5,3088	-0,17
		5,60	5,60	30	750	5,6234	-0,42
			6,00	31	775	5,9566	+0,73
6,30	6,30	6,30	6,30	32	800	6,3096	-0,15
			6,70	33	825	6,6834	+0,25
		7,10	7,10	34	850	7,0795	+0,29
			7,50	35	875	7,4989	+0,01
	8,00	8,00	8,00	36	900	7,9433	+0,71
			8,50	37	925	8,4140	+1,02
		9,00	9,00	38	950	8,9125	+0,98
			9,50	39	975	9,4406	+0,63
10,00	10,00	10,00	10,00	40	000	10,0000	0

Continuation of table, Basic series, from Page 359.

The method of writing preferred numbers without trailing zeroes is also used internationally.

Line types and The standard ISO 128-2:2022 defines line types and line groups.

Name ¹⁾	Line type	Application in accordance with ISO 128-2:2022
01.2	Continuous wide line	 Visible edges Visible outlines Crests of screw threads Limit of length of usable full thread depth Main representations in diagrams, charts, flow charts System lines (steel construction) Parting lines of moulds in views Lines of cuts and section arrows
01.1 (subtypes 01.1.1 to 01.1.18)	Continuous narrow line	Imaginary lines Diagonals for the indication of intersection of flat surfaces Dimension lines Bending lines on blanks and Extension lines machined parts Leader lines and Framing of details reference lines Indication of repetitive details, Hatching e.g. root circles of gears Outlines of revolved Dimensioning and tolerance lines Short centre lines Location of laminations Root of screw threads Projection lines Bending lines Grid lines Origin and terminations Axis of the coordinate system
Subtype 01.1.19	Continuous narrow freehand line	Preferably manually represented termination of partial or interrupted views, cuts and sections, if the limit is not a line of symmetry or a centre line ² .
Subtype 01.1.20	Continuous narrow line with zigzags	Termination represented in CAD of partial or interrupted views, cuts and sections, if the limit is not a line of symmetry or a centre line ²⁾ .
02.2	Dashed wide line	 Possible indication of permissible areas of surface treatment or coating
02.1	Dashed narrow line	Hidden edgesHidden outlines
04.2	Long-dashed dotted wide line (long dash)	 Indication of cutting planes Indication of a restricted area (examples: for a toleranced feature, for heat treatment, for coating)

Line types The following table shows some line types from the standard.

Continuation of table, see Page 362.

¹⁾ The first part of the number of the lines indicates the basic type of lines in accordance with ISO 128-2.

²⁾ It is recommended to use only one type of line on one drawing.

Designation ¹⁾	Line type	Application in accordance with ISO 128-2:2022
04.1	Long-dashed dotted narrow line (long dash)	 Centre lines Lines of symmetry, planes of symmetry Pitch circles of gears Pitch circle of holes Indication of expected or wished spread of surface- hardened area (example: heat treatment)
05.1	Long-dashed double-dotted narrow line (long dash)	 Outlines (adjacent parts, alternative designs, finished parts into blank parts) Initial outlines prior to forming Extreme positions of movable parts Centroidal lines Parts situated in front of a cross-sectional plane Outlines of alternative executions Outlines of alternative executions Outlines (adjacent parts, inished part within blanks Framing of particular fields/areas Projected toleranced feature Optical axes Indication of structural outlines used in mechanical processes Outlines of alternative executions
07.2	Dotted wide line	Indication of areas where heat treatment is not permissible
09.2	Long-dashed double-dotted wide line – – – –	 Situation elements (as non-median features)

Continuation of table, Line types, from Page 361.

1) The first part of the number of the lines indicates the basic type of lines in accordance with ISO 128-2.

Line thicknesses and The following table lists some line groups and the associated line line groups thicknesses.

Line	Associated line thickness (nominal dimensions in mm) for					
group	Line type		Dimension and text notation;			
	01.2, 02.2, 04.2, 07.2, 09.2	01.1, 02.1, 04.1, 05.1	graphical symbol ISO 21920-1:2021			
0,25	0,25	0,13	0,18			
0,35	0,35	0,18	0,25			
0,5 ¹⁾	0,5	0,25	0,35			
0,7 ¹⁾	0,7	0,35	0,5			
1	1	0,5	0,7			
1,4	1,4	0,7	1			
2	2	1	1,4			

¹⁾ These line groups should be used in preference.

Sheet sizes

s The standard ISO 5457:1999 + Amd. 1:2010 defines sheet sizes. For details about the title block, see ISO 7200:2004.

Trimmed drawing
 Drawing area
 Untrimmed sheet
 Field division
 Title block

The preferred formats are defined in accordance with ISO 216 in ISO main series A. All formats are used in landscape format, A4 is also used in portrait format.

Format of in accord	Usable favou roller width	Base sheet ³⁾					
Sheet size, format	Trimmed drawing, trimmed sheet (T) ¹⁾	Drawing area	Untrimmed sheet (U) ²⁾				
	mm	mm	mm	mm			mm
A0	841×1189	821×1159	880×1230	-	900	-	-
A1	594×841	574×811	625×880	-	900	660	660×900
A2	420×594	400×564	450×625	(2×450)	900	660	450×660
A3	297×420	277×390	330×450	(2×330) (2×450)	660	900	330×450
A4	210×297	180×277	240×330	250	660	-	225×330

1) Finished sheet.

²⁾ Base sheet for single printing.

 $^{3)}$ From 660 mm \times 900 mm.

Scales The standard ISO 5455:1979 defines notation for scales.

The title block contains the principal scale of the drawing and the other scales at different locations. The latter are presented in each case against the associated representations. As far as possible, all objects (except in standards) must be drawn true to scale.

If parts are depicted in an enlarged representation, it is advisable to add a representation on a 1:1 scale in order to show the natural size. In this case, it is not necessary to reproduce the details.

Enlargement scale	50:1 5:1	20:1 2:1	10:1
Natural scale	1:1		
Reduction scales	1:2 1:20 1:200 1:2000	1:5 1:50 1:500 1:5 000	1:10 1:100 1:1000 1:10000

Dimensioning in accordance with standards

Dimension indications in accordance with standards Flements of dimension indication when indicating dimensions: any other lines. Dimensional values: (although exceptions occur). Figure 18 Elements of dimension indication Dimensional value

Dimension indications in technical drawings apply to the final condition of a part (raw, premachined or finished). Their representation is implemented in accordance with ISO 129-1:2018 + Amd 1:2020. Standards DIN 406-10 and DIN 406-11 have been withdrawn.

The following elements and specifications must be observed

- Dimension lines (continuous narrow lines):
 - are at a distance of approx. 10 mm from the body outlines.
 - other parallel dimension lines have a spacing of at least 7 mm.
 - centre lines and edges must not be used as dimension lines.
- Extension lines (continuous narrow lines):
 - project approx. 2 mm beyond the dimension line.
- Dimension lines and extension lines should not intersect
 - are positioned at the approximate centre of the dimension line
 - are positioned approx. 0,5 mm to 1,5 mm above the dimension line.

Termination of dimension lines

For the termination of dimension lines, the following applies:

- Within a drawing, only one of the possible terminations of dimension lines may be used, see table Terminations of dimension lines
- In general, a black arrow is used as the dimension arrow, while an open arrow is used in CAD drawings
- In subject-related drawings (for example in the case of construction), obliques can be used instead of dimension arrows
- If there is a shortage of space, solid dots can also be used in conjunction with dimension arrows (in the case of chain dimensions)
- Arrows are always used as terminations of dimension lines on arcs, radii and diameters

Terminations of dimension lines	To ISO 129-1	To DIN 406-10 (obsolete, standard withdrawn)
Dimension arrows	h=10d p	10d P
Obliques	=10d	×
Solid dots	h/2=5d	

In order to indicate an origin, an open circle is used.

Methods of dimension indication

Dimensions can be indicated in accordance with the following methods: in two main reading directions (standard):

- Dimensional values should where possible be indicated such that in the reading position of the drawing, they can be read in the main reading directions from the bottom and from the right.
- on dimension reference surfaces: Suitable reference planes are selected for the dimensioning.

For asymmetrical components

For symmetrical components

Each dimension of a component shall only be indicated once within a drawing.

Arrangement of dimensions, dimensioning rules

Indications of dimensions are arranged as follows:

- according to views
- according to internal and external dimensions
- according to individual components
- for two-point sizes without dimension chains in order to avoid, for example, summation of individual tolerances, but possibly with an auxiliary dimension (in brackets)
- with dimension chain if the specifications are constructed using theoretical exact dimensions (TEDs), e.g. for distances or hole patterns.

Continuation of table, see Page 370.

Continuation of table, Dimensioning of features, from Page 369.

Dimensioning of threads

The representation of threads is defined in ISO 6410-1:1993, the simplified representation in ISO 6410-3:2021.

In the case of external threads, the thread root must be drawn as a continuous narrow line while the outside diameter and the thread limit must be drawn as a continuous wide line.

Figure 19 Bolt thread/ external thread

Thread root
 Outside diameter
 Thread limit
 3/4 circle,
 variable position and opening

In the case of internal threads, the outside diameter must be drawn as a continuous narrow line while the core diameter must be drawn as a continuous wide line.

Figure 20 Nut thread/ internal thread

Core diameter
 Outside diameter
 Thread limit

Short designations for threads are defined in DIN 202. These comprise:

- designation for thread type: M, R, Tr
- nominal diameter (thread size)
- lead or pitch as appropriate
- number of turns
- any additional indications necessary: tolerance, direction of turns

The simplified representation is permitted for a thread diameter < 6 mm or if holes or threads of the same type and size are arranged in a regular pattern. The necessary features that are also present in the conventional representation are indicated in the simplified representation.

According to ISO 129-1, the symbol for the quantity "×" can be replaced, as an alternative, by " \forall " in the representation.

Dimensions for threads, thread relief grooves and thread runouts, see chapter Design elements, section Thread runout and thread undercut, Page 508, and section Metric ISO threads, Page 500.

Dimensioning of relief grooves

The representation of relief grooves produced with indexable inserts is defined in ISO 18388:2016 and is supplemented with the tolerances in DIN 509:2022. Relief grooves are used at the surface transitions of stepped shafts or flat surfaces with steps that are to be ground. As a result, the edge of the grinding wheel can run out cleanly.

A distinction is made between the following types of relief grooves:

- type E for workpieces with one machining surface
- type F, G and H for workpieces with two machining surfaces perpendicular to each other featuring different geometries

The representation of relief grooves in drawings is indicated as follows:

- simplified as a designation with extension line, see Figure 22, Page 373, with the indications:
 - "DIN 509" or "ISO 18388"
 - type, radius × relief groove depth
 - optional indications (DIN 509 only) on surface texture in accordance with ISO 1302: designation for production, e.g. MMR for "material removal required" and roughness parameter (recommendation: Ptmax 25 or as agreed with the customer)
- complete with all dimensions:
 - conventional representation: large representation of the workpiece in a break or small representation of a detail represented in magnification, see Figure 22, Page 373. This representation is ambiguous according to ISO GPS.
 - drawing compliant with ISO GPS, see Figure 23, Page 373

Figure 21 Simplified representation in accordance with ISO 6410-3:2021

Dimensions z₁ and z₂ for the machining allowance are only defined in DIN 509.

The necessary countersink depth in the counterpart is dependent on the relief groove type.

representations of relief groove type F, radius r = 4 mm. depth $t_1 = 0.5 \text{ mm}$

Figure 23 Relief groove type F, dimensioning compliant with ISO GPS

The following table shows the dimensions of relief grooves of type E and F and the countersink in the counterpart in accordance with ISO 18388 and DIN 509, see also Figure 22 and Figure 23, Page 373. The tolerances are only defined in DIN 509.

Dimensions				Recommended allocati to diameter d ₁ for work	Minimum dimension a for countersink						
mm					mm	mm					
r	t ₁	t ₂	f	g	under normal	Туре Е	Type F				
±0,1	+0,1 0	+0,05 0	+0,2 0		loau	atternating todu					
R0,2	0,1	0,1	1	(0.9)	> Ø1,6 to Ø3	-	0,2	0			
R0,4	0,2	0,1	2	(1.1)	$> \emptyset$ 3 to \emptyset 18	-	0,3	0			
R0,6	0,2	0,1	2	(1.4)	$>$ \oslash 10 to \oslash 18	-	0,5	0,15			
R0,6	0,3	0,2	2,5	(2.1)	$>$ \oslash 18 to \oslash 80	-	0,4	0			
R0,8	0,3	0,2	2,5	(2.3)	$>$ \oslash 18 to \oslash 80	-	0,6	0,05			
R1	0,2	0,1	2,5	(1.8)	-	$>$ \oslash 18 to \oslash 50	0,9	0,45			
R1	0,4	0,3	4	(3.2)	$> \emptyset$ 80	-	0,7	0			
R1,2	0,2	0,1	2,5	(2)	-	$>$ \oslash 18 to \oslash 50	1,1	0,6			
R1,2	0,4	0,3	4	(3.4)	$> \emptyset$ 80	-	0,9	0,1			
R1,6	0,3	0,2	4	(3.1)	-	$> \varnothing$ 50 to \varnothing 80	1,4	0,6			
R2,5	0,4	0,3	5	(4.8)	-	$>$ \oslash 80 to \oslash 125	2,2	1			
R4	0,5	0,3	7	(6.4)	-	> Ø 125	3,6	2,1			

¹⁾ Numerals printed **bold** correspond to relief grooves of series 1. Series 1 should be used in preference.

²⁾ The allocation to the diameter range is a guideline only; it does not apply in the case of short steps and thin-walled parts.

Symbols for weld connections

Weld connections Weld connections are material contact connections between materials of the same type (for example steel, aluminium, certain plastics). Depending on the intended purpose and type of loading, use is made of various joint types, weld seam types and seam configurations.

Joint types The following table shows a selection of joint types in accordance with ISO 17659:2002.

Joint type	Arrangement of parts	Explanation of joint type	Suitable seam configurations (symbols), guidelines
Butt joint		The parts lie in a single plane and are abutted against each other	Favourable in relation to flow of forces and material usage
Parallel joint		The parts lie parallel on top of each other	Frequently used in top flange plates of bending beams
Overlap joint		The parts lie parallel on top of and overlap each other	Frequently used as member connections in steelwork
T joint		The parts are butted perpendicular against each other	Measures are necessary in the case of transverse tensile loading ¹
Double T joint (cross joint)		(derived from T joint) Two parts lying in a single plane are butted perpendicular against an interjacent third part – unfavourable!	Measures are necessary in the case of transverse tensile loading ¹
Angular joint		(derived from T joint) One part is butted obliquely against another	Fillet angle $\ge 60^{\circ}$ Measures are necessary in the case of transverse tensile loading ¹⁾

Continuation of table, see Page 376.

Due to the risk of fractures (lamellar fractures): examples include ultrasonic inspection, increase in weld connection area.

Joint type	Arrangement of parts	Explanation of joint type	Suitable seam configurations (symbols), guidelines
Corner joint		Two parts are butted against each other at a corner of any angle	Lower load capacity than T joint
Multiple joint		Three or more parts are butted against each other at any angle	Difficult to assess all parts. Unsuitable for higher loading.
Crossing joint		Two parts lie crosswise on top of each other	Isolated cases in steelwork

Continuation of table, Joint types, from Page 375.

Seam types and The following table shows a selection of butt seam configurations and their preparation in accordance with ISO 9692-1.

Seam	Seam configuration Work- Ex- Sym		Sym-	Dimensions		1)	2)	Comments	
type	(joining configuration)	ness t mm	ecution	bol	Gap b mm	Angle α,β °	Welding process	Production cost	Application
Flanged seam	€t+1	up to 2	One side	八	-	-	G, E, WIG, MIG, MAG	-	Welding of thin sheet metal without filler material
l seam	Iseam	up to 4	One side		≈ t	-	G, E, WIG	0,5	No seam preparation, little filler material. With welding on one
		up to 8	Both sides		$\approx t/2$	-	E, WIG (MIG, MAG)		side, the possibility of root defects and fusion defects cannot be ruled out.

Continuation of table, see Page 377.

1) Recommended welding process.

²⁾ Relative production costs.

Continuation of table, Seam types and seam configurations, from Page 376.

Seam	Seam configuration	Work-	Ex-	Sym-	Dimensions		1)	5 ²⁾	Comments	
туре	(Joining configuration)	g conniguration) piece ecution bot Gap Angle thick- ness t mm mm mm °		Angle α,β °	Welding process	Production costs	Αρριιcation			
V seam		3 to 10	One side	\vee	≦4	40 to 60	G	1	 In case of dynamic loading: Work out and back weld the root. For t₁ - t₂ > 3 mm, bevel the thicker part to an inclination of 1:4 (flow of forces!). 	
α		3 to 40	Both sides	\bigcirc	\\ ≦3	≈ 60	E, WIG	-		
						40 to 60	MIG, MAG			
DV seam or	α	over 10	Both sides	X	1 to 4	≈ 60	E, WIG	2	More favourable for larger sheet thicknesses than V seam since, for an identical angle α , only half the weld deposit quantity is required. Almost no angle shrinkage with welding on alternate sides. If necessary, work out root before welding of the opposing position.	
X seam						40 to 60	MIG, MAG			
Y seam		5 to 40	One side	Y	1 to 4	≈ 60	E, WIG, MIG, MAG	1,5	Web height c = 2 4 mm	

Continuation of table, see Page 378.

1) Recommended welding process.

²⁾ Relative production costs.

Continuation of table, Seam types and seam configurations, from Page 377.

Seam	Seam configuration	Work-	Ex-	Sym-	Dimensions		1)	5 ²⁾	Comments	
type	(joining configuration)	piece thick- ness t mm	ecution	bol	Gap b mm	Angle α, β °	Welding process	Production costs	Application	
U seam		over 12	One side	Y	1 to 4	8 to 12	E, WIG, MIG, MAG	4	Web height c = 3 mm advantageous with inaccessible opposing side. Expensive preparation (planing).	
HV seam	V seam	3 to 10	One side	\bigvee	2 to 4	35 to E, 60 WIG, MIG, MAG	E, WIG, MIG, MAG	0,7	Frequently used in conjunction with a fillet seam in a T joint. Execution with	
		3 to 10	Both sides	$\bigvee_{i=1}^{i}$	1 to 4			unwelded web (HV web seam) reduces production costs. Web height c ≦ 2 mm		
DHV seam (double HV seam, K seam)		over 10	Both sides	К	1 to 4	35 to 60	E, WIG, MIG, MAG	1	Frequently used in conjunction with fillet seams in a T joint. Execution with unwelded centre web (K web seam) reduces production costs. Elank baiet b = ±/2 or	
									t/3	

1) Recommended welding process.

²⁾ Relative production costs.
The following table shows further examples of seam types taken from ISO 2553:2019.

Seam type	Seam configuration (joining configuration)	Symbol	Seam type	Seam configuration (joining configuration)	Symbol	
Plug seam			Application examples for additional symbols			
			Flat V seam with flat opposing seam		$ >\!\!\!>\!\!\!>$	
			Y seam with worked out root and opposing seam		\geq	
Spot seam		\bigcirc	Fillet seam with concave surface	and the second second	\angle	
			Fillet seam with notch-free seam transition (machined as necessary)	and the second	K	
Composite symbol	5					
DY seam (double Y seam)		X	Flat V seam levelled on upper workpiece surface by additional machining		\bigvee	
DHY seam (double HY seam, K web seam)	A A A A A A A A A A A A A A A A A A A	K				

Seam symbols for butt and for butt seams and corner seams in accordance with ISO 2553:2019, **corner seams** in the form in which they can be used in drawings.

Symbol for seam type	Seam con- figuration (cross- section)	Symbolic representation in drawings	Name	Symbol for seam type	Seam con- figuration (cross- section)	Symbolic representation in drawings	Name
Butt seam	s			Corner sea	ams and fillet	seams	
			l seam				Fillet seam
\lor			V seam				Double fillet seam
\bigvee			HV seam				Flat seam
K			DHV seam or K seam				Camber seam
Y			U seam				Concave seam
X			DV seam or X seam				Corner seam (outer fillet seam, executed here as a camber seam)

Indication of surface texture and roughness parameters in drawings

Surface texture The indication of profile surface texture in technical product documentation (TPD) is carried out with the aid of graphical symbols and is defined in standard series ISO 21920-1, 2 and 3:2021.

Surfaces on workpieces that are to remain unfinished (unmachined), i.e. surfaces which are the result of the manufacturing process, such as rolling, forging, casting or flame cutting etc., are not assigned a surface symbol.

Indications of surface texture are necessary where there are higher requirements for the quality of the surface. The required surface texture can be achieved by cutting or non-cutting production processes.

Various profile surface texture parameters are defined for identification of the surface texture, see section Roughness profile parameters, Page 396.

The values for the surface texture parameters Ra that can be achieved using various production processes are compiled in the section Achievable mean roughness values, Page 402. The values are based on the previously valid default case (application of the 16% rule) and the previously applied measurement practice (surface imperfections were not taken into account during measurement).

Requirements for profile surface texture are represented in TPD by means

oft	he following graphical	symbols:
Gra	aphical symbol	Explanation
	$\overline{\checkmark}$	Basic symbol Any manufacturing process permitted
	$\overline{\bigtriangledown}$	Expanded symbol Surface must be machined with removal of material
	$\overline{\Diamond}$	Expanded symbol Surface must not be machined by removal of material or must remain in its delivered condition

Graphical symbols without indications

Schaeffler

Tolerance

The application of tolerance limits to the measured values **acceptance rules** of the parameters is stipulated in the tolerance acceptance rules:

Tolerance acceptance rule	Explanation
Tmax	No measured value may exceed the maximum value; the maximum tolerance acceptance rule is the default case
T16%	A maximum of 16 % of all measured values may violate the tolerance limit
Tmed	The median value of all measured values must be met

with the symbol

Indications If the texture of the surface is specified or further indications relating to the coating, production process or surface structure (direction of grooves) are necessary, the horizontal line top right of the graphical symbol is expanded.

> The possible additional requirements a-z are positioned in the symbol as shown in Figure 24 and are explained in the following table. The letters a to z symbolise placeholders for optional information. These can be specified if they differ from the default case or from an additional requirement. Placeholders b and c represent mandatory information.

Fiaure 24 Position of indications with the symbol

	s t		
	abcd/	e f – g h (i × k) (m) n p / q r	
z× 💙 u	Optional: Indicat	tions for other parameters (indications a – r as above)	V
////			
Placeholders i Placeholders i	n black n blue	= minimum = optional indication	

Indication	Type of indication
a	Tolerance type
b	Symbol for R-parameter, P-parameter or W-parameter
C	Tolerance limit value for profile surface texture parameter
d	Tolerance acceptance rule
e	Profile S-filter type
f	Profile S-filter nesting index
g	Profile L-filter type (indication only appropriate for R-parameters)

Continuation of table, see Page 383.

Indication	Type of indication
h	Profile L-filter nesting index (indication only appropriate for R-parameters)
i	Section length (only appropriate when indicating section length-based R-/P-/W-parameters)
k	Number of sections (only appropriate when indicating section length-based R-/P-/W-parameters)
m	Evaluation length (only appropriate when indicating evaluation length-based R-/P-/W-parameters)
n	Association method and element of profile F-operator
р	Profile F-operator nesting index
q	Method of profile extraction
r	Placeholder for the OR(n) symbol for other requirements
S	Manufacturing process
t	Surface lay and direction of machining marks
u	Profile direction in relation to surface lay
v	Intersection plane indicator for specified profile direction
Z	Number of identical specifications

Continuation of table, Indications with the symbol, from Page 382.

The parameter type and length type determine whether information is provided for the individual placeholders in the middle part g to m of the surface symbol:

- evaluation lengths for R-/P-/W-parameters
- section lengths for R-/P-/W-parameters

Values and settings that are not explicitly specified with the symbol are defined by the default cases in ISO 21920-3:2021. They are taken from the tables based on the specified parameter with tolerance type and tolerance limit.

Preferred parameters When indicating roughness parameters in drawings, it must be ensured that only the preferred parameters are used for mean roughness values.

Ra	0,025	0,05	0,1	0,2	0,4	0,8	1,6	3,2	6,3	12,5	25	50
Rz	0,2	0,4	0,8	1,6	3,2	6,3	12,5	25	50	100	200	200

The preferred parameters for Ra and Rz are as follows:

Indication of direction In order to determine the direction of grooves relative to a feature, of grooves with datum the following symbols are added at position "t" of the surface symbol, see Figure 24, Page 382:

Symbol	Example	Explanation
=		Parallel to the direction specified by the intersection plane indicator and the associated reference to a feature
\bot		Perpendicular to the direction specified by the intersection plane indicator and the associated reference to a feature
Х		Crossed in two directions, inclined at 45° to the direction specified by the intersection plane indicator and the associated reference to a feature

Direction of grooves In order to determine the direction of grooves without a datum, without datum the following symbols are added at position "t" of the surface symbol, see Figure 24, Page 382:

Symbol	Example	Explanation
Μ		Multi-directional
С		Approximately concentric to the centre of the surface to which the symbol applies

Continuation of table, see Page 385.

Symbol	Example	Explanation
R	R	Approximately radial to the centre of the surface to which the symbol applies
Ρ		 Surface without grooves, non-directional or with troughs

Continuation of table, Indications with the symbol, from Page 384.

Indication of the profile direction

Indication In order to determine the direction of the profile, the following symbols e direction are added at position "u" of the surface symbol, see Figure 24, Page 382:

Symbol	Explanation
#	Profile direction perpendicular to the prevailing direction
₽	Profile direction parallel to the prevailing direction
\neq	Profile direction at an angle to the prevailing direction $(0^{\circ} < \alpha < 90^{\circ})$. The angle is given after the symbol.
0	Profile direction circular to the centre of the surface to which the symbol applies

Indication of the profile direction relative to a feature In order to determine the profile direction using an intersection plane indicator on the surface symbol with reference to a feature, the following symbols are added at position "v" of the surface symbol, see Figure 24, Page 382:

Surface symbols The following tables show some examples of surface symbols and their meaning or application.

Exampl	e 1:
--------	------

Indication ¹⁾	Type of indication	Indication, explanation
Indications with	th the symbol	
	Graphical symbol	Profile surface texture, any production method
b	Ra	R-parameter: Ra
c	6,3	Tolerance limit value: 6,3 µm, leads to the relevant default settings in accordance with ISO 21920-3:2021, table 3
d	Tolerance acceptance rule	16% rule
z	4×	Number of identical specifications: 4
Applied default settings in accordance with ISO 21920-3:2021, table 1 and table 3		
а	Tolerance type	Upper tolerance limit
е	Profile S-filter type	Gaussian filter in accordance with ISO 16610-21
f	Profile S-filter nesting index N _{is}	$8\mu\text{m}$ with maximum sampling distance of 1,5 μm
g	Profile L-filter type	Gaussian filter in accordance with ISO 16610-21
h	Profile L-filter nesting index N _{ic}	2,5 mm
i	Section length l _{sc}	2,5 mm
k	Number of sections n _{sc}	5
m	Evaluation length l _e	12,5 mm
n	Profile F-operator association method and element	Association and removal of the specified form element with total least square
р	Profile F-operator nesting index	Not required
q	Method of profile extraction	Mechanical profile
r	Other requirements (OR(n))	No other requirements
S	Manufacturing process	No requirement
t	Surface lay and direction of machining marks	No requirement
u	Profile direction	Perpendicular to surface lay
v	Intersection plane indicator for specified profile direction	No requirement

Example 2:			
Rz 6, √⇒			
Indication ¹⁾	Type of indication	Indication, explanation	
Indications wi	th the symbol		
	Graphical symbol	Profile surface texture, material must be removed	
b	Rz	R-parameter: Rz	
c	6,3	Tolerance limit value: 6,3 µm, leads to the relevant default settings in accordance with ISO 21920-3:2021, table 3	
d	Tolerance acceptance rule	16% rule	
g	Profile L-filter type	Spline filter	
h	Profile L-filter nesting index N _{ic}	0,25 mm	
i	Section length l _{sc}	0,8 mm	
k	Number of sections n _{sc}	3	
S	Ground	Grinding production method	
t		Surface lay and direction of machining marks perpendicular to the direction specified by the intersection plane indicator and datum	
u	⇒	Profile direction parallel to surface lay	
Applied default settings in accordance with ISO 21920-3:2021, table 1 and table 3		2021, table 1 and table 3	
а	Tolerance type	Upper tolerance limit	
е	Profile S-filter type	Gaussian filter in accordance with ISO 16610-21	
f	Profile S-filter nesting index N _{is}	2,5 μm with maximum sampling distance of 0,5 μm	
n	Profile F-operator association method and element	Association and removal of the specified form element with total least square	
р	Profile F-operator nesting index	Not required	
q	Method of profile extraction	Mechanical profile	
r	Other requirements (OR(n))	No other requirements	
v	Intersection plane indicator for specified profile direction	No requirement	
z	Number of identical specifications	Not required	

¹⁾ Position of indications with symbol, see Figure 24, Page 382.

Example 3:

√ Pt 60		
Indication ¹⁾	Type of indication	Indication, explanation
Indications wi	th the symbol	
	Graphical symbol	Profile surface texture, any production method
b	Pt	P-parameter: Pt
c	60	Tolerance limit value: 60 µm, leads to the relevant default settings in accordance with ISO 21920-3:2021, table 6
Applied defaul	t settings in accordance with ISO 21920-3:	2021, table 1 and table 6
а	Tolerance type	Upper tolerance limit
d	Tolerance acceptance rule	Maximum tolerance acceptance rule
е	Profile S-filter type	Gaussian filter in accordance with ISO 16610-21
f	Profile S-filter nesting index N _{is}	$8\mu\text{m}$ with maximum sampling distance of 1,5 μm
m	Evaluation length l _e	Length of feature to be evaluated
n	Profile F-operator association method and element	Association and removal of the specified form element with total least square
q	Method of profile extraction	Mechanical profile
r	Other requirements (OR(n))	No other requirements
S	Manufacturing process	No requirement
t	Surface lay and direction of machining marks	No requirement
u	Profile direction	Perpendicular to surface lay
v	Intersection plane indicator for specified profile direction	No requirement
Z	Number of identical specifications	Not required

Example 4:

chromium plated —/ Ra 0,5

Indication ¹⁾	Type of indication	Indication, explanation
Indications with the symbol		
	Graphical symbol	Profile surface texture, any production method
b	Ra	R-parameter: Ra
C	0,5	Tolerance limit value: 0,5 µm, leads to the relevant default settings in accordance with ISO 21920-3:2021, table 3
S	Manufacturing process	Chromium plated surface
Applied defau	t settings in accordance with ISO 21920-3:	2021, table 1 and table 3
а	Tolerance type	Upper tolerance limit
d	Tolerance acceptance rule	Maximum tolerance acceptance rule
e	Profile S-filter type	Gaussian filter in accordance with ISO 16610-21
f	Profile S-filter nesting index N _{is}	2,5 μm with maximum sampling distance of 0,5 μm
g	Profile L-filter type	Gaussian filter in accordance with ISO 16610-21
h	Profile L-filter nesting index N _{ic}	0,8 mm
i	Section length l _{sc}	0,8 mm
k	Number of sections n _{sc}	5
m	Evaluation length l _e	4 mm
n	Profile F-operator association method and element	Association and removal of the specified form element with total least square
р	Profile F-operator nesting index	Not required
q	Method of profile extraction	Mechanical profile
r	Other requirements (OR(n))	No other requirements
t	Surface lay and direction of machining marks	No requirement
u	Profile direction	Perpendicular to surface lay
v	Intersection plane indicator for specified profile direction	No requirement
Z	Number of identical specifications	Not required

Example 5:

	1.1	D -	2
-/	υ	ка	5
$\overline{}$	1	D -	
V	L	Кd	V, >

Indication ¹⁾	Type of indication	Indication, explanation
Indications with the symbol		
	Graphical symbol	Profile surface texture, material must be removed
a	Tolerance type	Bilateral tolerance limits
b	Ra	R-parameter: Ra
c Top line	3; U	Upper tolerance limit value: 3 µm
c Bottom line	0,5; L	Lower tolerance limit value: 0,5 μm
2 lines	Indications U and L	Bilateral tolerance limits, tolerance centre C = (U + L)/2 = (3 + 0,5) μ m/2 = 1,75 μ m, leads to the relevant default settings in accordance with ISO 21920-3:2021, table 4
Applied default settings in accordance with ISO 21920-3:2021, table 1 and table 4		
d	Tolerance acceptance rule	Maximum tolerance acceptance rule
e	Profile S-filter type	Gaussian filter in accordance with ISO 16610-21
f	Profile S-filter nesting index N _{is}	8 μm with maximum sampling distance of 1,5 μm
g	Profile L-filter type	Gaussian filter in accordance with ISO 16610-21
h	Profile L-filter nesting index N _{ic}	2,5 mm
i	Section length l _{sc}	2,5 mm
k	Number of sections n _{sc}	5
m	Evaluation length l _e	12,5 mm
n	Profile F-operator association method and element	Association and removal of the specified form element with total least square
р	Profile F-operator nesting index	Not required
q	Method of profile extraction	Mechanical profile
r	Other requirements (OR(n))	No other requirements
S	Manufacturing process	No requirement
t	Surface lay and direction of machining marks	No requirement
u	Profile direction	Perpendicular to surface lay
v	Intersection plane indicator for specified profile direction	No requirement
z	Number of identical specifications	Not required

Continuation of table, see Page 392.

Drawing	Applications
	 Simplified drawing indication for identical surface texture
$-\overline{Ra} 63 \left(-\overline{Ra} 11\right)$	 Simplified drawing indication for predominantly identical surface texture
$ \begin{array}{c} \hline & & & \\ \hline \\ \hline$	
	 Simplified drawing indication for identical surface quality on several individual texture

Continuation of table, Arrangement of symbols, from Page 391.

Profile surface texture parameters

Geometrical parameters are defined for the description of surface texture (ISO 21920-2:2021):

- R-parameters (relating to the roughness profile)
- W-parameters (relating to the waviness profile)
- P-parameters (relating to the primary profile)

The quality of a surface is measured in accordance with the standardised profile method (ISO 3274:1996). No distinction is made between periodic and non-periodic profiles.

The terms used in conjunction with measurement and recording of profile surface texture parameters are explained in the following table.

Term	Definition in accordance with ISO 21920 and other standards
Number of sections n _{sc}	Number of section lengths for specifying the section length parameters (e.g. Rz, Rp, Rv).
	Previous designation: number of individual measurement distances
Section length I _{sc}	Length in the direction of the x axis that is used to obtain the section length parameters. Section length parameters such as Rz, Rp, Rv are evaluated over several consecutive sections of length l _{sc} .
	Previous designation: individual measurement distance lr, lw, lp
Evaluation length l _e	Length in the direction of the x axis used to determine the geometric structures that describe the scale-limited profile. The travel path is longer than the evaluation length. The majority of parameters are defined using the evaluation length l _e , exceptions include Rz, Rp, Rv.
	Previous designation: measurement distance In
Setting class	Identifier for determining default settings.
Scn	Previously undetermined.
F-operation	Operation which removes form components.
	Previous definition: profile filter λf
L-filter	Filter that removes large-scale lateral components (high pass). For roughness parameters, the "N _{ic} filter" removes large-scale lateral components that do not belong to the R-profile.
	Previous definition: profile filter $\lambda c:$ Gaussian filter in accordance with ISO 11562 with exceptions
Mechanical surface	Limitation of mathematical erosion of the geometric location of the centre of an ideal stylus ball with radius r, which is rolled over the actual workpiece surface by a sphere which also has the radius r.
Mechanical profile	Limitation of mathematical erosion of the geometric location of the centre of an ideal stylus ball with radius r, which is rolled along a track over the actual workpiece surface using a circular disk which also has the radius r.

Continuation of table, see Page 394.

Term	Definition in accordance with ISO 21920 and other standards
Nesting index N _{is} , N _{ic} , N _{if}	Numerical value of the filter that separates a profile into large-scale and small-scale lateral components.
	Previous designation: cut-off wavelength $\lambda s, \lambda c, \lambda f$
Nesting index N _{is}	For roughness parameters, N _{is} removes very small-scale lateral components that do not belong to the R-profile.
	Previous definition: cut-off wavelength λs
Nesting index N _{ic}	Filter that determines the transition from roughness to waviness. For roughness parameters, N_{lc} removes large-scale lateral components that do not belong to the R-profile. For waviness parameters, N_{lc} removes small-scale lateral components that belong to the R-profile and not to the W-profile.
	Previous definition: cut-off wavelength λc
Nesting index N _{if}	Filter relating to a nominal feature or a filter.
Surface imperfections in accordance with ISO 8785	Verification must be carried out at the location of the surface where the highest values are expected. By default, surface imperfections such as scratches, pores and cavities must be included in the verification.
	Previous practice: Surface imperfections were excluded from the surface determination, ISO 4288:1989.
Ordinate value z(x)	Height of the measured profile at any specified position x. The heights are considered as negative if ordinates lie below the x axis (centre line).
Primary surface profile	Surface profile trace produced with defined nesting index N _{is} (the "morphological filter") from the mechanical surface (default), the electromagnetic surface or the auxiliary surface.
Primary profile P-profile	Scale-limited profile derived from the primary surface profile using a profile F-operation with nesting index N _{if} . The primary profile is the basis for evaluation of the P-parameters.
Profile element	Peak followed by a trough, or trough followed by a peak with the dimensions: Z _{ph} peak height Z _{vd} pit depth Z _t profile element height X _s profile element spacings
Profile position	Location where maximum values are expected, with surface imperfections included.
	Previous practice: Imperfections (e.g. scratches, pores) were excluded from the verification.

Continuation of table, Profile surface texture parameters, from Page 393.

Continuation of table, see Page 395.

Continuation of table	, Profile surface texture	parameters, from Page 394.
-----------------------	---------------------------	----------------------------

Term	Definition in accordance with ISO 21920 and other standards
Roughness profile R-profile	Scale-limited profile derived from the primary profile by using a specific profile L-filter with a nesting index N _{ic} The roughness profile is the basis for evaluation of the R-parameters.
S-filter	Filter that removes small-scale lateral components (low pass). For roughness parameters, the "N _{is} filter" removes very small-scale lateral components that do not belong to the R-profile. For waviness parameters, the "N _{ic} filter" removes small-scale lateral components that belong to the R-profile and not to the W-profile.
	Previous definition: profile filter λs: Gaussian filter in accordance with ISO 11562
Scale-limited profile	Profile structure scale components between specified nesting indices. A profile is scale-limited once a profile filter with a specified nesting index has been applied.
Specification	Control values are based on the drawing indication.
of parameters	Previous practice: Default values were selected on the basis of the workpiece.
Traced section	Determination of the surface texture in accordance with the profile method
Traced length I _t	Total length covered by the tracing system in order to record the traced profile. This is the sum of the pre-travel length (for stabilising the filter), the evaluation length le and the post- travel length (for the excursion of the filter).
Tolerance acceptance rule	Determines how the tolerance limits are applied to the measured values of the parameters. Default case is the maximum tolerance acceptance rule.
	Previous practice: 16% rule
16% tolerance acceptance rule T16%	Application of the 16% tolerance acceptance rule must be explicitly specified if it is to be applied.
	Previous practice: The 16% rule was the default case without actually being specified.
Waviness profile W-profile	Scale-limited profile derived from the primary profile by using a specific profile S-filter with a nesting index N _{ic} . The waviness profile is the basis for evaluation of the W-parameters.

Roughness profile Roughness profile parameters (R-parameters) are calculated from the roughness profile, W-parameters from the waviness profile and P-parameters from the primary profile.

R-parameters The following table shows a selection of R-parameters in accordance with ISO 21920-2:2021.

eter	Definition	Mathematical definition			
Mean peak height	Arithmetic mean of the largest peak heights Z _{phi} of each profile section in the roughness profile	$Rp = \frac{1}{n_{sc}} \cdot \sum_{i = 1}^{n_{sc}} \max_{j \in N_i} \left(Z_{ph_i j} \right)$			
Mean pit depth	Arithmetic mean of the largest pit depths Z _{vdi} of each profile section in the roughness profile	$Rv = \frac{1}{n_{sc}} \cdot \sum_{i = 1}^{n_{sc}} \max_{j \in N_i} \left(Z_{vd,j} \right)$			
Maximum height of the profile	Arithmetic mean of all sums of the largest peak heights and the largest pit depths from all sections	$\begin{aligned} Rz &= \frac{1}{n_{sc}} \cdot \sum_{i=1}^{n_{sc}} \left(\max_{j \in N_{p,i}} (Z_{ph,j}) \right. \\ &\left. + \max_{k \in N_{v,i}} (Z_{vd,k}) \right) \end{aligned}$			
Total height of the profile	Sum of the height of the largest profile peak $\rm Z_{phi}$ and the largest depth of the profile pit $\rm Z_{vdi}$ within the evaluation length $\rm l_e$	$Rt = \max_{x \in X} (z(x)) - \min_{x \in X} (z(x))$ where $X = (x - R \mid 0 \le x \le L)$			
Maximum peak height	Largest peak height $\rm Z_{phi}$ of the roughness profile within the evaluation length $\rm l_e$	$\mathbf{x} = (\mathbf{x} \in \mathbf{x} \mid 0 = \mathbf{x} = \mathbf{i}_{e})$			
Maximum pit depth	Largest pit depth $\rm Z_{vdi}$ of the roughness profile within the evaluation length $\rm l_e$				
Maximum height per section	Greatest difference between the highest and the lowest profile value within a section of length I moved along the evaluation length I _e . ISO 21920 defines the new parameter Rzx as the successor to Rmax. Meaning of Rmax: maximum roughness depth is only defined in VDA 2006 and ASME B46.1 as the largest individual roughness depth within the evaluation	-			
	eter Mean peak height Mean pit depth Maximum height of the profile Total height of the profile Maximum peak height Maximum height per section	eter Definition Mean peak height Arithmetic mean of the largest peak height Z _{phi} of each profile section in the roughness profile Mean pit depth Arithmetic mean of the largest pit depths Z _{vdi} of each profile section in the roughness profile Maximum height of the profile Arithmetic mean of all sums of the largest peak heights and the largest pit depths from all sections Total height of the profile Sum of the height of the largest depth of the profile pit Z _{vdi} and the largest depth of the profile pit Z _{vdi} within the evaluation length l _e Maximum peak height Largest peak height Z _{phi} of the roughness profile within the evaluation length l _e Maximum height per section Greatest difference between the highest and the lowest profile value within a section of length I moved along the evaluation length l _e . ISO 21920 defines the new parameter Rzx as the successor to Rmax. Meaning of Rmax: maximum roughness depth is only defined in VDA 2006 and ASME B46.1 as the largest individual roughness depth within the evaluation length l _e .			

Continuation of table, see Page 398.

Parameter		Definition	Mathematical definition			
Rc	Mean height of the profile elements	Mean of the height of the profile elements Z _t within an individual measurement distance	$\begin{aligned} & \text{Rc} = \frac{1}{n_{pe}} \cdot \sum_{i = 1}^{n_{pe}} Z_{t,i} \\ & \text{where } n_{pe} = \text{total number} \\ & \text{of profile elements} \end{aligned}$			
Ra	Arithmetic mean height	Arithmetic mean of the absolute values of the ordinate values z(x)	$Ra = \frac{1}{l_e} \cdot \int_0^{l_e} z(x) dx$			
Rq	Root mean square height	Root mean square of the ordinate values z(x)	$Rq = \sqrt{\frac{1}{l_e} \cdot \int_{0}^{l_e} z^2(x) dx}$			
Rsk	Skewness	Quotient of the mean cube value of the ordinate values z(x) and the cube of Rq within the evaluation length	$Rsk = \frac{1}{Rq^3} \cdot \frac{1}{l_e} \cdot \int_0^{l_e} z^3(x) dx$			

Continuation of table, R-parameters, from Page 396.

Continuation of table, see Page 400.

Statement	Geometrical representation				
-	z Z_{t1} Z_{t3} Z_{t5} Z_{t6} Z_{t7}				
 Surfaces of the same character can be compared "Good-natured" response No statement on profile shape 	Rq Api $A = \Sigma Api + \Sigma Avi$ Ra Ra Avi				
 Parameter with higher statistical security than Ra No statement on profile shape 	- 'e ►				
 Good description of the profile shape A negative Rsk value indicates a plateau- like surface with good load behaviour 					

Parameter		Definition	Mathematical definition			
Rku	Kurtosis	Quotient of the mean fourth power of the ordinate values z(x) and the fourth power of Rq within the evaluation length	$Rku = \frac{1}{Rq^4} \cdot \frac{1}{l_e} \cdot \int_0^{l_e} z^4(x) dx$			
Rmc(c)	Material ratio	Quotient of the sum of the material lengths of the profile elements $Rml(c)$ at the specified section height c and the evaluation length l_e . This gives the Abbott-Firestone curve, which represents the material ratio of the profile as a function of the section height.	$Rmc(c) = \frac{Rml(c)}{l_e}$			
Rmr(p,d _c)	Relative material ratio	Material ratio with a section height $c_p + d_c$, where c_p is the inverse material ratio with a material ratio p and d_c is a relative section height.	$\begin{array}{l} Rmr(p,d_c) = Rmc(c_p+d_c) \\ where \ c_p = Rcm(p), \\ usually \ d_c < 0 \end{array}$			
Rdc(p,q)	Material ratio at the section line height	Difference in height between two section planes of a given material ratio p and q	$\begin{array}{l} Rdc(p,q) = Rcm(q) - Rcm(p) \\ where \ p \leq q \end{array}$			

Continuation of table R-parameters from Page 398.

Achievable mean The standard DIN 4766-2:1981 (which is now invalid but nevertheless **roughness values** of considerable practical relevance) shows the achievable mean roughness values Ra for various production processes.

Production processes		Achievable mean roughness values Ra µm													
Main group	Description	0,006	0,012	0,025	0,05	0,1	0,2	0,4	0,8	1,6	3,2	6,3	12,5	25	50
	Sand casting ²⁾														
	Lost mould casting ²⁾														
Forming ¹⁾	Gravity diecasting														
Ū	Pressure diecasting														
	Investment casting														
	Drop forging														
	Burnishing														
Deferming	Sheet metal deep drawing														
Reforming	Extrusion														
	Stamping														
	Rolling of shaped parts														
	Slicing														
	Longitudinal turning														
Cutting	Face turning														
Cutting	Plunge turning														
	Planing														
	Ramming														
	Shaving														
	Drilling														
	Drilling out														
	Countersinking														
	Reaming														
	Side milling														
	Face milling														
	Broaching														
	Filing														
	Circular longitudinal grinding														
	Circular face grinding														
	Circular plunge grinding														
	Plane peripheral grinding														
	Plane end grinding														
	Polish grinding														
	Long stroke honing														
	Short stroke honing														
	Cylindrical lapping														
	Plane lapping														
	Ultrasonic lapping														
	Polish lapping														
	Blasting														
	Barrel finishing														
	Flame cutting														

¹⁾ For further details, see VDG Instruction Sheet K 100, obtainable from Verein Deutscher Giessereifachleute (VDG), Sohnstrasse 70, 40237 Düsseldorf.

 $^{2)}$ In this casting method, Ra values of up to 125 μ m must be expected in the case of castings up to 250 kg.

Hardness indications in drawings in accordance with ISO 15787:2016 The drawing must, in addition to the indications of the material, define the required final condition such as "hardened", "surface-hardened and tempered", "case-hardened" or "nitrided" and include the necessary indications of the surface hardness¹, core hardness¹ and the hardening depth (SHD, CHD, NHD).

Examples of hardness indications The following table shows some examples of hardness indications in drawings:

Source: ISO 15787:2016

¹⁾ See ISO 6508-1 Rockwell hardness; ISO 6507-1 Vickers hardness; ISO 6506-1 Brinell hardness.

Tolerances - general definition

Allocation of tolerances

The absolutely precise production of components to the size indicated in the technical drawing, the nominal size, is not possible for manufacturing reasons.

It is possible to determine, however, the maximum permissible variations from these nominal sizes. These variations are described as deviations or limit deviations. In addition, the deviation from the represented geometrical form or their position relative to each other can be permitted or restricted in such a way that the function of the component is still ensured.

In order to give an adequate definition of all the required sizes and geometrical characteristics of a workpiece in relation to its production, tolerances are allocated that must then be indicated in the technical drawing.

Tolerances There are different types of geometrical deviations:

in drawings dimensional, geometrical, locational, orientation, run-out and surface deviations. These must be restricted by means of tolerance indications.

Tolerances can be indicated in a technical drawing by means of:

- Dimensional tolerancing: Indication of deviations for linear and angular sizes in the form of values after the nominal size or by specifying the permitted maximum and minimum size
- Symbols for tolerance classes: The use of fit systems in accordance with the ISO code system for tolerances on linear sizes, starting Page 425
- Geometrical tolerancing: Identification of the permissible variation of geometry, orientation, location or run-out by means of symbols, starting Page 451
- Tolerancing principle: Global and individual indication on the drawing, starting Page 464
- General tolerances: Global indication of tolerances for the simplification of drawings, starting Page 468

Dimensional tolerances in drawings Figure 1 Nominal size, limit deviations and limits of size

 Drawing with linear size and tolerance
 Appropriate representation of nominal size, limits of size and limit deviations The following image shows the nominal size, limit deviations and limits of size.

Definition of terms

For the indication of sizes, deviations and tolerances, the standard ISO 286-1:2010 defines the following fixed terms:

Name		Symbol	Comments		
Nominal size		N ¹⁾	Dimension of a feature of perfect form, as defined by the specification on the drawing. This dimension is used, with the aid of the upper and lower limit deviation, to derive the limit dimensions		
Actual size		1)	Dimension of the associated complete dimen- sional feature, determined by measurement		
Local actual size		-	Any measured dimension in any cross-section of a form element		
Limit of size		-	Extreme permitted sizes of a dimensional feature. The actual size of a workpiece may lie between the two limits of size "upper limit of size" and "lower limit of size" (including the limits of size themselves)		
Upper limit of size		ULS	The larger permitted size of the two limits of size		
Lower limit of size		LLS	The smaller permitted size of the two limits of size		
Limit deviation	upper	ES, es	Upper limit of size minus nominal size (designation ES for holes, es for shafts)		
	lower	El, ei	Lower limit of size minus nominal size (designation EI for holes, ei for shafts)		
Tolerance		T ¹⁾	Upper limit of size minus lower limit of size		
Standard tolerance		IT	International tolerance; any tolerance in the ISO system for tolerances of linear sizes		

 Still included in the standard DIN 7182-1; no longer included in the standard ISO 286-1:2010 as a symbol.

Geometrical Product Specification (ISO GPS)

Concept The Geometrical Product Specification (ISO GPS) is an internationally recognised concept that defines all the different requirements relating to geometry (especially the sizes, geometry, position and surface of a workpiece or a component) in their specification and applies to all the associated principles in relation to inspection, the measuring equipment used and its calibration. The result ensures optimum function.

The Masterplan from 1995 (ISO 14638) gave the first specifications for ISO GPS, while the GPS symbols for dimensional tolerancing have been defined in ISO 14405 since 2010. Together with the symbols for geometrical tolerancing in accordance with ISO 1101, the definitions for datums and datum systems in accordance with ISO 5459, and other GPS standards, the GPS symbols now serve worldwide as a common "language". They facilitate precise, clear and detailed indication of the technical requirements in technical drawings or in a 3D model. The standard ISO 8015 revised in 2011 defines the fundamental concepts. principles and rules that apply in the creation, interpretation and application of all other international standards, technical specifications and technical reports (where these concern the geometrical product specification and verification). In industry, technical drawings worldwide have since been successively created in accordance with the GPS standard. Particularly in America, reference is often made instead to ASME standards. and, most notably, to ASME Y14.5.

Aspects of ISO GPS

Significant aspects of ISO GPS are:

- Objective: functionally appropriate specification specification has a considerable influence on all phases of the product life and the quality of products.
- The term "drawing" encompasses the complete package of documentation for specification of the workpiece, for example the technical drawing, 3D model, product definition data set, standards, etc.
- Specification and verification: The specification describes the product while the verification checks the implementation of the specification on the workpiece with the aid of measurements.
- Specification in accordance with the GPS principles can be clearly recognised from the indication "Linear size ISO 14405" or "ISO 8015" in or above the title block of a technical drawing. This means that all standards from the ISO GPS standard system generally apply.

- In order to exactly describe linear sizes, specification modifiers in accordance with ISO 14405-1 can be used. They define features of size such as the type "cylinder", "sphere" or "two parallel opposite planes" (see also section Sizes, Page 417, and tables Specification modifiers for linear sizes, Page 420, as well as Complementary specification modifiers for linear sizes, Page 421).
- In order to exactly describe angular sizes, specification modifiers in accordance with ISO 14405-3 can be used. They define:
 - revolute angular features of size: cone or frustum
 - prismatic angular features of size: wedge (truncated or not)
- The principle of general geometrical and size specifications is defined in ISO 22081; in addition, tolerance values can be found in DIN 2769.
- Important standards in the GPS Masterplan that specify products in dimensional and geometrical terms and regulate the verification of component characteristics are:
 - ISO 8015: Fundamentals Concepts, principles and rules
 - ISO 14405-1: Dimensional tolerancing Linear sizes
 - ISO 14405-2: Dimensional tolerancing Dimensions other than linear sizes or angular sizes
 - ISO 14405-3: Dimensional tolerancing Angular sizes
 - ISO 1101: Geometrical tolerancing Tolerances of form, orientation, location and run-out
 - ISO 5459: Geometrical tolerancing Datums and datum systems
 - ISO 2692: Geometrical tolerancing Maximum material requirement (MMR), least material requirement (LMR) and reciprocity requirement (RPR)
 - ISO 5458: Geometrical tolerancing Pattern and combined geometrical specification
 - ISO 14638: GPS matrix model
 - ISO 22081: Geometrical tolerancing General geometrical specifications and general size specifications
 - ISO 21920-1 to 3: Surface texture: Profile
 - ISO 25178-1 to 3: Surface texture: Areal
 - ISO 21204: Transition specification

The specification and verification are contained in a common specification, for example in the technical drawing, 3D model or product definition data set. The GPS specification is independent of any measuring device or measurement method. It does not prescribe how measurement or inspection is to be carried out (measurement strategy).

Unambiguity with ISO GPS

The greatest advantage of the GPS symbolic language is the clarity of workpieces and measurement methods. The finished workpiece in the mounting and functional respect is clearly represented in the specification. This was not always the case in the past. A complex production drawing could be understood in different ways by different parties, see Figure 2.

The use of the GPS symbolic language reduces errors and simplifies not only internal communication but also regional and international exchange with suppliers and customers.

Companies now speak a uniform technical language globally that defines the requirements for the workpiece so clearly that misunderstandings and misinterpretations are eliminated. With ISO GPS, a specification is obtained that is unambiguous worldwide.

Linear distance as an example of ISO GPS

Figure 2 shows an example of ISO 14405-2 for the use of ± tolerancing in the case of a distance, Part ①. This type of indication was previously general practice. This specification indication can result in significant ambiguity, see Figure 2 Part ②.

Figure 2 Without ISO GPS, ambiguous solution

Source: ISO 14405-2

 Distance with symmetrical tolerance indication
 Differing verifications possible

Starting from the functional requirements of the product, Figure 3, Part () to (3) describes datums in accordance with ISO 5459, geometrical tolerances and a modifier for the combination of tolerance zones in accordance with ISO 1101. The datums represent the mounting situation at the customer.

In Part (1), the position of the integral toleranced feature, in this case a straight line or flat surface, is specified as a function of datum A at the theoretically exact distance 30.

In Part (2), the surface profile of the flat surface is specified as a function of datum A at the theoretically exact distance 30.

The extracted surface must be contained between two planes parallel to the datum plane A at a distance of 0,2.

In the case of Part (3), and in contrast to Part (1), the two tolerance zones of the position tolerance must be checked in relation to each other in location and orientation at the theoretically exact distance 30. The modifier CZ joins the two individual tolerance zones to create a combined zone.

Each of these indications conforms to GPS. It represents an unambiguous specification that can be clearly verified.

Figure 3

Conformity with GPS, unambiguous dimensioning concept

Source: ISO 14405-2

With position tolerance

 With surface profile tolerance
 With position tolerance and combined zone

ISO GPS in tolerance specifications for rolling bearings – examples	The special tolerance specifications for rolling bearings in accordance with ISO GPS are defined, starting from the basis of ISO 14405-1 and ISO 8015, in the rolling bearing standards ISO 492 and ISO 199. Based on examples from the field of rolling bearings, the following section shows changes to and the advantages of tolerance specification using ISO GPS in comparison with previous practice and its significance is explained.			
Bearing outer ring, deviation of diameter	Figure 4 shows, taking the example of the deviation in diameter of a bearing outer ring, the differences in representation with and without ISO GPS.			
	① shows an outer ring that was specified using the function symbolic uage in accordance with the rolling bearing standard ISO 1132-1. mean outside diameter Dmp in a plane is stated. Evaluation urried out on the arithmetic mean derived from the maximum and imum outside surface diameter ascertainable in a radial plane, 6 (Dmax + Dmin)/2.			
	Part (2) shows the same ring using the GPS symbolic language in accordance with ISO 492. The modifier (5D) applied to the outside diameter D means that this is a statistically determined value. The middle value of the range is determined, which is the arithmetic mean value derived from the maximum and minimum measured outside diameter, (Dmax + Dmin)/2. This applies in ACS (Any Cross Section), in other words in any plane of the cylinder. In this representation, there is no explicit indication of the default modifier (P) for the two-point size in accordance with ISO 14405-1.			
Figure 4 Bearing outer ring, tolerancing of diameter				

1 Without ISO GPS (prior to 2011) 2 With ISO GPS

> While the measurement method and evaluation strategy are identical, the GPS indications facilitate understanding of the measurement method and evaluation strategy without requiring special knowledge of rolling bearing standards.

ØD t(SD)ACS

(2)

 Bearing inner ring, straightness
 Figure 5, Page 412, shows, taking the example of the straightness of the end face of a bearing inner ring, the differences in representation with and without ISO GPS.

 Part ① shows an inner ring whose end face is specified by the indication

ØD t(Dmp)

(1)

Part (1) shows an inner ring whose end race is specified by the indication of two straightness values. One value is to be determined in a circumferential direction, while the other is to be determined in a radial direction. For precise interpretation of the measurement direction, indications in the form of words are necessary, which are stated with the support of flag note.

Part (2) shows the same inner ring with straightness indications on the end face, where the specification indications can be given in a nonverbal form. The straightness t1 is supplemented by an intersection plane indicator, which states: "Intersection plane parallel to axis B", which forms the datum as the axis of the hore diameter. Measurement is thus carried out in a circumferential direction on the end face

The straightness t2 is measured taking account of axis B. symbolised by the intersection plane indicator "Axis B included".

Due to the additional indications of the two intersection plane indicators, the measurement direction can be specified exactly and no indications in the form of words are used. In this way, the scope for interpretation in measurement (including towards the customer) is reduced.

Tolerances for linear and angular sizes

Dimensional tolerances in technical drawings

In ISO 129-1:2018 (as well as ISO 14405), the methods are defined for indicating sizes in technical drawings and specifically the tolerances for linear and angular sizes.

Dimensional tolerances are indicated in the form of deviations after the nominal size. In each case, the sum of the nominal size and the specific deviation gives the two permissible limits of size between which the actual size of the finished component may lie.

Rules for the indication of dimensional tolerances in drawings The values for the deviations are always indicated in the same unit as the nominal size after which they are indicated. Exception: If an individual nominal size is indicated in a unit different from the rest of the drawing, the units are added for the nominal size and the associated deviations.

Both deviations must have the same number of decimal places. Exception: In the case of the deviation 0, no decimal places are given. In the case of linear sizes, the symbol for the tolerance class can be placed instead of the deviations after the nominal size.

The deviations and symbols for the tolerance class are indicated in the same font size as the nominal size.

Indication in drawings of deviations, limits of size and tolerance classes

The following table shows further rules for the indication of tolerances for linear and angular sizes.

Continuation of table, see Page 414.

Continuation of table, Indication in drawings of deviations, limits of size and tolerance classes, from Page 413.

Drawing indication	Rule
15 k6 (+0,012) 15 k6 (+0,001) 15 k6 (15,012) 15 k6 (15,012)	Deviations or limits of size may be placed in parentheses after the symbol for the tolerance class.
H7 10 k6 10 H7/k6	Where parts are mated, the symbol for the tolerance class of the internal size is placed before or above that of the external size.
$\begin{array}{c} 1 & 20 + 0.3 \\ \hline & 2 & 0 + 0.1 \\ \hline & 2 & 20 - 0.2 \\ \hline \\ 1 & \hline \end{array}$	Where parts are mated, the internal size and its deviations is placed above the external size and the components are additionally allocated by means of numbers.
40° ±0°0'20'' 42°20' -0°5' 22,5° ±0,2° 22,7° 22,7° 22,3°	In the case of angular sizes, the units must always be indicated for the nominal size and deviations. In other respects, the rules are identical to those for linear sizes.
28 <u>9</u> <u>14</u> Ø7 j6 A - B	If tolerances apply to a specific fixed restricted portion, this is shown by: a long-dashed dotted wide line, see image above or two letters, which use
	theoretically exact dimensions (TEDs) to determine the start and end of the area, and an auxiliary indication after the size tolerance, see image below
Tolerance zones dimensional and position tolerances

The following example shows that dimensional tolerances alone are often not sufficient. Drawings that contain dimensional tolerances only may be ambiguous. The task is to define the position of a hole axis in a plate in relation to the lateral surfaces and restrict possible variations of the axis by means of tolerancing.

1. Approach: Dimensional tolerances The axis of the hole is toleranced by means of deviations. This generates a rectangular tolerance range, see Figure 6. The ideal situation is shown in section ①. Section ② shows the actual situation, namely a workpiece with variations.

Figure 6

Dimensional tolerances

t_H = horizontal tolerance range t_V = vertical tolerance range A_T = tolerance range for hole axis

 Dimensional tolerancing
 Workpiece subject to variations (exaggerated representation)

It is clear that the specification of dimensional tolerances alone is not sufficient, since this may lead to ambiguity. Datums are important for production and inspection. A complete datum system will therefore be necessary in the future for each workpiece.

2. Approach: Position tolerances with datum system

The allocation of position tolerances with three datum planes gives the following situation, see Figure 7. The ideal situation is shown in section (1). Section (2) shows the actual situation, namely a workpiece with variations.

3. Comparison

Figure 8

Comparison: Dimensional and position tolerances

> Dimensional tolerancing
> Position tolerancing

The following representation shows a comparison of the position of the hole axis for dimensional and position tolerances:

Conclusion

The different tolerancing systems lead to different hole axis positions for the various tolerances. The position tolerance is clearer than the dimensional tolerance, since the datums and thus the clear alignment are defined.

The formation of a suitable datum system is the most important task in the position tolerancing of a component, providing clear information, even in cases where the design language and production language differ, for example.

It is therefore advisable to indicate a functionally appropriate datum system. The datums are important for production and inspection, representing the installation situation.

Measurement of components

During measurement of the finished component, the actual size, namely the size of the feature, is determined. The actual size is determined from various local actual sizes.

If further specification modification symbols (see ISO 14405-1 for example for spherical sizes, section sizes or portion sizes) are not indicated, local actual sizes are two-point sizes. They are formed by the associated median plane or straight line (in the case of cylinders) of the feature of size and are obtained by means of two-point measurement, see Figure 9.

The actual size and the local actual sizes may not be more or less than the upper and lower limit of size (maximum and minimum size) respectively.

Figure 9 Local actual sizes

d_E = size of the substitute element d_Z = local actual size, two-point size ULS = upper limit of size LLS = lower limit of size

Sizes Manufactured workpieces always deviate from the ideal geometrical form. The actual value of the sizes of a feature of size depends on the geometrical deviations and the specific type of the size used. The function of the workpiece determines the type of size that is used for a feature of size.

In ISO 14405-1, a differentiation is made between the following types of linear sizes:

- local size
- global size
- calculated size
- rank-order size (statistical value)

Local sizes are explained in further detail below.

- two-point size (default or marked with the specification modifier (P))
- spherical size (with specification modifier (LS))
- cross-section size (global size for a given cross-section of the measured feature)
- portion size (global size for a given portion of the measured feature)

The local size of a measured cylinder and the local diameter of a measured cylinder are defined in accordance with ISO 17450-3:2016 as the distance between two opposing points on the feature, where:

- The connecting line between the points includes the associated circle centre.
- The cross-sections are perpendicular to the axis of the associated cylinder resulting from the measured face.

The local size of two parallel, measured faces is defined, in accordance with ISO 17450-3:2016, as the distance between two points on opposing, measured faces, where:

- The connecting lines of pairs of opposing points are perpendicular to the associated median plane.
- The associated median plane is the median plane of two associated parallel planes that are derived from the measured faces.

The table describes the types of local sizes in accordance with ISO 14405-1.

	Representation	Definition in accordance with ISO 14405-1				
		Measured feature under consideration that corresponds to the inner or outer feature and a cylinder or two parallel opposing planes				
	d ₁	Two-point size				
	P1 Pi Pn	Spherical size determined from the diameter of the maximum inscribed sphere				
		Cross-section size obtained from a direct global size with the criterion "maximum inscribed" (other criteria are possible)				
		Portion size obtained from a direct global size with the criterion "maximum inscribed" Only a portion of the measured feature of length L is under consideration, other criteria are possible.				
Legend	d mm P Size Positi L mm SØd Length of portion under consideration of cylinder sphere	on mm eter of the maximum inscribed e.				

Specification modifiers for linear sizes

The type of linear size is indicated on the drawing by a specification modifier in accordance with ISO 14405-1, see tables Specification modifiers for linear sizes, Page 420, and Complementary specification modifiers for linear sizes, Page 421.

The specification modifiers comprise the type of size and the required type of evaluation of the size, see Figure 10, Page 422.

Specification modifiers for linear sizes										
Description	Symbol									
Two-point size	lP									
Local size defined by a sphere	LS									
Least-squares association criterion	GG									
Maximum inscribed feature association criterion	GX									
Minimum circumscribed feature association criterion	GN									
Minimax (Chebyshev) association criterion	GC									
Circumference diameter (calculated size)	00									
Area diameter (calculated size)	CA									
Volume diameter (calculated size)	CV									
Maximum size ¹⁾	SX									
Minimum size ¹⁾	SN									
Average size ¹⁾	SA									
Median size ¹⁾	SM									
Mid-range size ¹⁾	SD									
Range of sizes ¹⁾	SR									
Standard deviation of sizes ¹⁾	SQ									

Source: ISO 14405-1:2016.

Rank order sizes can be used to complement calculated or global portion sizes or local sizes.

The following table shows complementary specification modifiers for linear sizes.

Complementary specification modifiers for linear sizes										
Description	Symbol	Example of drawing indication								
United feature of size	UF	UF 2× Ø30 ±0,2 GN								
Envelope requirement	E	30 ±0,2 (Ē)								
Any restricted portion of feature	/length	Ø30 ±0,2 GG /5								
Any cross-section	ACS	Ø30 ±0,2 🛞 ACS								
Specific fixed cross-section	SCS	30 ±0,2 GX SCS								
Any longitudinal section	ALS	30 ±0,2 GX ALS								
More than one feature	Quantity ×	4× 30 ±0,2 (Ē)								
Common toleranced feature of size	СТ	4× 30 ±0,2 (Ē) CT								
Free-state condition	F	Ø30 ±0,2 (LP) (SA) (F)								
Between	+	Ø30 ±0,2 C → D								
Intersection plane ¹⁾	//В</td <td>8 ±0,01 ALS</td>	8 ±0,01 ALS								
Direction feature ¹⁾	→ // В	8 ±0,01 ALS - A								
Flag note	$\langle 1 \rangle$	30 ±0,2 (1)								

Source: ISO 14405-1:2016.

¹⁾ Further information, see ISO 1101.

The following diagram shows the types of sizes and the system of specification modifiers.

Type of Size	(V) Type for Evaluation of Size
1 local 2 two-line	 D point S spherical least-squares (Gauß) minimax (Chebyshev)
global	 (G G) least-squares (Gauß) (Z) maximum inscribed (D) minimum circumscribed (C) minimax (Chebyshev)
calculated	 (C C) circumference diameter A) area diameter Ø) volume diameter
statistical (rank-order)	 (5) maximum (6) minimum (7) average (7) median (7) mid-range (7) range (7) range (7) standard deviation (quadratic sum)

Figure 10 Types of sizes – system of specification modifiers

For linear sizes
 For angular sizes

Specification modifiers for angular sizes

The type of angular size is indicated on the drawing by a specification modifier in accordance with ISO 14405-3, see tables Specification modifiers for angular sizes, Page 423, and Complementary specification modifiers for angular sizes, Page 424.

The specification modifiers comprise the type of size and the required type of evaluation of the size, see Figure 10, Page 422.

Specification modifiers for angular sizes	
Description	Symbol
Two-line angular size with minimax association criterion	Ľ
Two-line angular size with least-squares association criterion	l
Global angular size with least-squares association criterion	G
Global angular size with minimax association criterion	G
Maximum angular size ¹⁾	SX
Minimum angular size ¹⁾	SN
Average angular size ¹⁾	SA
Median angular size ¹⁾	SM
Mid-range angular size ¹⁾	SD
Range of angular sizes ¹⁾	SR
Standard deviation of angular sizes ^{1) 2)}	SQ

Source: ISO 14405-3:2016.

¹⁾ The rank order angular size can be used in addition to the portion angular size, the global portion angular size or the local portion angular size.

²⁾ Standard deviation from the root mean square.

The following table shows complementary specification modifiers for angular sizes.

Complementary specification modifiers for angular sizes										
Description	Symbol	Example of drawing indication								
		Prismatic angular feature of size	Revolute angular feature of size							
Any restricted portion of angular feature of size	/linear distance	35° ±1°/15 ¹⁾	35° ±1°/15 ¹⁾							
Any restricted portion of angular feature of size	/angular distance	Not applicable	35° ±1°/15° ¹⁾							
Specific fixed cross-section	SCS	45° ±2° SCS	Not applicable							
More than one angular feature of size	Quantity ×	2×45° ±2°	2×45° ±2°							
Common toleranced feature of size	СТ	2×45° ±2°CT	2×45° ±2°CT							
Free-state condition	(F) ²⁾	35° ±1° €	35° ±1° €							
Between	**	35° ±1°A → B	35° ±1°A → B							

Source: ISO 14405-3:2016.

- ¹⁾ The specification modifier "/linear distance" applies to prismatic features of size and revolute features of size along the axis of the revolute feature. The revolute features of size along the axis of the revolute feature.
- The specification modifier "/angular distance" applies to a revolute feature of size. ²⁾ Further information: see ISO 10579.

ISO GPS in technical drawings

In technical drawings, the new possibilities for tolerancing of sizes in accordance with ISO GPS unites the requirements in relation to function, production and inspection of a component.

Drawing-specific specification operator

The indication of an ISO GPS specification or the explicit indications "Linear size ISO 14405" or "Angular size ISO 14405" in or near the drawing title block shows the application of the GPS concept to the technical drawing. If no further specification modifier is indicated after the explicit indication, the drawing is based by default on the two-point size and the principle of independence.

The indication of a specification modifier changes the basis of the entire drawing.

Specification operator above the drawing title block	Principle for the entire drawing
Linear size ISO 14405	Default: Two-point size and principle of independence. There is no angular size on the drawing
Linear size ISO 14405©	Example of a change: Change of default specification operator to envelope requirement. There is no angular size on the drawing
Linear size ISO 14405 Angular size ISO 14405	Default specification operator for the angular size is the "two-line angular size" with minimax association criterion. The default for the linear size is the two-point size and the principle of independence
Linear size ISO 14405 @ Angular size ISO 14405 @	Example of a change: Change of default specification operator to global linear sizes and global angular sizes with least-squares association criterion

ISO tolerances and fits

Functions and areas of application

Precise manufacturing and precise measurement of machine parts are the basis for interchangeable manufacture and the prerequisite for economical series and mass production in the entire field of technology. Systematic production and the easy repair of technical devices is only possible if the sizes of mutually interchangeable machine parts lie within certain limits and these parts can be assembled or replaced (without special fitting or adaptation work).

In order to achieve a particular joining characteristic or a particular fit tolerance zone of two machine parts (interference fit, transition fit or clearance fit; formerly: press seat, transition seat or clearance seat), the sizes and deviations of the components at the joint must conform to a particular tolerance and it must be possible to check these by means of appropriate measuring equipment.

ISO code system for tolerances on linear sizes

In order to fulfil all technical requirements to a substantial degree, the standard ISO 286-1:2010 was developed to include the "ISO code system for tolerances on linear sizes – Part 1: Basis of tolerances, deviations and fits" in accordance with ISO GPS. It is valid for nominal sizes up to 3150 mm and is graduated as far as appropriate in technical terms. ISO 286-2:2010 contains the associated tables of standard tolerance grades and limit deviations for holes and shafts.

The ISO system contains the following:

- ISO code system for tolerances on linear sizes: It contains principles and the associated terminology for the system and also provides a standardised selection of tolerance classes for general usage from the extensive possibilities of the system; see also ISO 286-1:2010.
- ISO fundamental deviation system: The letter defines the position of the tolerance zone in relation to the zero line; it is identified as a fundamental deviation identifier (table ISO fundamental deviations for external sizes and ISO fundamental deviations for internal sizes, Page 430 and Page 432; see also ISO 286-1:2010.
- ISO standard tolerance system: Definition of the dimensional tolerances that are indicated by means of ISO tolerance grades (table ISO standard tolerances, Page 436); see also ISO 286-2:2010.
- System of ISO tolerance classes and ISO tolerance zones: The short designation of the tolerance class comprises the letters for the fundamental deviation (fundamental deviation identifier: lower case letter for external sizes, upper case letter for internal sizes) and the tolerance grade (the number of the standard tolerance grade). When the magnitude of the tolerance class using the appropriate limit deviations is represented in graphical form, this is described as a tolerance zone (formerly: "tolerance field" or "tolerance interval") (graphical representation and calculation starting Page 427). The values for limit deviations for generally applied tolerance classes for holes and shafts are part of ISO 286-2 (table ISO tolerances for shafts, Page 438, and table ISO tolerances for holes, Page 442).

The terms in the ISO code system for tolerances on linear sizes (see also section Definition of terms, Page 405) are shown below by means of a clearance fit.

Figure 11 Dimensions, limit deviations and tolerances for ISO fits

es, ES = upper limit deviations ei, El = lower limit deviations IT = standard tolerance LLS = lower limit of size ULS = upper limit of size

Inner part
 (outer fit surface)
 2 Outer part
 (inner fit surface)
 3 Nominal size
 4 Local actual size

The terms "hole" and "shaft" refer in the ISO tolerance system of linear sizes not only to cylindrical fit surfaces but also to parallel fit surfaces of workpieces, for example the width of a slot or the thickness of a feather key.

Derivation of ISO tolerance classes or ISO tolerance zones

The ISO tolerance classes or the ISO tolerance zones (in diagrammatic form) are derived from ISO fundamental deviations and ISO standard tolerances. For this purpose, the ISO fundamental deviations for external sizes are taken from the table ISO fundamental deviations for external sizes, Page 430. In the case of internal sizes, the table ISO fundamental deviations for internal sizes, Page 432, is used. The ISO fundamental deviations are the limit deviations closest to the zero line (smallest distances) taking account of the mathematical signs. The other limit deviation is produced by adding or subtracting the ISO standard tolerance IT, see table ISO standard tolerances, Page 436.

The following table shows the calculations of limit deviations for external and internal sizes in comparison with each other.

Limit deviations for external sizes (shafts)	Limit deviations for internal sizes (holes)						
Position of tolerance	Position of tolerance						
zones a to h	zones A to H						
Beneath the zero line	Above the zero line						
= fundamental deviation – standard tolerance IT	Upper limit deviation ES = fundamental deviation + standard tolerance IT						
Example for fit size 25 d13:	Example for fit size 420 C10:						
Upper limit deviation es = Fundamental	Lower limit deviation El = Fundamental						
Table Page 430 deviation	Table Page 432 deviation						
= -65 µ.m	= +440 μ.m						
Standard tolerance	Standard tolerance						
for tolerance grade 13 = 330 μm	for tolerance grade 10 = 250 μm						
Table Page 436	Table Page 436						
Lower limit deviation ei	Upper limit deviation ES						
= -65 μm - 330 μm = -395 μm	= +440 μ m + 250 μ m = +690 μ m						
Therefore: $25 d13 = 25 -0,395$	Therefore: $420 \text{ C10} = 420 + 0,440$						
Position of tolerance	Position of tolerance						
zone js	zone JS						
Symmetrical on both	Symmetrical on both						
sides of the zero line	sides of the zero line						
Example for fit size 25 js8:	Example for fit size 200 JS9:						
Standard tolerance	Standard tolerance						
for tolerance grade 8 = 33 μm	for tolerance grade 9 = 115 μm						
Table Page 436	Table Page 436						
Upper limit deviation es	Upper limit deviation ES						
= +IT/2 = +33 μ m/2 = +16,5 μ m	= +IT/2 = +115 μ m/2 = +57,5 μ m						
Lower limit deviation ei	Lower limit deviation EI						
= -IT/2 = -33 μ m/2 = -16,5 μ m	= $-IT/2 = -115 \ \mu m/2$ = $-57,5 \ \mu m$						
Therefore: $25 \text{ js8} = 25 \pm 0.0165$	Therefore: $200 JS9 = 200 \pm 0,0572$						
From the position of the tolerance zone j,	From the position of the tolerance zone J,						

From the position of the tolerance zone j, the fundamental deviations can also change with the tolerance grade.

When determining the fundamental deviation, it is therefore necessary to observe not only the position of the tolerance zone but also the tolerance grade (table Page 430).

Continuation of table, see Page 429.

From the position of the tolerance zone J, the fundamental deviations can also change with the tolerance grade.

When determining the fundamental deviation, it is therefore necessary to observe not only the position of the tolerance zone but also the tolerance grade (table Page 432).

Continuation of table, Calculations of limit deviations for external sizes and internal sizes, from Page 428.

Limit deviations for external sizes (shafts)	Limit deviations for internal sizes (holes)					
Position of tolerance zone j Approximately symmetrical on both sides of the zero line Upper limit deviation es	Position of tolerance zone J Approximately symmetrical on both sides of the zero line					
= fundamental deviation + standard tolerance IT	= fundamental deviation – standard tolerance IT					
Example for fit size 25 j6: Lower limit deviation ei = Fundamental Table Page 430 deviation = -4μ m	Example for fit size 125 J/: Upper limit deviation ES = Fundamental Table Page 432 deviation = $+26 \mu m$					
Standard tolerance for tolerance grade 6 = 13 μm Table Page 436	Standard tolerance for tolerance grade 7 = 40 μm Table Page 436					
Upper limit deviation es = $-4 \mu m + 13 \mu m$ = $+9 \mu m$	Lower limit deviation EI = +26 μ m - 40 μ m = -14 μ m					
Therefore: $25j6 = 25-0,004$	Therefore: $125J7 = 125 - 0.014$					
In the position of tolerance zone j, the fundamental deviation table always indicates the lower limit deviation ei.	In the position of tolerance zone J, the fundamental deviation table always indicates the upper limit deviation ES.					
Position of tolerance zones k to zc Above the zero line	Position of tolerance zones K to ZC Predominantly beneath the zero line					
Upper limit deviation es = fundamental deviation + standard tolerance IT	Lower limit deviation El = fundamental deviation – standard tolerance IT					
Example for fit size 25 p6:	Example for fit size 125 T10:					
Lower limit deviation ei = Fundamental Table Page 430 deviation = +22 µm	Upper limit deviation ES = Fundamental Table Page 432 deviation = −122 µm					
Standard tolerance for tolerance grade 6 = 13 μm Table Page 436	Standard tolerance for tolerance grade 10 = 160 μm Table Page 436					
Upper limit deviation es = $22 \mu m + 13 \mu m$ = +35 μm	$ Lower limit deviation El = -122 \ \mu m \ -160 \ \mu m \qquad = -282 \ \mu m $					
Therefore: $25 \text{ p6} = 25 + 0.022$	Therefore: $125 \text{ T10} = 125 \text{ -0.222} $					

ISO fundamental	The following table shows the values for ISO fundamental deviations
deviations	(minimum distances) for external sizes (shafts):
for external sizes	

Tolerance classes ²⁾		Nominal size range												
fier	E	mm												
ul entii	ade	over	1	3	6	10	14	18	24	30	40	50	65	
nenta on id	ce g	incl.	3	6	10	14	18	24	30	40	50	65	80	
Fundan deviati	Toleran	Sign	gn Values for fundamental deviations (minimum distances) to ISO 286-1 μm											
а	All tolerance	-	270	270	280	290	290	300	300	310	320	340	360	
b	grades	-	140	140	150	150	150	160	160	170	180	190	200	
С		-	60	70	80	95	95	110	110	120	130	140	150	
d		-	20	30	40	50	50	65	65	80	80	100	100	
е		-	14	20	25	32	32	40	40	50	50	60	60	
f		-	6	10	13	16	16	20	20	25	25	30	30	
g		-	2	4	5	6	6	7	7	9	9	10	10	
h		I	0	0	0	0	0	0	0	0	0	0	0	
j ¹⁾	5 + 6	1	2	2	2	3	3	4	4	5	5	7	7	
j ¹⁾	7	-	4	4	5	6	6	8	8	10	10	12	12	
js	All grades	The lim	nit devia	tions a	mount t	o ±1/2	IT in th	e releva	ant toler	ance gr	ade			
k	4 – 7	+	0	1	1	1	1	2	2	2	2	2	2	
k	up to 3, from 8	+	0	0	0	0	0	0	0	0	0	0	0	
m	All tolerance	+	2	4	6	7	7	8	8	9	9	11	11	
n	grades	+	4	8	10	12	12	15	15	17	17	20	20	
р		+	6	12	15	18	18	22	22	26	26	32	32	
r		+	10	15	19	23	23	28	28	34	34	41	43	
S		+	14	19	23	28	28	35	35	43	43	53	59	
t		+	-	I	I	-	I	I	41	48	54	66	75	
u		+	18	23	28	33	33	41	48	60	70	87	102	
V		+	-	I	١	-	39	47	55	68	81	102	120	
х		+	20	28	34	40	45	54	64	80	97	122	146	
у		+	-	-	-	-	-	63	75	94	114	144	174	
z		+	26	35	42	50	60	73	88	112	136	172	210	
za		+	32	42	52	64	77	98	118	148	180	226	274	
zb		+	40	50	67	90	108	136	160	200	242	300	360	
ZC		+	60	80	97	130	150	188	218	274	325	405	480	

 In the case of the fundamental deviation identifier j, the table always indicates the lower limit deviation as the fundamental deviation.

2) The special tolerance classes with the fundamental deviation identifiers cd, ef and fg for clockmaking and precision engineering are not given here.

80	100	120	140	160	180	200	225	250	280	315	355	400	450
100	120	140	160	180	200	225	250	280	315	355	400	450	500
	•	•	•		•	•	•		•	•			
380	410	460	520	580	660	740	820	920	1050	1200	1350	1500	1650
220	240	260	280	310	340	380	420	480	540	600	680	760	840
170	180	200	210	230	240	260	280	300	330	360	400	440	460
120	120	145	145	145	170	170	170	190	190	210	210	230	230
72	72	85	85	85	100	100	100	110	110	125	125	135	135
36	36	43	43	43	50	50	50	56	56	62	62	68	68
12	12	14	14	14	15	15	15	17	17	18	18	20	20
0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	9	11	11	11	13	13	13	16	16	18	18	20	20
15	15	18	18	18	21	21	21	26	26	28	28	32	32
3	3	3	3	3	4	4	4	4	4	4	4	5	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	13	15	15	15	17	17	17	20	20	21	21	23	23
23	23	27	27	27	31	31	31	34	34	37	37	40	40
37	37	43	43	43	50	50	50	56	56	62	62	68	68
51	54	63	65	68	77	80	84	94	98	108	114	126	132
71	79	92	100	108	122	130	140	158	170	190	208	232	252
91	104	122	134	146	166	180	196	218	240	268	294	330	360
124	144	170	190	210	236	258	284	315	350	390	435	490	540
146	172	202	228	252	284	310	340	385	425	475	530	595	660
178	210	248	280	310	350	385	425	475	525	590	660	740	820
214	254	300	340	380	425	470	520	580	650	730	820	920	1000
258	310	365	415	465	520	575	640	710	790	900	1000	1100	1250
335	400	470	535	600	670	740	820	920	1000	1150	1300	1450	1600
445	525	620	700	780	880	960	1050	1200	1300	1500	1650	1850	2100
585	690	800	900	1000	1150	1250	1350	1550	1700	1900	2100	2 4 0 0	2 600

ISO fundamental	The following table shows the values for ISO fundamental deviations
deviations	(minimum distances) for internal sizes (holes):
for internal sizes	

je ⊨ mm	
te by over 1 3 6 10 14 18 24 30 40 50 65	
물 등 별 incl. 3 6 10 14 18 24 30 40 50 65 80	
Sign Values for fundamental deviations (minimum distances) to ISO 286-1	
A All tolerance + 270 270 280 290 290 300 300 310 320 340 360	
B grades + 140 140 150 150 150 160 160 170 180 190 200	
C + 60 70 80 95 95 110 110 120 130 140 150	
D + 20 30 40 50 50 65 65 80 80 100 100	
E + 14 20 25 32 32 40 40 50 50 60 60	
F + 6 10 13 16 16 20 20 25 25 30 30	
G + 2 4 5 6 6 7 7 9 9 10 10	
H 0 0 0 0 0 0 0 0 0 0 0 0 0	
J ¹⁾ 6 + 2 5 5 6 6 8 8 10 10 13 13	
J ¹⁾ 7 + 4 6 8 10 10 12 12 14 14 18 18	
J ¹⁾ 8 + 6 10 12 15 15 20 20 24 24 28 28	
JS All grades The limit deviations amount to $\pm 1/2$ IT in the relevant tolerance grade	
K 5 + 0 0 1 2 2 1 1 2 2 3 3	
K 6 + 0 2 2 2 2 2 2 3 3 4 4	
K 7 + 0 3 5 6 6 6 6 7 7 9 9	
K 8 + 0 5 6 8 8 10 10 12 12 14 14	
M 6 – 2 1 3 4 4 4 4 4 5 5	
M 7 - 2 0 0 0 0 0 0 0 0 0 0 0 0	
M 8 -2 +2 +1 +2 +2 +4 +4 +5 +5 +5 +5	
M 9 - 2 4 6 7 7 8 8 9 9 11 11	
N 6 - 4 5 7 9 9 11 11 12 12 14 14	
N 7 - 4 4 4 5 5 7 7 8 8 9 9	
N 8 - 4 2 3 3 3 3 3 3 4 4	
N 9 - 4 0 0 0 0 0 0 0 0 0 0 0	
P 6 - 6 9 12 15 15 18 18 21 21 26 26	
R - 10 12 16 20 20 24 24 29 29 35 37	
S - 14 16 20 25 25 31 31 38 38 47 53	
T 37 43 49 60 69	

Continuation of table, see Page 434.

 In the case of the fundamental deviation identifier J, the table always indicates the upper limit deviation as the fundamental deviation.

²⁾ The special tolerance classes with the fundamental deviation identifiers CD, EF and FG for clockmaking and precision engineering are not given here.

80	100	120	140	160	180	200	225	250	280	315	355	400	450
100	120	140	160	180	200	225	250	280	315	355	400	450	500
	1	r	r	r	r	r	r	r					
380	410	460	520	580	660	740	820	920	1050	1200	1350	1500	1650
220	240	260	280	310	340	380	420	480	540	600	680	760	840
170	180	200	210	230	240	260	280	300	330	360	400	440	480
120	120	145	145	145	170	170	170	190	190	210	210	230	230
72	72	85	85	85	100	100	100	110	110	125	125	135	135
36	36	43	43	43	50	50	50	56	56	62	62	68	68
12	12	14	14	14	15	15	15	17	17	18	18	20	20
0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	16	18	18	18	22	22	22	25	25	29	29	33	33
22	22	26	26	26	30	30	30	36	36	39	39	43	43
34	34	41	41	41	47	47	47	55	55	60	60	66	66
2	2	3	3	3	2	2	2	3	3	3	3	2	2
4	4	4	4	4	5	5	5	5	5	7	7	8	8
10	10	12	12	12	13	13	13	16	16	17	17	18	18
16	16	20	20	20	22	22	22	25	25	28	28	29	29
6	6	8	8	8	8	8	8	9	9	10	10	10	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+6	+6	+8	+8	+8	+9	+9	+9	+9	+9	+11	+11	+11	+11
13	13	15	15	15	17	17	17	20	20	21	21	23	23
16	16	20	20	20	22	22	22	25	25	26	26	27	27
10	10	12	12	12	14	14	14	14	14	16	16	17	17
4	4	4	4	4	5	5	5	5	5	5	5	6	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	30	36	36	36	41	41	41	47	47	51	51	55	55
44	47	56	58	61	68	71	75	85	89	97	103	113	119
64	72	85	93	101	113	121	131	149	161	179	197	219	239
84	97	115	127	139	157	171	187	209	231	257	283	317	347

Continuation of table, ISO fundamental deviations for internal sizes, from Page 432.

Tolerar classes	ice	Nominal size range											
ifier	⊑.	mm											-
al İenti	rade	over	1	3	6	10	14	18	24	30	40	50	65
nent on ic	lceg	incl.	3	6	10	14	18	24	30	40	50	65	80
Fundan deviati	Tolerar	Sign	Values µm	for fund	amenta	l deviati	ons (mir	imum d	istances) to ISO	286-1		
U	6	-	18	20	25	30	30	37	44	55	65	81	96
V		-	-	-	-	-	36	43	51	63	76	96	114
Х		-	20	25	31	37	42	50	60	75	92	116	140
Y		-	-	-	-	-	-	59	71	89	109	138	168
Z		-	26	32	39	47	57	69	84	107	131	166	204
ZA		-	32	39	49	61	74	94	114	143	175	220	268
ZB		-	40	47	64	87	105	132	156	195	237	294	354
ZC		-	60	77	94	127	147	184	214	269	320	399	474
Р	7	-	6	8	9	11	11	14	14	17	17	21	21
R		-	10	11	13	16	16	20	20	25	25	30	32
S		-	14	15	17	21	21	27	27	34	34	42	48
Т		-	I	I	I	I	-	I	33	39	45	55	64
U		-	18	19	22	26	26	33	40	51	61	76	91
V		-	I	I	I	١	32	39	47	59	72	91	109
Х		-	20	24	28	33	38	46	56	71	88	111	135
Y		-	-	-	-	-	-	55	67	85	105	133	163
Z		-	26	31	36	43	53	65	80	103	127	161	199
ZA		-	32	38	46	57	70	90	110	139	171	215	263
ZB		-	40	46	61	83	101	128	152	191	233	289	349
ZC		-	60	76	91	123	143	180	210	265	316	394	469
Р	from 8	-	6	12	15	18	18	22	22	26	26	32	32
R		-	10	15	19	23	23	28	28	34	34	41	43
S		-	14	19	23	28	28	35	35	43	43	53	59
Т		-	-	-	-	-	-	-	41	48	54	66	75
U		-	18	23	28	33	33	41	48	60	70	87	102
V		-	-	-	-	-	39	47	55	68	81	102	120
Х		-	20	28	34	40	45	54	64	80	97	122	146
Y		-	-	-	-	-	-	63	75	94	114	144	174
Z		-	26	35	42	50	60	73	88	112	136	172	210
ZA		-	32	42	52	64	77	98	118	148	180	226	274
ZB		-	40	50	67	90	108	136	160	200	242	300	360
ZC		-	60	80	97	130	150	188	218	274	325	405	480

80	100	120	140	160	180	200	225	250	280	315	355	400	450
100	120	140	160	180	200	225	250	280	315	355	400	450	500
	•								l	l			
117	137	163	183	203	227	249	275	306	341	379	424	477	527
139	165	195	221	245	275	301	331	376	416	464	519	582	647
171	203	241	273	303	341	376	416	466	516	579	649	727	807
207	247	293	333	373	416	461	511	571	641	719	809	907	987
251	303	358	406	458	511	566	631	701	781	889	989	1087	1237
328	393	463	528	593	661	731	811	911	991	1139	1289	1437	1587
438	518	613	693	773	871	951	1041	1191	1291	1489	1639	1837	2 087
578	683	793	893	993	1141	1241	1341	1541	1691	1889	2 089	2 387	2 587
24	24	28	28	28	33	33	33	36	36	41	41	45	45
38	41	48	50	53	60	63	67	74	78	87	93	103	109
58	66	77	85	93	105	113	123	138	150	169	187	209	229
78	91	107	119	131	149	163	179	198	220	247	273	307	337
111	131	155	175	195	219	241	267	295	330	369	414	467	517
133	159	187	213	237	267	293	323	365	405	454	509	572	637
165	197	233	265	295	333	368	408	455	505	569	639	717	797
201	241	285	325	365	408	453	503	560	630	709	799	897	977
245	297	350	400	450	503	558	623	690	770	879	979	1077	1227
322	387	455	520	585	653	723	803	900	980	1129	1279	1427	1577
432	512	605	685	765	863	943	1033	1180	1280	1479	1629	1827	2077
572	677	785	885	985	1133	1233	1333	1530	1680	1879	2079	2 377	2 577
37	37	43	43	43	50	50	50	56	56	62	62	68	68
51	54	63	65	68	77	80	84	94	98	108	114	126	132
71	79	92	100	108	122	130	140	158	170	190	208	232	252
91	104	122	134	146	166	180	196	218	240	268	294	330	360
124	144	170	190	210	236	258	284	315	350	390	435	490	540
146	172	202	228	252	284	310	340	385	425	475	530	595	660
178	210	248	280	310	350	385	425	475	525	590	660	740	820
214	254	300	340	380	425	470	520	580	650	730	820	920	1000
258	310	365	415	465	520	575	640	710	790	900	1000	1100	1250
335	400	470	535	600	670	740	820	920	1000	1150	1300	1450	1600
445	525	620	700	780	880	960	1050	1200	1300	1500	1650	1850	2100
585	690	800	900	1000	1150	1250	1350	1550	1700	1900	2100	2 400	2 600
	•			-	-	-		-			-	-	-

ISO standard

The following table shows the values for ISO standard tolerances:

tolerances	
------------	--

Standard tolerance	Nominal size range mm												
grade	over –	3	6	10	18	30	50						
	incl. 3	6	10	18	30	50	80						
	ISO standa μm	rd toleran	ces IT to IS	0 286-1									
IT01	0,3	0,4	0,4	0,5	0,6	0,6	0,8						
IT0	0,5	0,6	0,6	0,8	1	1	1,2						
IT1	0,8	1	1	1,2	1,5	1,5	2						
IT2	1,2	1,5	1,5	2	2,5	2,5	3						
IT3	2	2,5	2,5	3	4	4	5						
IT4	3	4	4	5	6	7	8						
IT5	4	5	6	8	9	11	13						
IT6	6	8	9	11	13	16	19						
IT7	10	12	15	18	21	25	30						
IT8	14	18	22	27	33	39	46						
IT9	25	30	36	43	52	62	74						
IT10	40	48	58	70	84	100	120						
IT11	60	75	90	110	130	160	190						
IT12	100	120	150	180	210	250	300						
IT13	140	180	220	270	330	390	460						
IT14	250	300	360	430	520	620	740						
IT15	400	480	580	700	840	1000	1200						
IT16	600	750	900	1100	1300	1600	1900						
IT17	1000	1200	1500	1800	2100	2500	3000						
IT18	1400	1800	2200	2700	3300	3900	4600						

Continuation of table, see Page 437.

Continuation of ta	able, ISO	standard	tolerances,	from	Page 436.
--------------------	-----------	----------	-------------	------	-----------

Standard tolerance	Nominal size ran mm	ge										
grade	over 80	120	180	250	315	400						
	incl. 120	180	250	315	400	500						
	ISO standard tolerances IT to ISO 286-1 μm											
IT01	1	1,2	2	2,5	3	4						
IT0	1,5	2	3	4	5	6						
IT1	2,5	3,5	4,5	6	7	8						
IT2	4	5	7	8	9	10						
IT3	6	8	10	12	13	15						
IT4	10	12	14	16	18	20						
IT5	15	18	20	23	25	27						
IT6	22	25	29	32	36	40						
IT7	35	40	46	52	57	63						
IT8	54	63	72	81	89	97						
IT9	87	100	115	130	140	155						
IT10	140	160	185	210	230	250						
IT11	220	250	290	320	360	400						
IT12	350	400	460	520	570	630						
IT13	540	630	720	810	890	970						
IT14	870	1000	1150	1300	1400	1550						
IT15	1400	1600	1850	2100	2 300	2 500						
IT16	2 200	2 500	2 900	3 200	3 600	4 000						
IT17	3 5 0 0	4000	4600	5200	5700	6300						
IT18	5 400	6300	7 2 0 0	8100	8900	9700						

ISO tolerances The following table shows a selection of ISO tolerances for shafts and their corresponding limit deviations:

SS	Nominal size range g mm													
asse	over 1	3	6	10	18	30	40	50	65	80	100	120		
ce cl	incl. 3	6	10	18	30	40	50	65	80	100	120	140		
ran	Limit devia	tions (1	um = 0 ()01 mm)		1 10	IInnerl	imit devi	ation = 4	1				
Tole	μm	110115 (1	μ – υ,	,			Lowerl	imit devi	ation = e	ei				
a12	-270	-270	-280	-290	-300	-310	-320	-340	-360	-380	-410	-460		
	-370	-390	-430	-470	-510	-560	-570	-640	-660	-730	-760	-860		
a13	-270	-270	-280	-290	-300	-310	-320	-340	-360	-380	-410	-460		
	-410	-450	-500	-560	-630	-700	-710	-800	-820	-920	-950	-1090		
c12	-60	-70	-80	-95	-110	-120	-130	-140	-150	-170	-180	-200		
	-160	-190	-230	-275	-320	-370	-380	-440	-450	-520	-530	-600		
d6	-20	-30	-40	-50	-65	-80	-80	-100	-100	-120	-120	-145		
	-26	-38	-49	-61	-78	-96	-96	-119	-119	-142	-142	-170		
e6	-14	-20	-25	-32	-40	-50	-50	-60	-60	-72	-72	-85		
	-20	-28	-34	-43	-53	-66	-66	-79	-79	-94	-94	-110		
e7	-14	-20	-25	-32	-40	-50	-50	-60	-60	-72	-72	-85		
	-24	-32	-40	-50	-61	-75	-75	-90	-90	-107	-107	-125		
e8	-14	-20	-25	-32	-40	-50	-50	-60	-60	-72	-72	-85		
	-28	-38	-47	-59	-73	-89	-89	-106	-106	-126	-126	-148		
t5	-6	-10	-13	-16	-20	-25	-25	-30	-30	-36	-36	-43		
	-10	-15	-19	-24	-29	-36	-36	-43	-43	-51	-51	-61		
†6	-6	-10	-13	-16	-20	-25	-25	-30	-30	-36	-36	-43		
6-	-12	-18	-22	-27	-33	-41	-41	-49	-49	-58	-58	-68		
t/	-6	-10	-13	-16	-20	-25	-25	-30	-30	-36	-36	-43		
	-16	-22	-28	-34	-41	-50	-50	-60	-60	-/1	-/1	-83		
g5	-2	-4	-5	-6	-/	-9	-9	-10	-10	-12	-12	-14		
-(-6	-9	-11	-14	-16	-20	-20	-23	-23	-27	-27	-32		
g6	-2	-4 _12	-5 -14	-6 _17	-/	- 9	- 9	-10	-10	-12	-12	-14		
ø7	-2	-4	-5	-6	-7	_9	_9	-10	-10	-12	-12	-14		
5'	-12	-16	-20	-24	-28	-34	-34	-40	-40	-47	-47	-54		
h5	0	0	0	0	0	0	0	0	0	0	0	0		
	-4	-5	-6	-8	-9	-11	-11	-13	-13	-15	-15	-18		
h6	0	0	0	0	0	0	0	0	0	0	0	0		
	-6	-8	-9	-11	-13	-16	-16	-19	-19	-22	-22	-25		
h7	0	0	0	0	0	0	0	0	0	0	0	0		
	-10	-12	-15	-18	-21	-25	-25	-30	-30	-35	-35	-40		
h8	0	0	0	0	0	0	0	0	0	0	0	0		
	-14	-18	-22	-27	-33	-39	-39	-46	-46	-54	-54	-63		
h9	0	0	0	0	0	0	0	0	0	0	0	0		
	-25	-30	-36	-43	-52	-62	-62	-74	-74	-87	-87	-100		
h10	0	0	0	0	0	0	0	0	0	0	0	0		
	-40	-48	-58	-70	-84	-100	-100	-120	-120	-140	-140	-160		

Continuation of table, see Page 440.

140	160	180	200	225	250	280	315	355	400	450
160	180	200	225	250	280	315	355	400	450	500
	•	•	•	•		•			•	
-520	-580	-660	-740	-820	-920	-1050	-1200	-1350	-1500	-1650
-920	-980	-1120	-1200	-1280	-1440	1570	-1770	-1920	-2130	-2 280
-520	-580	-660	-740	-820	-920	-1050	-1200	-1350	-1500	-1650
-1150	-1210	-1380	-1460	-1540	-1730	-1860	-2090	-2 240	-2470	-2620
-210	-230	-240	-260	-280	-300	-330	-360	-400	-440	-480
-610	-630	-700	-720	-740	-820	-850	-930	-970	-1070	-1110
-145	-145	-170	-170	-170	-190	-190	-210	-210	-230	-230
-170	-170	-199	-199	-199	-222	-222	-246	-246	-270	-270
-85	-85	-100	-100	-100	-110	-110	-125	-125	-135	-135
-110	-110	-129	-129	-129	-142	-142	-161	-161	-175	-175
-85	-85	-100	-100	-100	-110	-110	-125	-125	-135	-135
-125	-125	-146	-146	-146	-162	-162	-182	-182	-198	-198
-85	-85	-100	-100	-100	-110	-110	-125	-125	-135	-135
-148	-148	-172	-172	-172	-191	-191	-214	-214	-232	-232
-43	-43	-50	-50	-50	-56	-56	-62	-62	-68	-68
-61	-61	-70	-70	-70	-79	-79	-87	-87	-95	-95
-43	-43	-50	-50	-50	-56	-56	-62	-62	-68	-68
-68	-68	-79	-79	-79	-88	-88	-98	-98	-108	-108
-43	-43	-50	-50	-50	-56	-56	-62	-62	-68	-68
-83	-83	-96	-96	-96	-108	-108	-119	-119	-131	-131
-14	-14	-15	-15	-15	-17	-17	-18	-18	-20	-20
-32	-32	-35	-35	-35	-40	-40	-43	-43	-47	-47
-14	-14	-15	-15	-15	-1/	-1/	-18	-18	-20	-20
-39	-39	-44	-44	-44	-49	-49	-54	-54	-60	-60
-14	-14	-15	-15	-15	-17	-17	-18	-18	-20	-20
-54	-54	-61	-61	-61	-69	-69	-/5	-/5	-83	-83
0	10	0	0	0	22	22	0	0	0	0
-18	-18	-20	-20	-20	-23	-25	-25	-25	-27	-27
-25	-25	-29	-29	-29	-32	-32	-36	-36	-40	-40
0	0	0	0	0	0	0	0	0	0	0
-40	-40	-46	-46	-46	-52	-52	-57	-57	-63	-63
0	0	0	0	0	0	0	0	0	0	0
-63	-63	-72	-72	-72	-81	-81	-89	-89	-97	-97
0	0	0	0	0	0	0	0	0	0	0
-100	-100	-115	-115	-115	-130	-130	-140	-140	-155	-155
0	0	0	0	0	0	0	0	0	0	0
-160	-160	-185	-185	-185	-210	-210	-230	-230	-250	-250

Continuation of table, ISO tolerances for shafts, from Page 438.

SS	Nominal size range mm												
lasse	over 1	3	6	10	18	30	40	50	65	80	100	120	
cec	incl. 3	6	10	18	30	40	50	65	80	100	120	140	
eran	Limit de	viations ((1 μm = 0	,001 mm	ı)		Upper li	mit devia	tion = es				
Tol	μm						Lower li	mit devia	tion = ei				
h11	0	0	0	0	0	0	0	0	0	0	0	0	
	-60	-75	-90	-110	-130	-160	-160	-190	-190	-220	-220	-250	
h13	-0	0	0	0	0	0	0	0	0	0	0	0	
	-140	-180	-220	-270	-330	-390	-390	-460	-460	-540	-540	-630	
J5	+2	+3	+4	+5	+5	+6	+6	+6	+6	+6	+6	+/	
14	-2	-2	-2	-5	-4	-5	-5	-/	-/	-9	-9	-11	
Jo	+4	+0	+/	+0	+9	+11	+11	+12	+12	-15	-15	+14	
i7	+6	+8	+10	+12	+13	+15	+15	+18	+18	+20	+20	+22	
,,	-4	-4	-5	-6	-8	-10	-10	-12	-12	-15	-15	-18	
js5	+2	+2,5	+3	+4	+4,5	+5,5	+5,5	+6,5	+6,5	+7,5	+7,5	+9	
	-2	-2,5	-3	-4	-4,5	-5,5	-5,5	-6,5	-6,5	-7,5	-7,5	-9	
js6	+3	+4	+4,5	+5,5	+6,5	+8	+8	+9,5	+9,5	+11	+11	+12,5	
	-3	-4	-4,5	-5,5	-6,5	-8	-8	-9,5	-9,5	-11	-11	-12,5	
js7	+5	+6	+7,5	+9	+10,5	+12,5	+12,5	+15	+15	+17,5	+17,5	+20	
	-5	-6	-7,5	-9	-10,5	-12,5	-12,5	-15	-15	-17,5	-17,5	-20	
k5	+4	+6	+7	+9	+11	+13	+13	+15	+15	+18	+18	+21	
1.4	0	+1	+1	+1	+2	+2	+2	+2	+2	+3	+3	+3	
К6	+6	+9	+10	+12	+15	+18	+18	+21	+21	+25	+25	+28	
k7	±10	+1	+1	+1	+2	+2	+2	+2	+2	+38	+38	+5	
κ,	0	+15	+10	+1)	+25	+27	+27	+32	+32	+3	+3	+43	
m5	+6	+9	+12	+15	+17	+20	+20	+24	+24	+28	+28	+33	
-	+2	+4	+6	+7	+8	+9	+9	+11	+11	+13	+13	+15	
m6	+8	+12	+15	+18	+21	+25	+25	+30	+30	+35	+35	+40	
	+2	+4	+6	+7	+8	+9	+9	+11	+11	+13	+13	+15	
m7	+12	+16	+21	+25	+29	+34	+34	+41	+41	+48	+48	+55	
	+2	+4	+6	+7	+8	+9	+9	+11	+11	+13	+13	+15	
n5	+8	+13	+16	+20	+24	+28	+28	+33	+33	+38	+38	+45	
	+4	+8	+10	+12	+15	+17	+17	+20	+20	+23	+23	+27	
n6	+10	+16	+19	+23	+28	+33	+33	+39	+39	+45	+45	+52	
n7	+4	+8	+10	+12	+15	+17	+17	+20	+20	+23	+23	+27	
117	+14	+20	+25	+30 ±12	+20	+42	+42 ±17	+50 +20	+50	+20	+20	+07	
n5	+4	+17	+10	+12	+15	+37	+17	+20	+45	+52	+52	+61	
42	+6	+12	+15	+18	+22	+26	+26	+32	+32	+37	+37	+43	
p6	+12	+20	+24	+29	+35	+42	+42	+51	+51	+59	+59	+68	
	+6	+12	+15	+18	+22	+26	+26	+32	+32	+37	+37	+43	
p7	+16	+24	+30	+36	+43	+51	+51	+62	+62	+72	+72	+83	
	+6	+12	+15	+18	+22	+26	+26	+32	+32	+37	+37	+43	

140	160	180	200	225	250	280	315	355	400	450
160	180	200	225	250	280	315	355	400	450	500
0	0	0	0	0	0	0	0	0	0	0
-250	-250	-290	-290	-290	-320	-320	-360	-360	-400	-400
0	0	0	0	0	0	0	0	0	0	0
-630	-630	-720	-720	-720	-810	-810	-890	-890	-970	-970
+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7
-11	-11	-13	-13	-13	-16	-16	-18	-18	-20	-20
+14	+14	+16	+16	+16	+16	+16	+18	+18	+20	+20
-11	-11	-13	-13	-13	-16	-16	-18	-18	-20	-20
+22	+22	+25	+25	+25	+26	+26	+29	+29	+31	+31
-18	-18	-21	-21	-21	-26	-26	-28	-28	-32	-32
+9	+9	+10	+10	+10	+11,5	+11,5	+12,5	+12,5	+13,5	+13,5
-9	-9	-10	-10	-10	-11,5	-11,5	-12,5	-12,5	-13,5	-13,5
+12,5	+12,5	+14,5	+14,5	+14,5	+16	+16	+18	+18	+20	+20
-12,5	-12,5	-14,5	-14,5	-14,5	-16	-16	-18	-18	-20	-20
+20	+20	+23	+23	+23	+26	+26	+28,5	+28,5	+31,5	+31,5
-20	-20	-25	-25	-25	-20	-20	-28,5	-28,5	-31,5	-31,5
+21	+21	+24	+24	+24	+27	+27	+29	+29	+52	+52
+28	+28	+4	+4	+33	+36	+36	+4	+4	+45	+45
+3	+3	+4	+4	+4	+4	+4	+4	+4	+5	+5
+43	+43	+50	+50	+50	+56	+56	+61	+61	+68	+68
+3	+3	+4	+4	+4	+4	+4	+4	+4	+5	+5
+33	+33	+37	+37	+37	+43	+43	+46	+46	+50	+50
+15	+15	+17	+17	+17	+20	+20	+21	+21	+23	+23
+40	+40	+46	+46	+46	+52	+52	+57	+57	+63	+63
+15	+15	+17	+17	+17	+20	+20	+21	+21	+23	+23
+55	+55	+63	+63	+63	+72	+72	+78	+78	+86	+86
+15	+15	+17	+17	+17	+20	+20	+21	+21	+23	+23
+45	+45	+51	+51	+51	+57	+57	+62	+62	+67	+67
+27	+27	+31	+31	+31	+34	+34	+37	+37	+40	+40
+52	+52	+60	+60	+60	+66	+66	+73	+73	+80	+80
+27	+27	+31	+31	+31	+34	+34	+37	+37	+40	+40
+67	+67	+77	+77	+77	+86	+86	+94	+94	+103	+103
+27	+27	+31	+31	+31	+34	+34	+37	+37	+40	+40
+61	+61	+70	+70	+70	+79	+79	+87	+87	+95	+95
+43	+43	+50	+50	+50	+56	+56	+62	+62	+68	+68
+68	+68	+/9	+/9	+/9	+88	+ 88	+98	+98	+108	+108
+43	+43	+50	+50	+50	+56	+56	+62	+62	+68	+68
+83	+83	+96	+96	+96	+108	+108	+119	+119	+131	+131
+43	+43	+50	+50	+50	+56	+56	+62	+62	+68	+68

ISO tolerances The following table shows a selection of ISO tolerances for holes and their corresponding limit deviations:

S	Nominal size range														
asse	over 3	6	10	18	30	40	50	65	80	100	120	1/10	160	180	
e cli	incl 4	10	10	20	40	50	25	00	100	120	140	140	100	200	
ranc	linct. O	10	10	0.001	40	50		1	100	FC 120	140	100	100	200	
Tole	μm Lower limit deviation = El														
A11	+345	+370	+400	+430	+470	+480	+530	+550	+600	+630	+710	+770	+830	+950	
	+270	+280	+290	+300	+310	+320	+340	+360	+380	+410	+460	+520	+580	+660	
C11	+145	+170	+205	+240	+280	+290	+330	+340	+390	+400	+450	+460	+480	+530	
	+70	+80	+95	+110	+120	+130	+140	+150	+170	+180	+200	+210	+230	+240	
D10	+78	+98	+120	+149	+180	+180	+220	+220	+260	+260	+305	+305	+305	+355	
	+30	+40	+50	+65	+80	+80	+100	+100	+120	+120	+145	+145	+145	+170	
E6	+28	+34	+43	+53	+66	+66	+79	+79	+94	+ 94	+110	+110	+110	+129	
	+20	+25	+32	+40	+50	+50	+60	+60	+72	+72	+85	+85	+85	+100	
E7	+32	+40	+50	+61	+75	+75	+90	+90	+107	+107	+125	+125	+125	+146	
	+20	+25	+32	+40	+50	+ 50	+60	+60	+72	+72	+85	+85	+85	+100	
E9	+50	+61	+75	+92	+112	+112	+134	+134	+159	+159	+185	+185	+185	+215	
	+20	+25	+32	+40	+50	+50	+60	+60	+72	+72	+85	+85	+85	+100	
E10	+68	+83	+102	+124	+150	+150	+180	+180	+212	+212	+245	+245	+245	+285	
	+20	+25	+32	+40	+50	+50	+60	+60	+72	+72	+85	+85	+85	+100	
F6	+18	+22	+27	+33	+41	+41	+49	+49	+58	+58	+68	+68	+68	+79	
	+10	+13	+16	+20	+25	+25	+30	+30	+36	+36	+43	+43	+43	+50	
F7	+22	+28	+34	+41	+50	+50	+60	+60	+71	+71	+83	+83	+83	+96	
	+10	+13	+16	+20	+25	+25	+30	+30	+36	+36	+43	+43	+43	+50	
F8	+28	+35	+43	+53	+64	+64	+76	+76	+90	+90	+106	+106	+106	+122	
	+10	+13	+16	+20	+25	+25	+30	+30	+36	+36	+43	+43	+43	+50	
G6	+12	+14	+17	+20	+25	+25	+29	+29	+34	+34	+39	+39	+39	+44	
	+4	+5	+6	+7	+9	+9	+10	+10	+12	+12	+14	+14	+14	+15	
G7	+16	+20	+24	+28	+34	+34	+40	+40	+47	+47	+54	+54	+54	+61	
	+4	+5	+6	+7	+9	+9	+10	+10	+12	+12	+14	+14	+14	+15	
G8	+22	+27	+33	+40	+48	+48	+56	+56	+66	+66	+77	+77	+77	+87	
	+4	+5	+6	+/	+9	+9	+10	+10	+12	+12	+14	+14	+14	+15	
H6	+8	+9	+11	+13	+16	+16	+19	+19	+22	+22	+25	+25	+25	+29	
117	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
H/	+12	+15	+18	+21	+25	+25	+30	+30	+35	+35	+40	+40	+40	+46	
110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hδ	+18	+22	+27	+33	+39	+39	+46	+46	+54	+54	+63	+63	+63	+/2	
110	.20	.20	0	.52	0	0	.74	.76	.07	.07	.100	.100	.100	.115	
пу	+50	+30	+45	+52	+62	+62	+/4	+/4	+87	+87	+100	+100	+100	+115	
L10	0		170	.0/	100	100	120	120	140	140	140	140	140	. 195	
п10	+40	+56	+/0	+64	+100	+100	+120	+120	+140	+140	+100	+100	+100	+100	
LI11	.75	.00	110	120	140	140	100	100	1220	1220	1.250	1.250	1.250	. 200	
п11	+/5	+90	+110	+130	+100	+100	+190	+190	+220	+220	+250	+250	+250	+290	
	0	0	0	0	0	0	0	0	0	0	U	0	U	0	

Continuation of table, see Page 444.

200	225	250	280	315	355	400	450	500	560	630	710	800	900
225	250	280	315	355	400	450	500	560	630	710	800	900	1000
+1030	+1110	+1240	+1370	+1560	+1710	+1900	+2050	-	-	-	-	-	-
+740	+820	+920	+1050	+1200	+1350	+1500	+1650	-	-	-	-	-	-
+550	+570	+620	+650	+720	+760	+840	+880	-	-	-	-	-	-
+260	+280	+300	+330	+360	+400	+440	+480	-	-	-	-	-	-
+355	+355	+400	+400	+440	+440	+480	+480	+540	+540	+610	+610	+680	+680
+170	+170	+190	+190	+210	+210	+230	+230	+260	+260	+290	+290	+320	+320
+129	+129	+142	+142	+161	+161	+175	+175	+189	+189	+210	+210	+226	+226
+100	+100	+110	+110	+125	+125	+135	+135	+145	+145	+160	+160	+170	+170
+146	+146	+162	+162	+182	+182	+198	+198	+215	+215	+240	+240	+260	+260
+100	+100	+110	+110	+125	+125	+135	+135	+145	+145	+160	+160	+1/0	+1/0
+215	+215	+240	+240	+265	+265	+290	+290	+320	+320	+360	+360	+400	+400
+100	+100	+110	+110	+125	+125	+135	+135	+145	+145	+160	+160	+1/0	+1/0
+285	+285	+320	+320	+355	+355	+385	+385	+425	+425	+480	+480	+530	+530
+100	+100	+110	+110	+125	+125	+135	+135	+145	+145	+160	+160	+1/0	+1/0
+/9	+/9	+88	+88	+98	+98	+108	+108	+120	+120	+130	+130	+142	+142
+50	+50	+56	+56	+62	+62	+68	+68	+/6	+/6	+80	+80	+86	+80
+96	+96	+108	+108	+119	+119	+151	+151	+140	+140	+160	+160	+1/0	+1/0
+50	+50	+20	+20	+62	+02	+00	+00	+/0	+/0	+80	+80	+00	+00
+122	+122	+157	+157	+151	+151	+105	+105	+100	+100	+205	+205	+220	+220
+50	+30	+50	+50	+02	+02	+00	+00	+/0	+/0	+00	+00	+00	+00
+44	+44	+47	+47	+18	+18	+00	+00	+00	+00	+74	+74	+02	+02
+15	+15	+17	+17	+75	+75	+83	+20	+22	+22	+24	+104	+116	+116
+15	+15	+17	+17	+18	+18	+20	+20	+22	+22	+24	+24	+26	+26
+87	+87	+98	+98	+107	+107	+117	+117	+132	+132	+149	+149	+166	+166
+15	+15	+17	+17	+18	+18	+20	+20	+22	+22	+24	+24	+26	+26
+29	+29	+32	+32	+36	+36	+40	+40	+44	+44	+50	+50	+56	+56
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+46	+46	+52	+52	+57	+57	+63	+63	+70	+70	+80	+80	+90	+90
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+72	+72	+81	+81	+89	+89	+97	+97	+110	+110	+125	+125	+140	+140
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+115	+115	+130	+130	+140	+140	+155	+155	+175	+175	+200	+ 200	+230	+230
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+185	+185	+210	+210	+230	+230	+250	+250	+280	+280	+320	+320	+360	+360
0	0	0	0	0	0	0	0	0	0	0	0	0	0
+290	+290	+320	+320	+360	+360	+400	+400	+440	+440	+500	+500	+560	+560
0	0	0	0	0	0	0	0	0	0	0	0	0	0

											•		
es	Nominal size range												
class	over 3	6	10	18	30	40	50	65	80	100	120	140	160
) eo	incl. 6	10	18	30	40	50	65	80	100	120	140	160	180
erar	Limit deviations (1 μ m = 0,001 mm) Upper limit deviation = ES												
Tol	μm					Lower	limit dev	iation =	El				
J6	+5	+5	+6	+8	+10	+10	+13	+13	+16	+16	+18	+18	+18
	-3	-4	-5	-5	-6	-6	-6	-6	-6	-6	-7	-7	-7
J7	+6	+8	+10	+12	+14	+14	+18	+18	+22	+22	+26	+26	+26
	-6	-7	-8	-9	-11	-11	-12	-12	-13	-13	-14	-14	-14
J8	+10	+12	+15	+20	+24	+24	+28	+28	+34	+34	+41	+41	+41
_	-8	-10	-12	-13	-15	-15	-18	-18	-20	-20	-22	-22	-22
JS6	+4	+4,5	+5,5	+6,5	+8	+8	+9,5	+9,5	+11	+11	+12,5	+12,5	+12,5
	-4	-4,5	-5,5	-6,5	-8	-8	-9,5	-9,5	-11	-11	-12,5	-12,5	-12,5
JS7	+6	+7,5	+9	+10,5	+12,5	+12,5	+15	+15	+17,5	+17,5	+20	+20	+20
	-6	-7,5	-9	-10,5	-12,5	-12,5	-15	-15	-17,5	-17,5	-20	-20	-20
JS8	+9	+11	+13,5	+16,5	+19,5	+19,5	+23	+23	+27	+27	+31,5	+31,5	+31,5
	-9	-11	-13,5	-16,5	-19,5	-19,5	-23	-23	-27	-27	-31,5	-31,5	-31,5
K6	+2	+2	+2	+2	+3	+3	+4	+4	+4	+4	+4	+4	+4
	-6	-7	-9	-11	-13	-13	-15	-15	-18	-18	-21	-21	-21
K7	+3	+5	+6	+6	+7	+7	+9	+9	+10	+10	+12	+12	+12
	-9	-10	-12	-15	-18	-18	-21	-21	-25	-25	-28	-28	-28
K8	+5	+6	+8	+10	+12	+12	+14	+14	+16	+16	+20	+20	+20
	-13	-16	-19	-23	-27	-27	-32	-32	-38	-38	-43	-43	-43
M6	-1	-3	-4	-4	-4	-4	-5	-5	-6	-6	-8	-8	-8
	-9	-12	-15	-17	-20	-20	-24	-24	-28	-28	-33	-33	-33
M7	0	0	0	0	0	0	0	0	0	0	0	0	0
	-12	-15	-18	-21	-25	-25	-30	-30	-35	-35	-40	-40	-40
M8	+2	+1	+2	+4	+5	+5	+5	+5	+6	+6	+8	+8	+8
	-16	-21	-25	-29	-34	-34	-41	-41	-48	-48	-55	-55	-55
N6	-5	-7	-9	-11	-12	-12	-14	-14	-16	-16	-20	-20	-20
	-13	-16	-20	-24	-28	-28	-33	-33	-38	-38	-45	-45	-45
N/	-4	-4	-5	-/	-8	-8	-9	-9	-10	-10	-12	-12	-12
	-16	-19	-23	-28	-33	-33	-39	-39	-45	-45	-52	-52	-52
N8	-2	-3	-3	-3	-3	-3	-4	-4	-4	-4	-4	-4	-4
	-20	-25	-30	-36	-42	-42	-50	-50	-58	-58	-67	-67	-67
P6	-9	-12	-15	-18	-21	-21	-26	-26	-30	-30	-36	-36	-36
-	-17	-21	-26	-31	-37	-37	-45	-45	-52	-52	-61	-61	-61
P7	-8	-9	-11	-14	-17	-17	-21	-21	-24	-24	-28	-28	-28
	-20	-24	-29	-35	-42	-42	-51	-51	-59	-59	-68	-68	-68
P8	-12	-15	-18	-22	-26	-26	-32	-32	-37	-37	-43	-43	-43
	-30	-37	-45	-55	-65	-65	-78	-78	-91	-91	-106	-106	-106

Continuation of table, ISO tolerances for holes, from Page 442.

R6

R7

-12 -16

-20 -25 -31 -37 -45 -45 -54 -56 -66 -69

-11 -13

-23 -28 -34 -41

-20

-16

-24

-20

-29

-25

-50 -50 -60 -62 -73

-29

-25 -30 -32 -38 -41

-35 -37 -44 -47 -61

-86

-53

-93

-56

-81

-48

-88

-76

-58

-83

-50

-90

180	200	225	250	280	315	355	400	450	500	560	630	710	800	900
200	225	250	280	315	355	400	450	500	560	630	710	800	900	1000
	•													
	i — —												-	
+22	+22	+22	+25	+25	+29	+29	+33	+33	-	-	-	-	-	-
-/	-/	-/	-/	-/	-/	-/	-/	-/	-	-	-	-	-	-
+30	+30	+30	+36	+36	+39	+39	+43	+43	-	-	-	-	_	-
-10	±/17	-10	+55	-10	+60	+60	-20	-20					_	
-25	-25	-25	-26	-26	-29	-29	-31	-31	_	_	_	_	_	-
+14.5	+14.5	+14.5	+16	+16	+18	+18	+20	+20	+22	+22	+25	+25	+28	+28
-14,5	-14,5	-14,5	-16	-16	-18	-18	-20	-20	-22	-22	-25	-25	-28	-28
+23	+23	+23	+26	+26	+28,5	+28,5	+31,5	+31,5	+35	+35	+40	+40	+45	+45
-23	-23	-23	-26	-26	-28,5	-28,5	-31,5	-31,5	-35	-35	-40	-40	-45	-45
+36	+36	+36	+40,5	+40,5	+44,5	+44,5	+48,5	+48,5	+55	+55	+62,5	+62,5	+70	+70
-36	-36	-36	-40,5	-40,5	-44,5	-44,5	-48,5	-48,5	-55	-55	-62,5	-62,5	-70	-70
+5	+5	+5	+5	+5	+7	+7	+8	+8	0	0	0	0	0	0
-24	-24	-24	-27	-27	-29	-29	-32	-32	-44	-44	-50	-50	-56	-56
+13	+13	+13	+16	+16	+17	+17	+18	+18	0	0	0	0	0	0
-33	-33	-33	-36	-36	-40	-40	-45	-45	-70	-70	-80	-80	-90	-90
+22	+22	+22	+25	+25	+28	+28	+29	+29	0	0	0	0	0	0
-50	-50	-50	-56	-56	-61	-61	-68	-68	-110	-110	-125	-125	-140	-140
-8	-8	-8	-9	-9	-10	-10	-10	-10	-26	-26	-30	-30	-34	-34
-57	-57	-37	-41	-41	-46	-46	-50	-50	-70	-70	-30	-30	-90	-90
-46	-46	-46	-52	-52	-57	-57	-63	-63	-20	-20	-110	_110	-124	-124
+9	+9	+9	+9	+9	+11	+11	+11	+11	-26	-26	-30	-30	-34	-34
-63	-63	-63	-72	-72	-78	-78	-86	-86	-136	-136	-155	-155	-174	-174
-22	-22	-22	-25	-25	-26	-26	-27	-27	-44	-44	-50	-50	-56	-56
-51	-51	-51	-57	-57	-62	-62	-67	-67	-88	-88	-100	-100	-112	-112
-14	-14	-14	-14	-14	-16	-16	-17	-17	-44	-44	-50	-50	-56	-56
-60	-60	-60	-66	-66	-73	-73	-80	-80	-114	-114	-130	-130	-146	-146
-5	-5	-5	-5	-5	-5	-5	-6	-6	-44	-44	-50	-50	-56	-56
-77	-77	-77	-86	-86	-94	-94	-103	-103	-154	-154	-175	-175	-196	-196
-41	-41	-41	-47	-47	-51	-51	-55	-55	-78	-78	-88	-88	-100	-100
-70	-70	-70	-79	-79	-87	-87	-95	-95	-122	-122	-138	-138	-156	-156
-33	-33	-33	-36	-36	-41	-41	-45	-45	-78	-78	-88	-88	-100	-100
-79	-79	-79	-88	-88	-98	-98	-108	-108	-148	-148	-168	-168	-190	-190
-50	-50	-50	-56	-56	-62	-62	-68	-68	-/8	-/8	-88	-88	-100	-100
-122	-122	-122	-13/	-137	-151	-151	-165	-165	-188	-188	-213	-213	-240	-240
-68	-/1	-/5	-00	-09	-97	-105	-113	-119	-150	-100	-1/5	-100	-210	-220
-97	-63	-104	-11/	-121	-155	_03	-103	-109	-194	-155	-175	-200	-200	-270
-106	-109	-113	-126	-130	-144	-150	-166	-172	-220	-225	-255	-265	-300	-310
100	107	117	120	1.00	144	190	100	1/2	220	225	255	205	500	510

Systems of fits Systems of fits are intended to assist in restricting the large number of possible tolerance classes for defining a particular fit, in order to save costs on production and measuring equipment.

Through the appropriate combination of external and internal tolerance zone positions, it is possible to achieve various fits:

- clearance fits
- transition fits
- interference fits

Shaft basis and The choice of system of fits is based on the area of application:

- hole basis 🔳 System of fits "shaft basis":
 - Fits where the fundamental deviation of the shaft is zero (upper deviation is zero). Position of tolerance zone (fundamental deviation identifier) for the shaft always "h", see Figure 12, Page 447
 - System of fits "hole basis": Fits where the fundamental deviation of the hole is zero (lower deviation is zero). Position of tolerance zone (fundamental deviation identifier) for the hole always "H", see Figure 13, Page 447

In mating an outer part and inner part of the same nominal size with the maximum and minimum sizes indicated by the relevant upper and lower

- limit deviations, the following fit types can be obtained:
- Clearance fit:

Fit where, after mating the parts, clearance always results.

Transition fit:

Fit where, after mating the parts, clearance or interference results (depending on the actual sizes).

Interference fit:

Fit where, after mating the parts, interference always results (and pressure occurs between the fit surfaces).

Figure 12

 Upper limit of size of the shaft ULS_w with tolerance class b8
 Lower limit of size of the shaft LLS_w with tolerance class b8
 Nominal size
 Housing
 Shaft
 Clearance fit
 Transition fit
 Interference fit
 Tolerance zone position not present in this tolerance grade

Calculation of fits	Fits and fit tolerances are calculated as described below.							
Maximum fit	The maximum fit P _o is calculated as follows:							
Equation 1	$P_o = ULS_B - LLS_W = ES - ei$							
	The calculation is thus: maximum hole size minus the minimum shaft size. The results are interpreted as follows:							
Equation 2	> 0 Maximum clearance							
	< 0 Minimum interference							
Minimum fit	The minimum fit P _u is calculated as follows:							
Equation 3	$P_u = LLS_B - ULS_W = EI - es$							
	The calculation is thus: minimum hole size minus the maximum shaft size. The results are interpreted as follows:							
Equation 4	> 0 Minimum clearance							
	< 0 Maximum interference							
	In the case of clearance fits, the calculated values for the maximum and minimum fit are always positive while, in the case of interference fits, they are always negative.							
Fit tolerance	The fit tolerance $P_{\rm T}$ is the sum of the dimensional tolerances of both form elements that give the fit. It is an absolute value without a mathematical sign.							
	The fit tolerance is calculated as follows:							
Equation 5	$P_{T} = P_{o} - P_{u} = (ULS_{B} - LLS_{W}) - (LLS_{B} - ULS_{W})$ $= (ES - EI) + (es - ei)$							

Application of ISO fits Examples of the application of ISO fits are given below:

Hole basis	Application	Shaft basis
	Clearance fits	
H11/a11	Parts with very large clearance and large tolerance : locomotive and waggon construction, coupling pins, agricultural machinery	A11/h11
H11/c11	Parts with large clearance and large tolerance : agricultural and household machinery	C11/h11
H10/d9	Parts with very abundant clearance : transmission shafts, stuffing box parts, loose pulleys, countershafts	D10/h9
H8/e8	Parts with abundant clearance : machine tool shafts with several supports, plain bearings	E8/h8
H7/f7	Parts with significant clearance : main machine tool bearings, sliding sleeves on shafts, pistons in cylinders	F7/h7
H7/g6	Without significant clearance, capable of movement: sliding gear wheels, movable coupling parts, valve lever bearing arrangement	G7/h6
H7/h6	Lubricated by hand, capable of upward movement : sleeve in the tailstock, centring flanges for couplings and pipelines	H7/h6
H6/h5	Very small mean clearance: for parts not moving against each other	H6/h5
	Transition fits	
H7/j6	Joining by hand by means of light blows: for belt pulleys, gear wheels and bearing bushes that can be easily dismounted	J7/h6
H7/k6	Effective joining by means of hand-held hammer: for belt pulleys, couplings and flywheels with a feather key joint	K7/h6
H7/m6	Joining by means of hand-held hammer difficult but possible: belt pulleys for single mounting only, couplings and gear wheels on electric motor shafts	M7/h6
H7/n6	Joining possible by means of press: for armatures on motor shafts and gear rings on gear wheels, bearing bushes in hubs	N7/h6
	Interference fits	
H7/r6 H7/s6	Joining possible under high pressure or by heating: circlip rings on flake graphite cast iron hubs, bearing bushes in housings (s6 for larger diameters, r6 for smaller diameters)	R7/h6 S7/h6
H8/u8 H8/x8	Joining only achievable by means of press or temperature difference: for transmission of high circumferential or longitudinal forces by frictional locking	U8/h8 X8/h8

Rolling bearing tolerances and ISO tolerances for shafts and housings The tolerances for rolling bearings are defined for radial rolling bearings in accordance with ISO 492:2023 and for axial rolling bearings in accordance with ISO 199:2023.

These give tolerances for the deviation of the bearing bore as $t_{\Delta dmp}$ and the deviation of the bearing outside diameter as $t_{\Delta Dmp}$. In both cases, the upper limit deviation of these tolerance zones are additional to the nominal size. The lower limit deviations (in both cases towards minus) are defined by the tolerance classes detailed in ISO 492 and ISO 199.

In combination with the ISO tolerances for shafts and holes in accordance with ISO 286, this gives approximately the fits shown in the following diagram.

 $\begin{array}{l} t_{\Delta Dmp} = deviation \\ of mean bearing \\ outside diameter \\ t_{\Delta dmp} = deviation \\ of mean bearing \\ bore diameter \\ D = nominal bearing \\ outside diameter \\ d = nominal bearing \\ bore diameter \\ \end{array}$

2 Ero line
 Housing
 Shaft
 Clearance fit
 Transition fit
 Interference fit

Mounting fits for rolling bearings

Mounting fits for rolling bearings are selected as a function of the conditions of rotation. The conditions of rotation indicate the movement of one bearing ring with respect to the load direction.

For further information on the conditions of rotation of rolling bearings, see the chapter Design elements, section Conditions of rotation, Page 633.

Tolerances of form, orientation, location and run-out in drawings

Indications in drawings

The standard ISO 1101:2017 defines methods of indicating tolerances for form, orientation, location and run-out in drawings.

Symbols for toleranced characteristics

For toleranced characteristics, the following symbols are defined:

Types of elements and tolerances		Toleranced characteristic	Symbol
Elements without datum	Form tolerances	Straightness	
		Flatness	\square
		Roundness (circularity)	\bigcirc
		Cylindricity (cylindrical form)	$\not \bigcirc$
		Line profile	\bigcirc
		Surface profile	\square
Elements with datum	Orientation tolerances	Parallelism	//
		Perpendicularity	
		Angularity	\square
	Orientation and location	Line profile	\bigcirc
	tolerances	Surface profile	\square
Elements with/without datum	Location tolerances	Position	\oplus
Elements with datum		Concentricity and coaxiality	\bigcirc
		Symmetry	—
	Run-out tolerances	Run-out Circular radial run-out, circular axial run-out	1
		Total run-out Total radial run-out, total axial run-out	11

Additional The following additional symbols are defined in ISO 1101:2017: symbols

Description	Symbol						
Modifiers for the combination of tolerance zones (including ISO 1660, ISO 2692 and ISO 5458)							
Combined zone	CZ						
Separate zones	SZ						
Modifiers for unequal tolerance zones (including ISO 1660, ISO 2692 and	nd ISO 5458)						
Specified tolerance zone offset	UZ						
Modifiers for constraints							
Unspecified linear tolerance zone offset (offset zone)	OZ						
Unspecified angular tolerance zone offset (variable angle)	VA						
Modifiers for associated toleranced features							
Minimax (Chebyshev) feature	©						
(Gaussian) least squares feature	G						
Minimum circumscribed feature	\mathbb{N}						
Tangent feature	Ũ						
Maximum inscribed feature	\otimes						
Modifiers for derived toleranced features							
Derived feature	A						
Projected tolerance zone	P						
Modifiers for the association of reference features for geometrical evalu	ation						
Minimax (Chebyshev) feature without constraint	C						
Minimax (Chebyshev) feature with external material constraint	CE						
Minimax (Chebyshev) feature with internal material constraint	CI						
Least squares (Gaussian) feature without constraint	G						
Least squares (Gaussian) feature with external material constraint	GE						
Least squares (Gaussian) feature with internal material constraint	GI						
Minimum circumscribed feature	N						
Maximum inscribed feature	Х						

Continuation of table, see Page 453.

Continuation of table, Additional symbols, from Page 452.

Description	Symbol
Modifiers for parameters	
Total range of deviations	Т
Peak height	Р
Valley depth	V
Standard deviation	Q
Modifiers for toleranced features	-
Between	
United feature	UF
Minor diameter	LD
Major diameter	MD
Pitch diameter	PD
All around (profile)	
All over (profile)	◎ <u> </u>
Tolerance indicators	
Geometrical specification indication without datums section	
Geometrical specification indication with datums section $^{1)}$	A
Auxiliary indications of features	
Any cross-section	ACS
Intersection plane indicator ¹⁾	// В</td
Orientation plane indicator ¹⁾	// В
Direction feature indicator ¹⁾	- // B
Collection plane indicator ¹⁾	О// В
Symbol for the theoretically exact dimension (TED)	
Theoretically exact dimension (TED) ¹⁾	50

Continuation of table, see Page 454.

 $^{1)}$ The letters, values and characteristic symbols in these symbols are examples.

Continuation of table, Additional symbols, from Page 453.

Description	Symbol						
Modifiers for the material requirement (in accordance with ISO 2692)							
Maximum material requirement	۲						
Least material requirement	Û						
Reciprocity requirement	R						
Modifier for the free state condition (in accordance with ISO 10579)							
Free state condition (non-rigid parts)	F						
Modifier for the size tolerance (in accordance with ISO 14405-1)							
Envelope requirement	E						

Indications and modifiers for datums, see also the table Datum features and datum point symbols.

Datums Datums are defined in the standard ISO 5459:2011.

Datum features and datum point symbols

For datums in drawings, ISO 5459:2011 defines the following datum features and datum point symbols (letters or values in these symbols are examples only):

Description	Symbol
Datum feature indicator	A A
Datum feature identifier	Capital letter (A, B, C, AA etc.)
Single datum target frame	$\bigcirc \qquad \bigotimes 2 \\ \qquad
Movable datum target frame	Al
Datum target point	×
Closed datum target line	\bigcirc
Non-closed datum target line	XX
Datum target area	

Modifier symbols for datums The following modifier symbols can, in accordance with ISO 5459:2011, be associated with the datum letter:

Description	Symbol
Pitch diameter	[PD]
Major diameter	[MD]
Minor diameter	[LD]
Any cross-section	[ACS]
Any longitudinal section	[ALS]
Contacting feature	[CF]
Distance variable (for a common datum)	[DV]
(Situation feature of type) Point	[PT]
(Situation feature of type) Straight line	[SL]
(Situation feature of type) Plane	[PL]
For orientation constraint only	><
Projected (for secondary or tertiary datums)	P
Least material requirement (in accordance with ISO 2692)	Û
Maximum material requirement (in accordance with ISO 2692)	M

Tolerance indicator and auxiliary indications

Figure 15 Components of a geometrical specification

 Tolerance indicator
 Plane and feature indicator
 Adjacent indications The indication of a geometrical product specification comprises a tolerance indicator, the optional plane and feature indications as well as optional adjacent indications, see Figure 15.

The tolerance requirements are indicated in a rectangular frame which is divided into two or more sections. This tolerance indicator contains, from left to right, the following compartments:

- Symbol section: with the symbol for the characteristic to be toleranced
- Section for zone, feature and characteristic: with the tolerance value in the unit applied to dimensioning. This value is preceded by the symbol "∅" if the tolerance zone is circular or cylindrical or the notation "S∅" if the tolerance zone is spherical. Further indications with complementary modifiers are possible, see table Section for zone, feature and characteristic.
- Datum section: if necessary, the letter or letters that identify the datum feature or features.

□ 0,05 [// 0,01 A ◎ Ø 0,08 A-B ⊕ SØ 0,1 A B C

Figure 17 Multiple tolerance indications per feature

If it is necessary to specify more than one tolerance characteristic	
for a feature, the tolerance indications should be stacked:	

Section for zone, feature and characteristic

Complementary modifiers for particular requirements are indicated within the tolerance indicator in accordance with the tolerance value in the "section for zone, feature and characteristic"; several such requirements may be present at the same time in the same tolerance frame.

The following table, see Page 457, shows the grouping of the modifiers and the sequence in which the modifiers are indicated.

With the exception of "Width and extent", all modifiers are optional. Between indications with different numbering (no. 1 to 11), spaces are required (except before letters in circles, columns no. 6, 7, 10, 11).

Tolerance zone			Toleranced feature			Character- istic						
Shape	Width and extent	Combination	Specified offset	Constraint	Type If the Type I	Indices	Ass. tol. feature	Derived feature	Association	Parameter	Material condition	State
Ø SØ	0,02 0,02-0,01 0,1/75 0,1/75×75 0,2/Ø4 0,2/75×30° 0,3/10°×30°	CZ SZ	UZ+0,2 UZ-0,3 UZ+0,1:+0,2 UZ+0,2:-0,3 UZ-0,2:-0,3	OZ VA ><	G S etc.	0,8 -250 0,8-250 500 -15 500-15 etc.	\bigcirc	 A P P25 P32-7 	C CE CI G GE GI X N	P V T Q	®∟®	Ē
1		2 ²⁾	3	4 ²⁾	5		6	7 ²⁾	8	9	10 ²⁾	11

Source: ISO 1101:2017.

1) Filters: see ISO 1101.

²⁾ More than one of the listed modifiers can be applied at the same time.

Auxiliary indications of features

Auxiliary indications of features (intersection plane indicator, orientation plane indicator, collection plane indicator and/or lastly the direction feature indicator) are placed next to the tolerance indicator in compartment ②, see Figure 15, Page 456.

If a tolerance applies to more than one feature, the number of features is indicated with the symbol "x" above the tolerance indicator and can be supplemented by the dimension of the feature. Further optional indications for describing the characteristics of the feature within the tolerance zone are also placed in compartment (3), see Figure 15, Page 456. (preferably above):

Dimensional tolerance indications, variable width specification with the aid of the "between" symbol, additionally UF, ACS, LD, MD, PD. The "all around" arrow is placed at the tolerance indicator instead of the standard arrow if, for example, the profile characteristic applies to the entire contour line:

Features, datums and restrictions

Toleranced features, datum features and datum indicators or restrictive instructions are indicated in drawings as follows:

Drawing indication and definitions The standard ISO 1101:2017 contains detailed definitions of form, orientation, location and run-out tolerances and their symbolic language.

The following table gives a compilation of these definitions. An example is described for each toleranced characteristic. All further possible combinations can be derived from these examples.

The corresponding representation following the table shows An example of the indication of form, orientation, location and run-out tolerances in technical drawings.

Symbol and toleranced		Tolerance zone	Application examples		
character	istic		Drawing indication	Definition	
	Straightness	Øt	Ø0,03	The extracted median (actual) line of the cylinder to which the tolerance applies shall lie within a cylindrical tolerance zone of diameter t = 0,03 mm.	
				The extracted (actual) line to which the tolerance applies shall lie within a tolerance zone that is contained in any plane under consideration parallel to the datum A (intersection plane indicator) within two parallel straight lines at a distance of t = 0,2 mm apart.	
	Flatness		0,05	The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two parallel planes which are at a distance of t = 0,05 mm apart.	
	Roundness			The extracted (actual) circumfer- ential line to which the tolerance applies shall lie within a tolerance zone that is contained in any cross-section within two concen- tric circles which are at a radial distance of $t = 0,02$ mm apart.	
\bigcirc				Auxiliary indication on taper (in this case the directional feature indicator to perpen- dicularity): The circles are perpendicular to the datum axis A. ① Any cross-sectional plane (any cross-section)	

Continuation of table, see Page 460.

Symbol and toleranced		Tolerance zone	Application examples		
character	istic		Drawing indication	Definition	
Ø	Cylindricity (cylindrical form)	t		The extracted cylindrical (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two coaxial cylinders which have a radius differential of t = 0,05 mm.	
\bigcirc	Line profile	Other State		The extracted (actual) profile line to which the tolerance applies shall lie within a tolerance zone that is contained within any paral- lel plane to the datum plane A by two lines that enclose circles of diameter $t = 0,1$ mm The centre points of these circles are located on a theoretically geometrically exact line. The extracted profile line must be continuous. Auxiliary indications in the examples substantiate the tolerance specification.	
	Surface profile	søt	0,03	The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two surfaces that enclose spheres of diameter $t = 0,03$ mm. The centre points of these circles are located on a theoretically geometrically exact surface.	

Continuation of table, Drawing indication and definitions, from Page 459.

Continuation of table, see Page 461.

Symbol and toleranced		Tolerance zone	Application examples		
character	istic		Drawing indication	Definition	
//	Parallelism	Øt -		The extracted median (actual) line to which the tolerance applies shall lie within a cylindrical toler- ance zone parallel to the datum axis A which is of the diameter t = 0,1 mm.	
//			(// 0,01 A A	The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two parallel planes to the datum plane A which are at a distance of t = 0,01 mm apart.	
	Perpendicula rity	AL		The extracted median (actual) line to which the tolerance applies shall lie within a tolerance zone that is contained within two parallel planes which are at a distance of $t = 0,1$ mm apart. The planes are perpendicular to the datum A and parallel to the secondary datum B (orientation plane indicator).	
2	Angularity	60°	(0,2) A (60°)	The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two inclined parallel planes at a theoretically exact angle to the datum which are at a distance of t = 0,2 mm apart.	
		t 60°		The extracted median (actual) line of the hole to which the tolerance applies shall lie within a cylindrical tolerance zone of diameter t = 0,1 mm. The tolerance zone lies parallel to the datum plane B (orientation plane indicator) and is inclined at a theoretically exact angle to the datum plane A.	

Continuation of table, Drawing indication and definitions, from Page 460.

Continuation of table, see Page 462.

Symbol and toleranced		Tolerance zone	Application examples			
cnaracteristic			Drawing indication	Definition		
\oplus	Position	Øt	⊕ Ø0,1 C A B	The extracted median (actual) line of the hole to which the tolerance applies shall lie within a cylindrical tolerance zone of diameter t = 0,1 mm, whose axis coincides with the theoreti- cally exact location of the axis of the bore in relation to the datum planes C, A and B.		
\bigcirc	Coaxiality, concentricity	Øt	A 000,03 A	The extracted median (actual) line of the large cylinder shall lie within a cylindrical tolerance zone with the diameter t = 0,03 mm whose axis coincides with the datum axis A.		
	Symmetry	t/2		The extracted (actual) median plane of the slot to which the tolerance applies shall lie within a tolerance zone that is contained within two parallel planes which are at a distance of t = 0,08 mm apart and symmetrical to the datum medium plane A.		

Continuation of table, Drawing indication and definitions, from Page 461.

Continuation of table, see Page 463.

Symbol and toleranced		Tolerance zone	Application examples	
character	istic		Drawing indication	Definition
1	Circular radial run-out			The extracted (actual) line to which the tolerance applies shall lie within a tolerance zone that is contained in any cross- section perpendicular to the datum axis A–B, within two con- centric circles at a radial distance of $t = 0,1$ mm whose centre point lies on the datum axis. ① Cross-sectional plane with a variable position along the datum axis.
	Circular axial run-out			The extracted (actual) line to which the tolerance applies shall lie within a tolerance zone that is contained in any ring- shaped cross-section of a variable diameter d whose axis coincides with the datum axis 0, within two circles at an axial distance of t = 0,1 mm.
11	Total radial run-out			The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two coaxial cylinders which are at a radial distance of $t = 0,1$ mm, whose axis coincides with the common datum line A–B.
	Total axial run-out	The second secon	D	The extracted (actual) surface to which the tolerance applies shall lie within a tolerance zone that is contained within two parallel planes which are at a distance of $t = 0,1$ mm apart, that are perpendicular to datum axis D.

Continuation of table, Drawing indication and definitions, from Page 462.

The following representation shows an example of the indication of form, orientation, location and run-out tolerances in technical drawings.

If the geometrical deviation is restricted, a special tolerance must be applied to the flatness, see Figure 20 (3) and (4).

Unless otherwise specified (e.g. by a standard) or the following statement is indicated in or near the title block of the drawing, the principle of independence applies: Tolerancing ISO 8015, Linear Size ISO 14405 (or simply: Linear Size ISO 14405).

Unless a particular drawing indication is present, the principle of independence also applies worldwide in accordance with ISO 14405-1. If drawings contain the following in or near the title block: Tolerancing ASME Y14.5, then the envelope requirement applies here.

Envelope requirement If the principle of independence is defined for a drawing, the envelope requirement should be defined for sizes (former description: fit surfaces) in order to ensure mating capability if no tolerances of form, orientation, location and run-out are indicated. This stipulates that dimensional, geometrical and parallelism tolerances are in a particular relationship with each other. The application of the envelope requirement for the form element is defined by the symbol (E) after the dimensional tolerance of the form element.

The envelope requirement is checked as a two-point size and by means of a gauge (envelope). This can also be carried out using a coordinate measuring machine.

The envelope requirement stipulates that the form element may not pierce the geometrically ideal envelope with a maximum material limit of size (MMLS) and that, at the same time, the local two-point size (P) may not at any point lie outside the tolerance limits, see ISO 14405-1:2016. Deviations of geometry and parallelism are thus also included automatically. According to the standard, the envelope requirement is the use of a combination of the two-point size and the minimum circumscribed lower limit of size LLS (in the case of a shaft or block) or the maximum inscribed upper limit of size ULS (in the case of a hole or slot).

Drawing with principle of independence $d_Z = local actual size$ (two-point size) $<math>t_E = flatness tolerance$ $<math>\textcircled{}{}$ Drawing without flatness tolerance $\textcircled{}{}$ Permissible sheet metal nice

Fiaure 20

with considerable geometrical deviation ③ Drawing with flatness tolerance ④ Sheet metal piece fulfils flatness tolerance

The following table shows the geometrically ideal envelope for various form elements and the geometrical deviations subject to the envelope requirement:

Form element	Example drawing	Permissible workpiece, geometry of envelope	Included deviation
Circular cylinder (hole) ① Permissible workpiece ② Geometry of envelope	Hole Ø16±0,1 ^(C)	Envelope: mandrel with $d = LLS$ ULS = 16,1 (LP) MMLS $\triangleq d = \emptyset$ 15,9	Straightness, roundness, parallelism, cylindricity
Circular cylinder (shaft) (1) Permissible workpiece (2) Geometry of envelope	Shaft Ø16±0,1©	Envelope: sleeve with d = ULS LLS = 15,9 (LP) MMLS \triangleq d = \emptyset 16,1 0	Straightness, roundness, parallelism, cylindricity
Parallel, flat inner surfaces (1) Permissible workpiece (2) Geometry of envelope	Slot	Envelope: 2 parallel planes with a = LLS ULS = 16,1 (LP) MMLS \triangleq a = 15,9	Straightness, flatness, parallelism
Parallel, flat outer surfaces (1) Permissible workpiece (2) Geometry of envelope	Block 16 ± 0,1(È)	Envelope: 2 parallel planes with a = ULS LLS = 15,9 (LP) MMLS \triangleq a = 16,1	Straightness, flatness, parallelism

In accordance with ISO 1938-1:2015, the maximum material limit of size (MMLS) is the limit of size that corresponds to the maximum material condition of the feature of size. The least material limit of size (LMLS) is the limit of size that corresponds to the least material condition of the feature of size. MMLS and LMLS contain in each case the numerical value of the size and the defined assocation criteria.

For external sizes (shaft, block), the following applies:

- MMLS corresponds to the upper limit of size ULS; the material must lie within an envelope with d = ULS or a = ULS.
- LMLS (two-point size) corresponds to the lower limit of size LLS and must not fall short of the specified value at any point on the shaft or block.

For internal sizes (hole, slot), the following applies:

- MMLS corresponds to the lower limit of size LLS; the material must lie outside an envelope with d = LLS or a = LLS.
- LMLS (two-point size) corresponds to the upper limit of size ULS and must not be exceeded at any point in the hole or slot.

The envelope requirement is applied to the entire technical drawing if the following appears in or near the title block: Linear Size ISO 14405 \textcircled . A drawing indication for the individual sizes of the form elements using the symbol \textcircled is not necessary then. The envelope requirement applies to all form elements such as cylinders or parallel planes.

General rule In German drawings without reference to the standard (DIN) ISO 8015, the envelope requirement applied automatically to all cylinders and parallel planes up to the year 2010 in accordance with the standard DIN 7167:1987 without further special indications on the drawing. After a revision of the standard ISO 8015 and application of the standard ISO 14405-1, the principle of independence has applied as a general rule with effect from 2010 without reference to the standard ISO 8015.

General tolerances

According to the basic understanding of the GPS system, it is the designer's responsibility to provide a full and clear description of a component according to its function, i.e. to give full specifications. General geometrical specifications and general size specifications can be used to reduce the amount of information contained in technical product documentation (TPD) to a minimum.

However, when using general geometrical specifications or general size specifications, there is a risk that important functional requirements will be overlooked or that unnecessarily tight tolerances will be selected in relation to the functional requirement.

All features must be specified clearly and in full.

General tolerances in accordance with ISO 22081

ISO 22081:2021 provides methods for the precise indication of general geometrical specifications, general size specifications, and the rules governing their application. Specific tolerance values, as defined in the past for cutting manufacturing processes in ISO 2768-2:1989, for example, are not provided in ISO 22081. ISO 22081 defines two types of general specifications:

- general geometrical specifications, the surface profile
- general size specifications, i.e. linear size and angular size

These specifications can only be applied to integral features (including features of size) such as cylinders, spheres and planes, but not to derived features (centre line, median plane, centre point) or integral lines. A datum system is required that blocks all six degrees of freedom. These datum features should be specified individually.

ISO 22081:2021 is part of the GPS standards system. According to ISO 8015, the function of the component is regarded as fulfilled if the component lies within the specification limits.

Historical standard ISO 2768-2	The aim of general tolerances according to ISO 2768-1:1989 and ISO 2768-2:1989 was to simplify the drawing and to illustrate the accuracy normally expected of workshops. However, due to non-conformity with the GPS system, ISO 2768-2:1989 has been withdrawn and replaced by ISO 22081:2021.
	Geometrical product specifications are only unambiguous and complete if all features are specified in a three-dimensional datum system with location tolerances. Missing datums in ISO 2768-2 create room for interpretation and thus ambiguity. According to ISO 2768-1, distances with \pm tolerances can be specified, which leads to ambiguity, see ISO 14405-2.
	As ISO 2768-2:1989 has been withdrawn and directly replaced by ISO 22081, the former standard can only be cited as a dated reference: ISO 2768-2:1989.
General tolerance values in accordance	ISO 22081:2021 is restricted to defining the concept and does not provide specific tolerance values; this is left to the user.
with DIN 2769 as an addition to ISO 22081	German standard DIN 2769:2023, which provides cross-technology and cross-material value tables for general tolerances and tolerance classes, can also be used in addition to ISO 22081:2021. Thus, with the selection of a tolerance class, the relevant accuracy normally expected of workshops and specific to the process can be taken into account in accordance with the ISO GPS system.
	In DIN 2769, general tolerance values are selected for the surface profile according to the code or the size of the minimum circumscribed sphere of the part, see table General tolerance values for surface profiles, Page 470. For sizes, general tolerance values are selected according to the nominal size and tolerance class, see tables General tolerance values for linear sizes, Page 470, and General tolerance values for angular sizes, Page 470.
	If product-specific or process-specific general tolerance standards exist, such as for castings or plastic, these should be used.
	In the past, for example, values were specified for cutting manufacturing processes in ISO 2768-1:1989 and ISO 2768-2:1989, however, these standards are not GPS-compliant and lead to ambiguous specifications when used in conjunction with the ISO GPS system.

profiles

General tolerance The standard DIN 2769 defines general tolerance values for surface values for surface profiles for geometrical tolerancing, which are also used for distances. The general tolerance values for surface profiles are defined by the code and the code letters for the tolerance class:

Tolerance class	General tolerance values for ball diameter SD of the minimum circumscribed ball of the part mm								
	>0 ≦3	>3 ≦6	> 6 ≦ 30	> 30 ≦120	> 120 ≦ 400	$\begin{array}{c} > \ 400 \\ \leq 1000 \end{array}$	$\begin{array}{c} > 1000 \\ \leq 2000 \end{array}$	$\begin{array}{c} > 2000 \\ \leq 4000 \end{array}$	
Code	Code								
letter	1	2	3	4	5	6	7	8	
А	0,1	0,1	0,2	0,3	0,4	0,6	1	2	
В	0,2	0,2	0,4	0,6	1	1,6	2,4	4	
С	0,3	0,6	1	1,6	2,4	4	6	8	
D	0,4	1	2	3	5	8	12	16	

General tolerance General tolerance values for linear sizes are defined in DIN 2769 values for linear sizes in tolerance classes a to d:

Tolerance class	General tolerance values for nominal size ranges mm									
Code letter	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
а	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	±1		
b	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	±2		
с	±0,2	±0,3	±0,5	±0,8	±1,2	±2	±3	±4		
d	±0,3	±0,5	±1,0	±1,5	±2,5	±4	±6	±8		

sizes

General tolerance The general tolerance values for angular sizes are defined in DIN 2769 values for angular in tolerance classes 1 to 3:

Tolerance class	General tolerance values for the length of the shorter angle side mm						
	> 0 ≦10	> 10 ≦ 50	> 50 ≦120	>120 ≦400	> 400		
1	±1°	±0°30′	±0°20′	±0°10'	±0°5′		
2	±1°30′	±1°	±0°30′	±0°15′	±0°10′		
3	±3°	$\pm 2^{\circ}$	±1°	±0°30′	±0°20′		

Indications in drawings

The use of general tolerances is referenced on the drawing by the indication "General tolerances ISO 22081" near the title block. The general tolerance can be indicated as an individual value or with reference to a document, such as a company standard or DIN 2769.

In the application of DIN 2769, general tolerance values for surface profiles, linear size or angular size can be found as individual values or with reference to the tolerance class in the tables under section General tolerance values in accordance with DIN 2769 as an addition to ISO 22081, Page 470.

Figure 21

Application example from ISO 22081 and additionally DIN 2769

① With individual values and envelope requirement ② With reference to DIN 2769

Design elements

Definitions and principal functions				
Design elements are machine elements of widely varying complexity that are always used in an identical or similar form in technical applications, where they fulfil an identical or similar function. They are among the most important elements used by design engineers to realise solutions.				
In accordance with this definition, it is possible to structure the very wide spectrum of machine elements in terms of their function, see Figure 1. This makes it easier for engineers to access this wide range in their design work on and with the aid of machine elements.				
This chapter is structured in accordance with the principal functions of design elements as they are found repeatedly in technical practice. Design elements are described substantially in accordance				
 with the following scheme: Characteristics A characteristic is a feature of a system that is perceived as a property by its manifestation.¹⁾ Characteristics describe the structure, geometry and quality of the product, in the way that these can be directly influenced by design engineers. 				
 Properties A property is a result determined for an object on the basis of observations, measurement results and generally accepted statements, etc.¹⁾ Properties describe the behaviour of the product as it results from the interaction with other design elements and under the influence of operating conditions. Properties are the product of all characteristics and therefore cannot be influenced directly by the design engineer. 				
It would contradict the character of this Pocket Guide to give a detailed description of all common machine elements. For this reason, classification schemes are used to give an overview of the totality of design elements.				
The detailed description focusses essentially on the elements that could traditionally be found in earlier editions of the Schaeffler Technical Pocket Guide.				
The design elements with the function "Guiding elements (rotational and translational)" are covered in comprehensive detail.				

¹⁾ Source: in accordance with VDI Guideline 2221.

Principal functions

Figure 1 Classification according to principal functions – overview

Schaeffler

Functional structure Thinking and working on a function-oriented basis is an essential principle in modern development methodology.

From the starting point of the list of requirements, each technical system must fulfil an overall function that can be subdivided into subfunctions (functional structure). Through this "breaking down" into subordinate subfunctions, it can be ensured that the complex overall problem is classified into smaller subtasks that can be resolved more easily, giving subsolutions that can later be recombined to give an overall solution for a technical system.

Functional structure Source: in accordance with VDI Guideline 2221

Working on a function-oriented basis also ensures that solutions from various domains (mechanics, electronics, software) can be found and followed up.

In addition, individual and partial solutions can be developed sequentially or in parallel.

Connecting elements

Overview There is a large number of elements that can be used to connect design elements and combine design elements in more complex structures. The function of these connecting elements is to transmit forces and moments. Depending on the type of force transmission (operating principle), a distinction is made between connections based on material closure, form fit and frictional locking. Combinations of frictional locking and form fit are possible.

connections

Figure 4 Form fit connections overview

Feather key connections

Figure 5 Feather key connection

The feather key connection is the most important representative type of shaft/hub connection based on form fit. However, it is not suitable for the transmission of shock type torques and high, alternating torques.

Characteristics:

- Feather key is simultaneously present in the shaft keyway and the hub keyway.
- One feather key is normally used; up to a maximum of two can be arranged with an offset around the circumference of 120°.
- Keyways are parallel to the axis.
- A feather key used as a driver has a rectangular cross-section.
- Designs of feather key with a round end or square end are possible.
- The hub must be axially located.

Properties:

- For high torques
- Not suitable for changes of load direction and shocks
- Displacement of axis possible under certain preconditions (for indexing)
- Stress concentration on the shaft, due to notch effect
- Easy to mount and dismount, reusable

Figure 6

Key values of a feather key connection

The feather key connection transmits via its flanks the circumferential force generated by the torgue to be transmitted and is thus subjected to contact pressure.

The circumferential force F_u can be calculated as follows:

 $F_u = \frac{2 \cdot M_t}{d_1}$

where M_{\star} is the transmissible torque and d_{\star} is the shaft diameter. w

Eauc

-	
hile contact pressure can be calculated as follows	:
incre infils the transmissible torque and all is the s	nunt ununnet

uation 2	$p = \frac{F_u}{(h-t_1)l \cdot i}$ or	$p \approx \frac{F_u}{0,45 \cdot h \cdot l \cdot i}$	to DIN 6892 method C
Legend	l mm Effective feather key length	if i = 2 use only 75% of l.	
	i Number of feather keys		

Guide values for the permissible flank contact pressures can be found in the following table. For shaft calculation, take account of the reduction in strength as a result of the feather key connections ($\beta_{kt} = 1,3 \dots 2,0$; $\beta_{kb} = 2,1 \dots 3,2$).¹⁾

Material	Permissible contact pressure p _{per} under load type N/mm ²			
	Static	Pulsating		
Steel, unhardened	100 200	70 150		
Steel, hardened	150 250	100 170		
Cast steel	100 150	80 100		
Cast iron, malleable cast iron	80 100	60 80		
Copper alloy (bronze, brass)	40 50	30 40		
AlCuMg, aged	100 160	70 100		
AlMg, AlMn, AlMgSi, aged	80 150	60 90		
G AlSi, G AlSiMg	60 70	40 50		

In general, the higher values apply in the case of higher values for yield stress, fracture strength and hardness of the materials, while the lower values apply accordingly in the case of lower strength values.

¹⁾ The values apply in the range $R_m = 400 \dots 1200 \text{ N/mm}^2$ (in accordance with DIN 743).

Feather keys, The following table shows feather keys, keyways (deep design) keyways, deep design in accordance with DIN 6885 Part 1/Part 2:

Designation of feather key, type A, width b = 12 mm, height h = 8 mm, length l = 56 mm: feather key A 12 \times 8 \times 56 DIN 6885.

Material: Part 1 for h \leq 25 mm and Part 2 for all sizes E295, Part 1 for h \geq 25 mm E335.

¹⁾ If feather keys of type A and B are to be supplied with holes for extraction screws (S), this must be specified at the time of ordering. In this case, the designation is: feather key AS $12 \times 8 \times 56$ DIN 6885.

For feather keys (high design) in accordance with DIN 6885 Part $1/{\rm Part}\,2^{1)},$ the following values apply.

Feather key, cross	-section	Width b	4	5	6
(wedge steel to DIN 6880) Shaft diameter d ₁		Height h	4	5	6
Shaft diameter d ₁		over	10	12	17
		incl.	12	17	22
Shaft	b, tight fit P9	loose fit N9	4	5	6
	t ₁ with back clearance		2,5	3	3,5
Hub	b, tight fit P9	loose fit JS9	4	5	6
	t2 in the case of back clearance		1,8	2,3	2,8
	for interference ²⁾		1,2	1,7	2,2
	a		-	-	-
	$d_2 = d_1 + {}^{3)}$		4	5	6
	Feather key r ₁	min./max.	0,16/0,25	0,25/0,40	0,25/0,40
	Keyway r ₂	max./min.	0,16/0,08	0,25/0,16	0,25/0,16
	Shaft t ₁		3	3,8	4,4
	Hub t ₂		1,1	1,3	1,7
	$d_2 = d_1 + {}^{(1)}$		3	3,5	4
	(⁴⁾		(10)	(12)	(16)
		over	8	10	14
		incl.	45	56	70
	Stepping of l	6 8 10 1	2 14 16	18 20 22	25 28 32
	Feather key	d ₃	-	-	-
		d ₄	-	-	-
		d ₅	-	-	-
		d ₆ H12	-	-	-
		t ₃	-	-	-
		t ₄	-	-	-
	Shaft	d ₁	-	-	-
		d ₆	-	-	-
		t ₅	-	-	-
		t ₆	-	-	-
		t ₇	-	-	-
Screw to DIN 84, I adapter sleeve to	DIN 7984 or DIN 6912, DIN 1481	-	-	-	-

¹⁾ For Part 2 (type A, C and E only), the dimensions t₁, t₂ and d₂ in the part enclosed by broad lines apply; all other dimensions such as feather keys are in accordance with Part 1.

 $^{2)}$ t₂ in the case of interference is intended for exceptional cases in which the feather key is reworked (adapted).

 $^{3)}$ d₂ is the smallest diameter (inside dimension) of parts which can be slid concentrically over the feather key.

⁴⁾ The values stated within () are the smallest lengths of the feather keys according to Part 2 where these do not coincide with Part 1.

⁵⁾ Only up to 250 for feather keys in accordance with Part 2.

8	10	12	14	16	18	20	22	25
7	8	8	9	10	11	12	14	14
22	30	38	44	50	58	65	75	85
30	38	44	50	58	65	75	85	95
8	10	12	14	16	18	20	22	25
4	5	5	5,5	6	7	7,5	9	9
8	10	12	14	16	18	20	22	25
3,3	3,3	3,3	3,8	4,3	4,4	4,9	5,4	5,4
2,4	2,4	2,4	2,9	3,4	3,4	3,9	4,4	4,4
3	3	3	3,5	4	4,5	5	5,5	5,5
8	8	8	9	11	11	12	14	14
0,25/0,40	0,40/0,60	0,40/0,60	0,40/0,60	0,40/0,60	0,40/0,60	0,6/0,8	0,6/0,8	0,6/0,8
0,25/0,16	0,40/0,25	0,40/0,25	0,40/0,25	0,40/0,25	0,40/0,25	0,6/,04	0,6/,04	0,6/,04
5,4	6	6	6,5	7,5	8	8	10	10
1,7	2,1	2,1	2,6	2,6	3,1	4,1	4,1	4,1
4,5	5,5	6	7	8	8,5	11	12	12
(20)	(25)	(32)	(40)	-	-	-	-	-
18	22	28	36	45	50	56	63	70
90	110	140	160	180	200	220	250	280 ⁵⁾
36 40	45 50	56 63 7	0 80 90) 100 11	0 125 140	160 180	200 220	250 280 ⁵⁾
3,4	3,4	4,5	5,5	5,5	6,6	6,6	6,6	9
6	6	8	10	10	11	11	11	15
M3	M3	M4	M5	M5	M6	M6	M6	M8
4	4	5	6	6	8	8	8	10
2,4	2,4	3,2	4,1	4,1	4,8	4,8	4,8	6
4	4	5	6	6	7	8	8	10
M3	M3	M4	M5	M5	M6	M6	M6	M8
4,5	4,5	5,5	6,5	6,5	9	9	9	11
4	5	6	6	6	7	6	8	9
7	8	10	10	10	12	11	13	15
M3 imes 8	M3 imes 10	M4 imes 10	M5 imes 10	M5 imes 10	M6 imes 12	M6 imes 12	M6 imes 16	M8 imes 16
4×8	4×8	5 imes10	6 imes 12	6 imes 12	8 imes 16	8 imes 16	8 imes 16	10 imes 20

Characteristics:

- Direct form contact, separable connection
- The shaft and hub are provided with a large number of splines and grooves (6, 8, 10, ...).
- The splines are integral with the shaft, the grooves are integral with the hub.
- The splines and grooves lie parallel to the axis.

Properties:

- For high, alternating and abruptly acting torques
- For alternating direction of rotation
- Displacement of axis possible under load (for indexing), otherwise axial location of the hub is necessary
- Stress concentration on the shaft, due to notch effect
- Simple mounting and dismounting

A, B, C = various spline shaft types in accordance with DIN 5471

Characteristics:

- Direct form contact, separable connection
- A large number of teeth are integrated in the shaft and hub.
- The teeth lie parallel to the axis.
- The design normally has a spline angle of 60°, however other variants such as those with involute teeth are used.
- Simple mounting and dismounting

Properties:

- For transmission of moderate torques
- For alternating direction of rotation
- Less stress concentration than in the case of a spline shaft
- Separable connection, axial retention necessary
- Centring only by tooth flanks and thus restricted running accuracy

Frictional locking connections

Figure 10 Frictional locking connections – overview In the case of these connections, forces are transmitted by frictional locking through pressing or clamping.

connections

Characteristics:

- The necessary joint pressure is achieved by sliding the hub in an axial direction onto the conical shaft seat.
 - Axial tensioning is achieved by means of a screw or nut.
 - Taper ratio $C = (d_1 d_2)/l$
 - Application of standardised taper ratios in accordance with DIN 254, for example:
 - tapered shaft ends 1:10
 - metric tool tapers 1:20
 - adapter sleeves 1:12 or 1:30

Properties:

- Suitable for high torques, changes in load direction and shocks
- Very smooth running due to precise concentric seat
- Support of high axial forces possible
- No axial displacement of hub possible
- No precise axial positioning of hub possible
- Hub can be displaced in the direction of rotation
- High manufacturing costs, but simple mounting

Fiaure 11 Taper ratio

 $d_1, d_2, l = taper$ dimensions

Axially preloaded tapered press joint

tapered press joint

Figure 12 Axially preloaded In the case of the axially preloaded tapered press joint, the joint pressure p_F is generated by sliding the hub in an axial direction onto the conical shaft seat with the force F_A .

Taper to DIN 1448/49	$d_a/K = 1:10, \alpha = 5,7258^{\circ} = 5^{\circ}43'29''$
Sliding-on force (axial force)	$F_A = F_N \cdot [\sin (\alpha/2) + \mu_G \cdot \cos (\alpha/2)]$
Normal force	$F_{N} = p_{F} \cdot d_{m} \cdot \pi \cdot l/\cos(\alpha/2); d_{m} = (d_{a} + d_{i})/2$
Joint pressure	$p_F = F_N \cdot \cos{(\alpha/2)}/(d_m \cdot \pi \cdot l)$
Transmissible circumferential force	$F_U = \mu \cdot F_N/S$ S = safety against slipping, S = 1,21,5
Transmissible torque	$M_t = F_U \cdot d_m/2$
Dismounting force	$F_{L} = F_{N} \cdot [\sin (\alpha/2) + \mu_{H} \cdot \cos (\alpha/2)]$

Sliding-on process
 Dismounting
In an axially preloaded tapered press joint, there is an equilibrium between the axial force F_A and the resultant of the normal force component $F_N \sin(\alpha/2)$ and the friction component $F_N \mu \cos(\alpha/2)$.

Figure 14

Forces acting on an axially preloaded tapered press joint during the sliding-on process under initial torque loading

During the first torque transmission, a circumferential force F_U is added to the forces and the equilibrium created by the joining process is altered. Since an additional circumferential force F_U is now acting additionally, the friction vector is rotated out of the axis direction into the direction of the resultant formed by F_U and $\mu_G \cdot F_N$, with the result that the axial sliding-on force is now counteracted by only one component of the friction force. As a result, the force F_A pushes the hub helically further onto the tapered stud until the new equilibrium state is reached. At the same time, the axial force F_A decreases while there is an increase in F_N and consequently p_F . This results in a connection with increased safety against slipping.

If an additional feather key (see DIN 1448/1449) or Woodruff key is used in the tapered press joint, this alone transmits the entire torque since it prevents the helical sliding-on process. In technical terms, a combination of a tapered press joint (with frictional locking) and a feather key (with form fit) is therefore not appropriate.

Cylindrical press connections In the case of cylindrical press connections, the shaft and hub have an interference fit. The contact pressure necessary for frictional locking is achieved by the elastic deformation of both components after joining. Depending on the type of mounting, a distinction is made between longitudinal press connections, transverse press connections and oil press connections.

Characteristics:

- The shaft and hub have an interference fit before joining.
- Frictional locking through elastic deformation of the shaft and hub
- No additional mechanical connecting elements
- No cross-sectional weakening
- For axial positioning, a means of restricting position (such as a shaft shoulder) is advantageous.

Properties:

- Large forces and moments can be transmitted
- Circumferential and longitudinal forces can be transmitted
- For alternating direction of rotation and abrupt operation
- Simple and economical manufacture
- Difficult dismounting
- Optimum force transmission under uniform flow of forces
- High geometrical strength and operational strength

According to DIN EN ISO 286-1, an interference fit is defined as a fit where the maximum dimension of the hole (hub) is smaller than the minimum dimension of the shaft, in which case interference is then present. After joining, this interference between the hub and the shaft leads to a press fit with a normal force acting on the joined faces. The normal force generates an adhesion force by means of which longitudinal forces (parallel to the axis) and circumferential forces or torques (forces that act tangentially in the joint) can be transmitted from one part to another.

The joining process is carried out as follows:

- Iongitudinal press fit: longitudinal pressing of the inner part
- transverse press fit:
 - contraction of the outer part (with prior heating)
 - expansion of the inner part (with prior cooling)
 - expansion of the inner part and contraction of the outer part

The joining temperature necessary for the transverse press fit can be determined on the basis of the interference U necessary for transmission of the torque or the axial force. In order to ensure reliable mounting, a mounting clearance S_M (advantageous value: $S_M = U/2$) must be taken into consideration.

If the outer part is heated, the following overtemperature for example is necessary for mounting:

Equation 3

 $\Delta T = \frac{U + S_M}{\alpha \cdot d_{Ai}}$

 Legend
 d_{Ai}

 Inside diameter of outer part

 α

 Coefficient of thermal expansion

 ΔT

 Overtemperature

 $\begin{array}{l} \text{Steel} \\ \alpha = (11 \hdots 12) \ 10^{-6} \ 1/\text{K}^{1)} \\ \text{Cast iron} \\ \alpha = (9 \hdots 10) \ 10^{-6} \ 1/\text{K}^{1)} \\ \text{Aluminium} \\ \alpha = (23 \hdots 24) \ 10^{-6} \ 1/\text{K}^{1)} \end{array}$

¹⁾ $\overline{\alpha}$ values are only valid for heating.

As a temperature source for heating of the outer part or cooling of the inner part, the following facilities can be used.

Heating facility

Heating facility	Area of application	Notes	
Electric heating plates	Volume production parts (normally small)	Heating frequently incomplete, risk of local overheating!	
Electric heating cores	Sleeves and hubs	Achievable joining temperature: up to $\approx 50~^{\circ}{\rm C}$	
Bath heating	Outer parts on whose joining surfaces oil may be present during joining	Natural organic heat transfer media up to 300 °C; paraffin-based or silicone-based oils up to 400 °C	
Hot air ovens or hot air chambers	Outer parts whose joining surfaces must be dry and devoid of oxide layers	Normally for heating temperatures up to 400 °C; up to 650 °C possible in special ovens	

The upper temperature is restricted by the increased loss of strength of the materials used.

Means of supercooling

Means of supercooling	Chemical formula	Boiling point of gas	Notes
Carbon dioxide snow or dry ice	CO ₂	-78,4 ℃	Joined part cools relatively slowly; cooling speed is increased when spirit is used as a heat transfer medium. Addition of trichloroethylene prevents icing of the surfaces of the joined part
Liquid nitrogen	N ₂	−195,8 °C	Ensure good ventilation during use in closed rooms! Otherwise, no particular risks

Due to the extreme risk of explosion, the use of liquid oxygen or liquid air is not advisable.

Calculation of cylindrical press fits

The following tables show the calculation of a cylindrical press fit for elastic load. In the case of an elasto-plastic load, see DIN 7190-1.

Continuation of table, see Page 491.

Continuation of table, Calculation of cylindrical press fits, from Page 490.

When the press fit is joined, the adhesion dimension is transformed into a constriction of the inner part and an expansion of the outer part, where the relationship is as follows:

$$Z = p_{F} \left[\frac{d_{F}}{E_{I}} \left(\frac{1 + Q_{I}^{2}}{1 - Q_{I}^{2}} - \nu_{I} \right) + \frac{d_{F}}{E_{A}} \left(\frac{1 + Q_{A}^{2}}{1 - Q_{A}^{2}} + \nu_{A} \right) \right]$$

From this relationship, the connection between the effective adhesion dimension and the joint pressure is derived. The smallest joint pressure results from the minimum interference of the fit data for the press fit.

Axial force transmission	FA	$= p_F \cdot d_F \cdot \pi \cdot l_F \cdot \mu/S$
Necessary joint pressure	p _{F req}	$= F_{A} \cdot S / (d_{F} \cdot \pi \cdot l_{F} \cdot \mu)$
Torque transmission	Mt	$= p_F \cdot d_F \cdot \pi \cdot l_F \cdot \mu \cdot (d_F/2)/S$

Type of press fits and stresses	Coefficients of adhesion μ (DIN 7190)		
	Dry	Lubricated	

Coefficients of adhesion for transverse press fits in longitudinal and transverse directions

Steel/steel combination	Hydraulic oil joint	Joined using mineral oil	-	0,12
		Degreased press surfaces, joined using glycerine	0,18	-
	Shrinkage joint	Heating up to 300 °C	-	0,14
		Degreased press surfaces, heating up to 300 °C	0,20	-
Steel/cast iron	Hydraulic oil joint	Joined using mineral oil	-	0,16
combination		Degreased press surfaces	0,16	-

Coefficients of adhesion for longitudinal press fits

Shaft material	Chromium steel	-	-
Hub material	E335	0,11	0,08
	S235 JRG2	0,10	0,07
	EN-GJL-259	0,12 0,14	0,06

Continuation of table, see Page 492.

Continuation of table, Calculation of cylindrical press fits, from Page 491.

Safety against slipping			
Transverse press joint	S = 1,5 2,0		
Longitudinal press joint	S = 2,0 2,5		

The stress profiles in the outer and inner parts of the cylindrical press joint (loading of thick-walled pipes under internal and external pressure) can be found in the compilation of the most important load types.

The loads that are critical for the press joint generally occur on the inner edge of the outer part (hub). In the case of a hollow shaft, it is also necessary to check the stress σ_{tli} on the inner edge of the inner part.

Stresses on the inner edge of the outer part			
Tangential stress	$\sigma_{tAi} = p_F \frac{1 + Q_A^2}{1 - Q_A^2}$		
Radial stress	$\sigma_{rAi} = -p_F$		
Equivalent stress (DEH)	$\sigma_{vAi} = \sqrt{{\sigma_{tAi}}^2 + {\sigma_{rAi}}^2 - {\sigma_{tAi}} \cdot {\sigma_{rAi}}}$		
	$\sigma_{vAi} = \frac{2 \cdot p_F}{1 - Q_A^2} < \sigma_{per}$		

Screw connections

Figure 15 Screw connections – overview Screw connections are a combination of form fit and frictional locking.

Form fit and frictional locking connections

Screw connections are based on a combination of a screw or grub screw with an external thread and a component with an internal thread (normally a nut) where form fit between the two is achieved in the thread.

In the thread, which can be seen in an unwound form as a skewed plane, rotation of the screw relative to the nut gives sliding of the thread flanks of the screw on the thread flanks of the nut and thereby longitudinal motion.

Depending on the intended purpose, a distinction is made between various types of screw design.

Screw connection	Description
Fixing screw	 Separable connection of components Design as through screw connection or fit screw connection possible
Motion screw Spindle Load Nut	 Conversion of rotary motion into longitudinal motion and vice versa Generation of high forces (design as ball screw possible for reduction of friction)
Screw plug	 Closing off of filling or outlet openings (sealing screw)
Adjustment screw	 Alignment of devices and instruments Example: knurled screw
Micrometer screw	Length measurement in micron range
Tensioning screw	 Generation of tensioning forces Example: turnbuckle RH = right hand thread LH = left hand thread

Fixing screws	Screws are the most widely used machine elements for joining
	components. In comparison with welded, soldered, bonded and riveted
	joints, components can be separated non-destructively and joined again.
	As a fixing element, the screw must perform the task of connecting
	components under the preload force applied during assembly and
	of maintaining this connection in the event of static and dynamic loads.

The screw connection offers the advantages of simple assembly. non-destructive separability and ability to transmit large forces. In contrast, there is the drawback that the highly notched screw may suffer fatigue fracture under dynamic loads or that an inadmissible breakdown of the preload force may occur in the joint as the result of settling phenomena at the contact points, or as a result of the nut working loose from the screw. A screw connection subjected to high loads will survive or fail depending on the ability of its screws to maintain or lose the preload force applied during assembly. Very often, the cause of a fatigue fracture in a screw can be attributed to a prior reduction in the preload force. It is therefore imperative that a screw connection should be carefully designed and calculated.

Through screw Characteristics: connections

- Frictional locking connection
- Clamping force generated by tightening of the nut
- Screw subjected to tensile load (torsion due to the tightening torque)
- Securing of screw necessary
- Additional centring necessary

Properties:

- Separable connection
- Suitable for large forces
- Easy to fit
- Stress concentration due to hole in the flange (notch effect)

Fiaure 16

Through screw connection

- Characteristics:
- Form fit and frictional locking connection
- Screw subjected to shear load and contact pressure (torsion due to the tightening torque)
- Centring by means of fit between screw shank and flange
- Securing of screw necessary

Properties:

- Separable connection
- Suitable for centring
- Easy to fit
- Stress concentration due to hole in the flange (notch effect)
- Significantly more expensive compared to through screw connection

Base forms of the most common threads

Certain thread types defined in the corresponding DIN standards have proven themselves in accordance with the various conditions of use.

The base forms of the most common threads are shown in the following table.

Fixing thread			Motion thread		
600		550	30°	300	30°
Metric ISO thread		Whitworth	Whitworth Trapezoidal pipe thread thread	Buttress	Round
Coarse pitch thread Fine pitch thread		pipe thread		thread thread	
DIN 13 DIN 14		DIN 2999 DIN 3858	DIN 103 DIN 263 DIN 380	DIN 513 DIN 2781	DIN 405 DIN 15403 DIN 20400

Unless otherwise indicated, these are right hand threads. A left hand thread is always marked with LH (= left hand).

The following sections specifically cover the use of screws as fixing elements.

Overview of standardised screws

Overview The following table gives an overview of standardised screws.

	DIN EN ISO 4014 DIN EN ISO 8765	Hexagon head screws Metric thread, metric fine pitch thread
	DIN EN ISO 4017 DIN EN ISO 8676	Hexagon head screws Full thread
	DIN EN ISO 4016	(Unfinished) hexagon head screws for steel structures
	DIN EN ISO 4018	(Unfinished) hexagon head screws Full thread
	DIN EN 14399-4	Hexagon head screws with large widths across flats
	DIN 561	Hexagon head set screws with full dog point
	DIN 564	Hexagon head set screws with half dog point and flat cone point
	DIN 24015 DIN 2510	Hexagon head screws with thin shank
	DIN 609	Hexagon fit screws
	DIN 7968	Hexagon fit screws for steel structures
	DIN 479	Square head screws with short dog point
	DIN 478	Square head screws with collar
	DIN 480	Square head screws with collar and short dog point with rounded end
	DIN EN ISO 4762 DIN 6912	Hexagon socket head cap screws
	DIN EN ISO 1207	Slotted cheese head screws
	DIN EN ISO 1580	Slotted pan head screws
	DIN 920	Slotted pan head screws with small head
₽	DIN 921	Slotted pan head screws with large head
	DIN 922	Slotted pan head screws with small head and full dog point
	DIN 923	Slotted pan head screws with shoulder
	DIN EN ISO 7045	Pan head screws with cross recess

Continuation of table, see Page 498.

Continuation of table, Overview of standardised screws, from Page 497.

DIN EN ISO 10642	Slotted countersunk head screws
DIN EN ISO 2009	Slotted countersunk flat head screws
DIN 925	Slotted countersunk head screws with full dog point
DIN 7969	Slotted countersunk head screws (for steel structures)
DIN EN ISO 7046	Countersunk flat head screws with cross recess
DIN EN ISO 2010	Slotted raised countersunk head screws
DIN 924	Slotted raised countersunk head screws with full dog point
DIN EN ISO 7047	Slotted cross recess raised countersunk head screws
DIN 603	Mushroom head square neck screws
DIN 607	Cup head nib screws
DIN 605 DIN 608	Flat countersunk square neck screws
DIN 604	Flat countersunk nib screws
DIN 404	Slotted capstan screws
DIN EN ISO 10644 DIN EN ISO 10673	Screw and washer assemblies
DIN 6900-2 DIN 6904	Screw and washer assemblies Curved spring washers
DIN 6900-4 DIN 6907	Screw and washer assemblies Serrated lock washers
DIN EN ISO 1479	Self-tapping screws
DIN 7513 DIN 7516	Thread cutting screws
DIN 571	Wood screws

Overview The following table gives an overview of standardised nuts.

DIN EN ISO 4032 DIN EN ISO 4034 DIN EN ISO 4035	(Unfinished) hexagon nuts Hexagon nuts Metric thread, metric fine pitch thread Flat hexagon nuts
DIN EN ISO 7040 DIN EN ISO 7042 DIN EN ISO 10511	Hexagon nuts Self-locking
DIN 929	Hexagon weld nuts
DIN 917	Cap nuts Low type
DIN 1587	Cap nuts High type
DIN 986	Cap nuts Self-locking
DIN 935 to M10	Hexagon castle nuts Metric thread, metric fine pitch thread
DIN 935 to M10	Hexagon castle nuts Metric thread, metric fine pitch thread
DIN 979	Hexagon thin castle nuts
DIN 557 DIN 562	(Unfinished) square nuts Flat square nuts
DIN 928	Square weld nuts
DIN 466	Knurled nuts, high type
DIN 467	Knurled nuts, flat type

Continuation of table, see Page 500.

Continuation of table, Overview of standardised nuts, from Page 499.

Metric ISO threads

The following diagram and the subsequent table describe metric ISO threads in accordance with DIN 13-1 for coarse pitch threads with nominal thread diameter from 1 to 52 mm. The following example shows a metric ISO thread M12 where d = D = 12 mm:

Figure 18 Parameters for metric ISO thread

> 1 Nut thread 2 Bolt thread

Legend

 $D_1 = d - 2 H_1$ $d_2 = D_2 = d - 0,64952 P$ $d_3 = d - 1,22687 P$ H = 0,86603 P $H_1 = 0,54127 P$ $h_3 = 0,61343 P$ $R = \frac{H}{6} = 0,14434 P$

Nominal th d = D	read diame	ter	Pitch	Flank diameter	Core diame	Core diameter		epth	Rounding
Series 1	Series 2	Series 3	Р	$d_2 = D_2$	d ₃	D ₁	h ₃	H ₁	R
1	-		0,25	0,838	0,693	0,729	0,153	0,135	0,036
-	1,1		0,25	0,938	0,793	0,829	0,153	0,135	0,036
1,2	-		0,25	1,038	0,893	0,929	0,153	0,135	0,036
_	1,4	-	0,3	1,205	1,032	1,075	0,184	0,162	0,043
1,6	-	-	0,35	1,373	1,171	1,221	0,215	0,189	0,051
_	1,8	-	0,35	1,573	1,371	1,421	0,215	0,189	0,051
2	-		0,4	1,740	1,509	1,567	0,245	0,217	0,058
-	2,2		0,45	1,908	1,648	1,713	0,276	0,244	0,065
2,5	-		0,45	2,208	1,948	2,013	0,276	0,244	0,065
3	-		0,5	2,675	2,378	2,459	0,307	0,271	0,072
-	3,5		0,6	3,110	2,764	2,850	0,368	0,325	0,087
4	-		0,7	3,545	3,141	3,424	0,429	0,379	0,101
-	4,5	-	0,75	4,013	3,580	3,688	0,460	0,406	0,108
5	-		0,8	4,480	4,019	4,134	0,491	0,433	0,115
6	-		1	5,350	4,773	4,917	0,613	0,541	0,144
-		7	1	6,350	5,773	5,917	0,613	0,541	0,144
8		-	1,25	7,188	6,466	6,647	0,767	0,677	0,015
-		9	1,25	8,168	7,466	7,647	0,767	0,677	0,144
10		-	1,5	9,026	8,160	8,376	0,920	0,812	0,217
-		11	1,5	10,026	9,160	9,376	0,920	0,812	0,217
12		-	1,75	10,863	9,853	10,106	1,074	0,947	0,253
-	14		2	12,701	11,546	11,835	1,227	1,083	0,289
16	-		2	14,701	13,546	13,835	1,227	1,083	0,289
-	18		2,5	16,376	14,933	15,294	1,534	1,353	0,361
20	-	-	2,5	18,376	16,933	17,294	1,534	1,353	0,361
-	22		2,5	20,376	18,933	19,294	1,534	1,353	0,361
24	-		3	22,051	20,319	20,752	1,840	1,624	0,433
-	27	-	3	25,051	23,319	23,752	1,840	1,624	0,433
30	-		3,5	27,727	25,706	26,211	2,147	1,894	0,505
-	33		3,5	30,727	28,706	29,211	2,147	1,894	0,505
36	-		4	33,402	31,093	31,670	2,454	2,165	0,577
-	39		4	36,402	34,093	34,670	2,454	2,165	0,577
42	-		4,5	39,077	36,479	37,129	2,760	2,436	0,650
-	45		4,5	42,077	39,479	40,129	2,760	2,436	0,650
48	-		5	44,752	41,866	42,587	3,067	2,706	0,722
-	52		5	48,752	45,866	46,587	3,067	2,706	0,722

Table of coarse pitch threads with nominal thread diameter from 1 to 52 mm:

SelectionA selection of coarse pitch and fine pitch threads in accordanceof coarse pitch andwith DIN 13-2 is given below.fine pitch threads

Nominal	thread dia	meter	Pitch P fo	Pitch P for										
d = D			Coarse	Fine pit	ch thread									
Series 1	Series 2	Series 3	pitch thread	4	3	2	1,5	1,25	1	0,75	0,5			
1 1,2 -	- - 1,4	- - -	0,25 0,25 0,3	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -			
1,6 - 2	- 1,8 -	-	0,35 0,35 0,4							- - -	-			
- 2,5 3	2,2 - -		0,45 0,45 0,5	-	-	-	-	-	-		-			
- 4 5	3,5 - -	-	0,6 0,7 0,8							- - -	- 0,5 0,5			
6 8 10			1 1,25 1,5			- -		- - 1,25	- 1 1	0,75 0,75 0,75	0,5 ¹⁾ 0,5 ¹⁾ -			
12 - -	- 14 -	- - 15	1,75 2 -	- - -	- - -	- - -	1,5 1,5 1,5	1,25 1,25 -	1 1 1	- - -	- - -			
16 - -	- - 18	- 17 -	2 - 2,5			- - 2	1,5 - 1,5		1 1 1	- - -				
20 - 24	- 22 -		2,5 2,5 3	-	- - -	2 2 2	1,5 1,5 1,5	- - -	1 1 1	- - -	- - -			
	- - 27	25 26 -	- - 3	-	-	- - 2	1,5 1,5 1,5							

Continuation of table, see Page 503.

¹⁾ Not included in ISO 261:1998.

Continuation of table, Selection of coarse pitch and fine pitch threads	5,
from Page 502.	

Nominal t	hread dian	neter	Pitch P fo	r							
d = D			Coarse	Fine pit	ch threa	d					
Series 1	Series 2	Series 3	pitch thread	4	3	2	1,5	1,25	1	0,75	0,5
- 30 -		28 - 32	- 3,5 -			- 2 -	1,5 1,5 1,5			-	-
- - 36	33 - -	- 35 -	3,5 - 4	- - -	- - 3	2 - 2	1,5 1,5 1,5	- - -	- -	- - -	- - -
- -	- 39 -	38 - 40	- 4 -		- 3 -	- 2 -	1,5 - 1,5		- -	- - -	
42 - 48	- 45 -	- - -	4,5 4,5 5		3 3 3	2 2 2	1,5 1,5 1,5		- -	- - -	- - -
- -	- 52 -	50 - 55	- 5 -		- 3 -	- 2 2	1,5 1,5 1,5		- -	- - -	
56 - -	- - 60	- 58 -	5,5 - 5,5	4 - 4	3 - 3	2 - 2	1,5 1,5 1,5	-	- -		-
64 - -	- - 68	- 65 -	6 - 6	4 - 4	3 - 3	2 2 2		- - -	- - -	- - -	- - -

Grades for screws Mechanical characteristics of screws are subdivided into grades. The grades are identified by two numbers that are separated by a full stop. The first number is 1/100 of the minimum tensile strength in N/mm². The second number is 10 times the ratio between the minimum yield strength and the minimum tensile strength of the screw material. The following table shows an excernt from DIN EN ISO 898-1.

		Grades										
							8.8					
		4.6	4.8	5.6	5.8	6.8	\leq M16	>M16 ¹⁾	9.8	10.9	12.9	
Tensile strength R _m	nom.	400	400	500	500	600	800	800	900	1000	1200	
N/mm ²	min.	400	420	500	520	600	800	830	900	1040	1220	
Yield strength R _{eL}	nom.	240	320	300	400	480	640	640	720	900	1080	
or 0,2% proof stress $R_{p0,2}$ or 0,0048 d proof stress for whole screws R_{pf} MPa = N/mm ²	min.	240	340	300	420	480	640	660	720	940	1100	
Elongation at fracture A %	nom.	22	-	20	-	-	12	12	10	9	8	
Vickers hardness HV	min.	120	130	155	160	190	250	255	290	320	385	
$F \ge 98 N$	max.	220	220	220	220	250	320	335	360	380	435	
Brinell hardness HBW	min.	114	124	147	152	181	245	250	286	316	380	
$F = 30 D^2$	max.	209	209	209	209	238	316	331	355	375	429	
Notched bar impact work (ISO-U) Joule	min.	-	-	27	-	-	27	27	27	27	-	

1) For bolting of steel structures, the limit is 12 mm.

Marking

At or above M5, the marking of the grade is applied directly on the screw head (end face or cylindrical face) or, in the case of grub screws, on the shank. The markings must conform to the specifications in the following table. The full stop in the marking may be omitted in this case. Examples of marking are shown in Figure 19, Page 505.

	Grades											
	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9			
Marking of grade												
For screws with full load carrying capacity	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9			
For screws with reduced load carrying capacity	04.6	04.8	05.6	05.8	06.8	08.8	09.8	010.9	012.9			

Figure 19 Examples of the marking of grades for screws of M5 and larger

Marking of grade
 Manufacturer's symbol

In the case of smaller screws or a special head shape, marking may be carried out using symbols in accordance with the clockface system for marking of screws in DIN EN ISO 898-1.

Grades for nuts The following table lists nuts with coarse pitch thread in accordance with DIN EN 20898-2.

Nut grade	Matching	screw			Nut			
					Туре 1	Type 2		
	Grade			Value	Value			
4	3.6	4.6	4.8	>M16	>M16	-		
5	3.6	4.6	4.8	\leq M16	≤M39	-		
	5.6	5.8	-	\leq M39				
6	6.8			≤M39	≤M39	-		
8	8.8			≤M39	≤M39	>M16 ≤M39		
9	9.8			\leq M16	-	\leq M16		
10	10.9			≤M39	≤M39	-		
12	12.9			≤M39	≤M16	≤M39		

Nuts with a nominal height \geq 0,8 \cdot D (effective thread height \geq 0,6 \cdot D) are identified by a number corresponding to the highest screw grade with which the nut may be matched.

Type 1: Nut height in accordance with DIN EN 20898-2, nominal height \geq 0,8 \cdot D

Type 2: Nut height in accordance with DIN EN 20898-2 (approx. 10% greater than Type 1)

A screw with a thread M5 to M39, matched with a nut of the corresponding grade, will give a connection that can be subjected to a load up to the test force defined for the screw without stripping of the thread.

Connections using

The following table shows design dimensions for connections using **hexagon head screws** hexagon head screws in a selection taken from various DIN standards:

ISO 4014	*	l lı	m	-	ISO 4032 ISO 4035	$\begin{array}{c c} ISO 4017 \\ ISO 7089 \end{array} \begin{array}{c} l \\ l_e \\ \approx 3P \end{array} $					
ůs				2P	S	e					
DIN EN ISO	4014, 4	032 etc.	4014	4014	4017	4014	4014	4032	4035		1234
DIN EN DIN	475. IS	0 272								935	
Thread	Width across flats A/F	Width across corners	Height of head	Nominal length range	Nominal length range	Length of thread for l \leq 125 mm	Length of thread for l > 125 200 mm	Height of nut Type 1	Height of nut Low type	Hexagon castle nut	Splint
d	s	е	k	l ¹⁾	l ¹⁾	b	b	m ²⁾	m	h	$d_1\!\times\!l_1$
M3	5,5	6,01	2	20 30	6 30	12	18	2,4	1,8	-	-
M4	7	7,66	2,8	25 40	8 40	14	20	3,2	2,2	5	1 imes 10
M5	8	8,79	3,5	25 50	10 50	16	22	4,7	2,7	6	1,2 × 12
M6	10	11,05	4	30 60	12 60	18	24	5,2	3,2	7,5	1,6 × 14
M8	13	14,38	5,3	40 80	16 80	22	28	6,8	4	9,5	2 imes 16
M10	16	17,77	6,4	45 100	20 100	26	32	8,4	5	12	2,5 imes 20
M12	18	20,03	7,5	50 120	25 120	30	36	10,8	6	15	3,2 × 22
M14	21	23,38	8,8	60 140	30 140	34	40	12,8	7	16	3,2 × 25
M16	24	26.75	10	65 160	30 200	38	44	14,8	8	19	4×28
		.,									
M20	30	33,53	12,5	80 200	40 200	46	52	18	10	22	4×36
M20 M24	30 36	33,53 39,98	12,5 15	80 200 90 240	40 200 50 200	46 54	52 60	18 21,5	10 12	22 27	4 × 36 5 × 40
M20 M24 M30	30 36 46	33,53 39,98 51,28	12,5 15 18,7	80 200 90 240 110 300	40 200 50 200 60 200	46 54 66	52 60 72	18 21,5 25,6	10 12 15	22 27 33	4×36 5×40 $6,3 \times 50$

All dimensions in mm; exception: An: mm².

Source: Roloff/Matek, Maschinenelemente, Vieweg+Teubner, 24. Auflage 2021.

1) Stepping of length I:

... 6 8 10 12 16 20 25 30 35 40 45 50 55 60 65 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 280 300 320 340 ... 500.

 $^{2)}$ Higher resistance to stripping due to larger nut heights in accordance with DIN EN ISO 4033 with m/d pprox 1.

³⁾ The transition diameter d_a restricts the maximum transition from the radius to the flat head seat. In accordance with DIN 267-2, the following applies in general for the product classes A(m) and B(mg) up to M18: $d_a =$ through hole "medium" + 0,2 mm and for M20 to M39: d_a = through hole "medium" + 0,4 mm. For the product class C(g), the same equations apply with the through hole "coarse".

DIN 9		DIN 3110 Counterbores for normal hexagon head screws											
ISO 1	234	d-	1		\sim		а	nd nuts	to DIN 974	4-2		d ₄	-1
		b1 -	2				d ₃	Wrenc		d ₅	t ₁ 6)		
7089	, 7090												
20273						76	3129	3110	974-2				
Through hole ⁴⁾						(p.			Series 1	Series 2	Series 3	rts	rts
Washers		Fine	Medium	Coarse	Head or nut seating surface	Blind hole transition (standar	Socket wrench insert Outside diameter	Open end wrench Width	For socket wrenches, socket wrench inserts to DIN 3124	For offset ring wrenches, socket wrench inserts to DIN 3129	For countersinks under restricted space conditions	For screws to ISO 4014 and ISO 4017 without support pa	For nuts to ISO 4032 and ISO 4035 without support pa and thread overhang
d ₂	s ₁	d _h	d _h	d _h	A _p ⁵⁾	e ₁	d ₅	b ₁	d ₄	d ₄	d ₃	t ₁	t ₁
7	0,5	3,2	3,4	3,6	7,5	2,8	9,7	19	11	11	9	2,6	2,8
9	0,8	4,3	4,5	4,8	11,4	3,8	12,8	20	13	15	10	3,4	3,6
10	1	5,3	5,5	5,8	13,6	4,2	15,3	22	15	18	11	4,1	5,1
12	1,6	6,4	6,6	7	28	5,1	17,8	27	18	20	13	4,6	5,6
16	1,6	8,4	9	10	42	6,2	21,5	34	24	26	18	6,1	7,4
20	2	10,5	11	12	72,3	7,3	27,5	38	28	33	22	7,3	9
24	2,5	13	13,5	14,5	73,2	8,3	32,4	44	33	36	26	8,4	11,4
28	2,5	15	15,5	16,5	113	9,3	36,1	49	36	43	30	9,7	13,4
30	3	17	17,5	18,5	157	9,3	42,9	56	40	46	33	10,9	15,4
37	3	21	22	24	244	11,2	50,4	66	46	54	40	13,4	18,4
44	4	25	26	28	356	13,1	64,2	80	58	73	48	16,1	22,3
56	4	31	33	35	576	15,2	76,7	96	73	82	61	20,1	26,6
66	5	37	39	42	856	16,8	87,9	-	82	93	73	23,9	32

 $^{4)}$ For screws of the mainly used product class A(m), to be designed using the series "medium" so that d_h \approx d_a.

⁵⁾ Ring-shaped seating surface determined with minimum diameter d_w of the seating surface and through hole of series "medium". Possible reduction by the chamfering of the through hole.

⁶⁾ The countersink depth for flush closing is determined from the sum of the maximum values of the screw head height and the height of the support parts with the addition of: 0,4 mm for M3 to M6; 0,6 mm for M8 to M20; 0,8 mm for M24 to M27 and 1,0 mm at or greater than M30.

The countersink depth on the nut side must be defined including the overhang of the screw end in a suitable manner.

⁷⁾ t needs to be no larger than necessary for the production by machining of a circular surface perpendicular to the axis of the through hole.

Thread runout and thread undercut Thread runouts and thread undercuts are described in DIN 76-1. thread undercut This standard is valid for screws and design parts with a metric ISO thread (coarse pitch/fine pitch thread) in accordance with DIN 13-1 and DIN ISO 261:1999.

For the thread undercut on external and internal threads, type letters are included. As a result, there is no need to enter the dimensions. If no type letters are stated, standard case A or standard case C applies. Example of the designation of a thread undercut of type B: thread undercut DIN 76 – B.

Metric external threads

The following two tables show thread runouts and thread undercuts for metric external threads in accordance with DIN 76-1.

Thread	Nominal thread	Thread	runout	Spacing			Thread undercut					
pitch P	thread diameter d	x1 ¹⁾ max.	x2 ²⁾ max.	a1 ³⁾ max.	a2 ⁴⁾ max.	a3 ⁵⁾ max.	dg	g ₁ min.		g ₂ max.	r approx.	
	(coarse pitch thread)	Stan- dard	Short	Stan- dard	Short	Long	h13 ⁶⁾	A ⁷⁾ Stan- dard	B ⁸⁾ Short	A ⁷⁾ Stan- dard	B ⁸⁾ Short	
0,5	3	1,25	0,7	1,5	1	-	d – 0,8	1,1	0,5	1,75	1,25	0,2
0,6	3,5	1,5	0,75	1,8	1,2	-	d – 1	1,2	0,6	2,1	1,5	0,4
0,7	4	1,75	0,9	2,1	1,4	-	d – 1,1	1,5	0,8	2,45	1,75	0,4
0,75	4,5	1,9	1	2,25	1,5	-	d – 1,2	1,6	0,9	2,6	1,9	0,4
0,8	5	2	1	2,4	1,6	3,2	d – 1,3	1,7	0,9	2,8	2	0,4
1	6;7	2,5	1,25	3	2	4	d – 1,6	2,1	1,1	3,5	2,5	0,6
1,25	8	3,2	1,6	3,75	2,5	5	d – 2	2,7	1,5	4,4	3,2	0,6
1,5	10	3,8	1,9	4,5	3	6	d – 2,3	3,2	1,8	5,2	3,8	0,8
1,75	12	4,3	2,2	5,25	3,5	7	d – 2,6	3,9	2,1	6,1	4,3	1

¹⁾ The thread runout x₁ is always valid if no other indications are given in the individual standards and drawings.

²⁾ The thread runout x_2 is only valid for the cases in which a short thread runout is necessary for technical reasons.

³⁾ The spacing a₁ is always valid if no other indications are given in the individual standards and drawings.

⁴⁾ The spacing a₂ is valid for slotted screws and crosshead screws and those cases in which a short spacing is necessary for technical reasons.

⁵⁾ The spacing a₃ is only valid for screws in product class C.

⁶⁾ Tolerance class h12 for threads up to nominal diameter 3 mm.

 $^{7)}$ The thread undercut of type A is always valid if no other indications are given in the individual standards and drawings. In a variation from ISO 4755, g₂ = 3,5P applies instead of 3P.

⁸⁾ The thread undercut of type B (short) is only valid for special cases in which a short thread undercut is necessary for technical reasons. This thread undercut requires special tools for thread production. It is not included in ISO 4755.

Metric internal threads (threaded blind holes)

The following two tables show thread runouts and thread undercuts for metric internal threads (threaded blind holes) in accordance with DIN 76-1.

- ¹⁾ Permissible deviation for the calculated dimension t, t_1 : +0,5 \cdot P.
- $^{2)}$ d_{a min} = 1 · d; d_{a max} = 1,05 · d; countersunk diameter for nuts: see dimensional standards.
- ³⁾ The special cases 90°, 60°, ... must be indicated in the drawing. Recommendation of 60° for set screws with thread runout and for centring holes, cylindrical countersink for stud bolts made from light metal.

Thread pitch P	Nominal thread diameter	Thread runout including blind hole overhang			Thread undercut						
	d (coarse	e1 ¹⁾	e2 ²⁾	e3 ³⁾	dg	g ₁ min.		g ₂ max.		r	
	pitch	Guide values				C ⁴⁾	D ⁵⁾	C ⁴⁾	D ⁵⁾	approx.	
	thread)	Stan- dard	Short	Long	H13	Stan- dard	Short	Stan- dard	Short		
0,5	3	2,8	1,8	4,5	d + 0,3	2	1,25	2,7	2	0,2	
0,6	3,5	3,4	2,1	5,4	d + 0,3	2,4	1,5	3,3	2,4	0,4	
0,7	4	3,8	2,4	6,1	d + 0,3	2,8	1,75	3,8	2,75	0,4	
0,75	4,5	4	2,5	6,4	d + 0,3	3	1,9	4	2,9	0,4	
0,8	5	4,2	2,7	6,8	d + 0,3	3,2	2	4,2	3	0,4	
1	6;7	5,1	3,2	8,2	d + 0,5	4	2,5	5,2	3,7	0,6	
1,25	8	6,2	3,9	10	d + 0,5	5	3,2	6,7	4,9	0,6	
1,5	10	7,3	4,6	11,6	d + 0,5	6	3,8	7,8	5,6	0,8	
1,75	12	8,3	5,2	13,3	d + 0,5	7	4,3	9,1	6,4	1	

¹⁾ The thread runout e₁ is always valid if no other indications are given in the individual standards and drawings.

 $^{2)}$ The thread runout e_2 is only valid for the cases in which a short overhang is necessary for technical reasons.

³⁾ The thread runout e₃ is only valid for the cases in which a long overhang is necessary for technical reasons.

⁴⁾ The thread undercut of type C is always valid if no other indications are given in the individual standards and drawings.

⁵⁾ The thread undercut of type D (short) is only valid for special cases in which a short thread undercut is necessary for technical reasons.

Continuation of table, see Page 512.

Normal stress in thread	$\sigma_{N} = F_{V}/A_{S}$
Torsional stress in thread	$\tau = \frac{M_G}{W_P} \qquad \qquad \text{where} \ \ W_P = \frac{\pi \big[\big(d_2 + d_3 \big)/2 \big]^3}{16}$
Equivalent stress in thread during tightening	$\sigma_{v} = \sqrt{\sigma_{N}^{2} + 3\tau^{2}} \le v \cdot R_{e}$
Utilisation of yield stress	$v = 0, 6 \dots 0, 9$
Coefficients of friction depending on surface	$\mu_{G} = 0.08 \dots 0.20$
(μ_G in thread, μ_K in head seating surface)	μ _K = 0,08 0,20

Continuation of table, General calculation of fixing screws, from Page 511.

1) For values, see VDI Guideline 2230: Systematic calculation of high duty bolted joints.

 $\begin{array}{ll} \text{Coefficients} \\ \text{of friction } \mu_G \text{ and } \mu_K \\ \end{array} \quad \text{ for the coefficients of friction } \mu_G \text{ are as follows:} \end{array}$

μ	; Thread			External thread (screw)									
		Materi	al		Steel	Steel							
		Surface			Black a phospł	Black annealed or phosphated				plated 16)	Electro cadmiu	plated m (Cd6)	Ad- hesive
			duction	Thread production method	Rolled			Cut	Cut or r	Cut or rolled			
Thread	Material	Surface	Thread pro method		Dry	Oiled	MoS ₂	Oiled	Dry	Oiled	Dry	Oiled	Dry
ead (nut)		Bright			0,12 to 0,18	0,10 to 0,16	0,08 to 0,12	0,10 to 0,16	-	0,10 to 0,18	-	0,08 to 0,14	0,16 to 0,25
		Electroplated zinc			0,10 to 0,16	-	-	-	0,12 to 0,20	0,10 to 0,18	-	-	0,14 to 0,25
	Steel	Electroplated cadmium			0,08 to 0,14	-	-	-	-	-	0,12 to 0,16	0,12 to 0,14	-
Internal th	GG/GTS	Bright	Cut	Dry	-	0,10 to 0,18	-	0,10 to 0,18	-	0,10 to 0,18	-	0,08 to 0,16	-

In the case of various surface and lubrication conditions, the values for the coefficients of friction μ_G are as follows:

μκ	Sea	ting surf	ace		Screw head									
		Materi	al		Steel									
			Surface			Black annealed or phosphated					Electroplated zinc (Zn6)		Electroplated cadmium (Cd6)	
surface	al	Surface	ion		Pressed		Turneo	Turned Ground		Pressed				
Seating	Materia		Produc	Lubri- cation	Dry	Oiled	MoS ₂	Oiled	MoS ₂	Oiled	Dry	Oiled	Dry	Oiled
		Steel Electroplated Electroplated Bright cadmium zinc	Cut		-	0,16 to 0,22	-	0,10 to 0,18	-	0,16 to 0,22	0,10 to 0,18	-	0,08 to 0,16	-
					0,12 to 0,18	0,10 to 0,18	0,08 to 0,12	0,10 to 0,18	0,08 to 0,12	1 1	0,10 t	0 0,18	0,08 to 0,16	0,08 to 0,14
			itting		0,10 t	0 0,16	-	0,10 to 0,16	-	0,10 to 0,18	0,16 to 0,20	0,16 to 0,18	-	-
	Steel		Machined by cu		0,08 t	0 0,16					-	-	0,12 to 0,20	0,12 to 0,14
ion			Ground		-	0,10 to 0,18	-	-	-	0,10 to	0,18		0,08 to 0,16	-
Mating posit	GG/GTS	Bright	Machined by cutting	Dry	-	0,14 to 0,20	-	0,10 to 0,18	-	0,14 to 0,22	0,10 to 0,18	0,10 to 0,16	0,08 to 0,16	-

Systematic calculation of heavily loaded screw connections

Figure 20 Screw connection and tensionina diaaram

The following section presents the calculation of heavily preloaded screw connections (HV connections) in accordance with VDI 2230.

Typical applications include:

- flange connections in pipework construction
- location of crown wheels, clutch discs, etc. (force locking transmission of traction forces)
- Iocation of the cylinder head and connecting rod in the engine (flange connections with simultaneous occurrence of static and dynamic forces)

The tensioning forces must be continuously high enough that, under the influence of operating forces, there is no unilateral lifting at the parting line and no displacement movement. The preload forces required in this case can be a multiple of the operating forces occurring.

Figure 21 Dimensioning:

Principal and other important values

Figure 22 Screw clamping triangle in operation

 $\begin{array}{c} F_{PA} = \text{proportion} \\ \text{of the operating force} \\ \text{that relieves parts of load} \\ F_{SA} = \text{proportion} \\ \text{of the operating force} \\ \text{that places additional} \\ \\ \text{load on screws} \\ F_K = \text{clamping force} \end{array}$

The durability of a screw connection is all the greater, the more compliant the screw and the more rigid the flange.

 Rigid screw, compliant flange
 Compliant screw, rigid flange: advantageous for durability

The basis for screw calculation is the dimensioning formula:

Equation 4

 $F_{M max} = \alpha_{A} \cdot F_{M min}$ $= \alpha_{A} \cdot \left[F_{K req} + (1 - \Phi) \cdot F_{A} + F_{Z} + \Delta F_{Vth} \right]$

Values and designations

The following table shows a selection of suitable values and designations for the calculation of heavily preloaded screw connections.

Value	Designation
A _D	Sealing surface (largest parting line area minus the through hole for the screw)
A _P	Area of screw head or nut seating surface
A _S	Cross-sectional area of screw thread in accordance with DIN 13-28
A ₀	Smallest applicable cross-sectional area of screw
D _A	Substitute diameter of main body in the parting line; if the parting line area deviates from a circular form, a mean diameter must be used
D _{Km}	Effective diameter for the frictional torque in the screw head or nut seating surface
d	Screw diameter = thread outside diameter (nominal diameter)
d _h	Bore diameter of clamped parts
d _w	Outside diameter of the flat head seating surface of the screw (at the entry of the radius transition from the head); in general, outside seating diameter
d ₀	Diameter at the smallest applicable cross-section of the screw
d ₂	Pitch diameter of screw thread
F _A	Axial force; a component of the freely aligned operating force ${\rm F}_{\rm B}$ aligned to the screw axis and proportionally related to a screw
FB	Freely aligned operating force at a connection
F _K	Clamping force
F _{K req}	Clamping force required for sealing functions, frictional locking and connection of the unilateral lifting at the parting line
F _{KP}	Minimum clamping force for ensuring sealing function
F _{KQ}	Minimum clamping force for transmission of a transverse force and/or a torque by frictional locking
F _{KR}	Residual clamping force at the parting line at application or alleviation of load by F_{PA} and after settling in operation
F _M	Mounting preload force
ΔF_{M}	Differential between mounting preload force $F_{\mbox{M}}$ and minimum preload force $F_{\mbox{M}}$ min

Continuation of table, see Page 517. Source: VDI 2230.

Value	Designation
F _{Mm}	Mean mounting preload force
F _{M max}	Maximum mounting preload force for which a screw must be designed in order that, despite inaccuracy of the tightening method and the anticipated settling rates in operation, the necessary clamping force at the connection is achieved and maintained
F _{M min}	Requisite minimum mounting preload force; smallest mounting preload force that can occur at F_{Mmax} as a result of inaccuracy of the tightening method and maximum friction
F _{M Tab}	Tabular value for mounting preload force (see table for R7 – Determining the mounting stress $F_{M\ per}$ and checking the screw size on Page 524)
F _{M per}	Permissible mounting preload force
F _{mGM}	Stripping force of nut or internal thread
F _{mGS}	Stripping force of pin thread
F _{mS}	Breaking force of the free loaded screw thread
F _{PA}	Proportion of the axial force that changes the load on the clamped parts, additional plate force
F _Q	Transverse force; an operating force aligned perpendicular to the screw axis or its component under a freely aligned operating force ${\rm F}_{\rm B}$
F _S	Screw force
F _{SA}	Axial additional screw force
F _{SAo}	Upper (maximum) axial additional screw force
F _{SAu}	Lower (minimum) axial additional screw force
F _V	Preload force, general
ΔF_{Vth}	Change in the preload force due to a temperature other than room temperature; additional thermal force
$\Delta F'_{Vth}$	Change in the preload force due to a temperature other than room temperature (simplified); approximated additional thermal force
FZ	Preload force loss due to settling in operation
f	Elastic length change under a force F
f _Z	Plastic deformation through settling, settling rate
k _r	Reduction coefficient
ι _K	Clamping length

Continuation of table on Values and designations from Page 516.

Continuation of table, see Page 518.

Source: VDI 2230.

Value	Designation
M _A	Tightening torque in mounting for preloading a screw to F _M
M _G	Active part of the tightening torque in the thread (thread torque)
M _K	Frictional torque on the seating surface of the screw head or nut
M _Y	Torque about the screw axis
Р	Pitch of thread
р	Contact pressure
P _G	Limit contact pressure, maximum permissible pressure under screw head, nut or washer
p _i	Internal pressure to be sealed off
p _M	Contact pressure in the mounted state
q _F	Number of force-transmitting (F_Q) internal parting lines involved in any sliding/shearing of the screw
q _M	Number of torque-transmitting (M_{γ}) internal parting lines involved in any sliding
R _{p0,2}	0,2% proof stress of screw in accordance with DIN EN ISO 898-1
Rz	Averaged roughness depth from at least two individual measurement distances
r _a	Frictional radius on the clamped parts under the influence of M_{Y}
W _P	Polar section modulus of screw cross-section
α_A	Tightening factor
δ_p	Elastic compliance of clamped parts under concentric clamping and concentric loading
δς	Elastic compliance of screw
μ_{G}	Friction coefficient in thread
μ_{K}	Friction coefficient in head seat
μ_T	Friction coefficient in parting line
σ_{a}	Fatigue loading of screw
$\sigma_{\rm red,B}$	Equivalent stress in operating condition
σ_z	Tensile stress in screw in operating condition
τ	Torsional stress in thread due to M _G
Φ	Force ratio, relative compliance ratio
$\Phi_{\rm en}$	Force ratio under concentric clamping and eccentric force application via the clamped parts

Continuation of table on Values and designations from Page 517.

Source: VDI 2230.

Calculation in accordance with VDI 2230 is carried out in individual steps (R0 to R13).

R0 - Determining the nominal diameter

Selection of screw type and grade. With the aid of the following table, this gives a screw diameter for the first draft (estimate of the diameter range of the screws).

Force	Nominal diameter d						
	mm	mm					
	Grade						
Ν	8.8	10.9	12.9				
250 400 630							
1000	3	3	3				
1600	3	3	3				
2500	4	3	3				
4 000	5	4	4				
6 300	6	5	4				
10 000	8	6	5				
16 000	10	8	6				
25 000	12	10	8				
40 000	14	12	10				
63 000	16	14	12				
100 000	20	18	16				
160 000	24	22	20				
250 000	30	27	24				
400 000	36	33	30				
630 000	-	39	36				

Source: VDI 2230.

R1 – Determining the tightening factor α_A

The tightening factor α_A takes account of the scatter in the achievable mounting preload force between $F_{M min}$ and $F_{M max}$:

Equation 5

 $\alpha_{A} = \frac{F_{M max}}{F_{M min}}$

It is determined with the aid of guide values from the following table. The scatter is calculated as follows:

Equation 6

 $\frac{\Delta F_{M}}{2 \cdot F_{Mm}} = \frac{\alpha_{A} - 1}{\alpha_{A} + 1}$

Table for determining the tightening factor α_A :

Tight- ening factor	Scat- ter	Tightening method	Setting method	Comments
α_A	%			
1,1 to 1,2	±5 to ±9	Tightening with control or inspection of elongation by means of ultrasound	Sound run time	 Calibration values necessary If I_K/d < 2, pay attention to progressive increase in errors. Smaller errors with direct mechanical coupling, larger errors with indirect coupling
1,1 to 1,3	±5 to ±13	Mechanical elongation by pressure screws arranged in the nut or screw head	Specification for elongation of the screw, setting by means of the extraction torque of the pressure screws	 Hardened seating washer for supporting the pressure screws from approx. M24
1,2 to 1,5	±9 to ±20	Mechanical elongation by multi-piece nut with threaded bush	Torque of tightening tool	 Substantially torsion-free screw mounting from approx. M30

Continuation of table, see Page 521.

Source: VDI 2230.

Note: Smaller tightening factors are possible in specific cases. They require increased work in relation to the setting method, the quality of the tool or the quality of connectors and components.

Tight- ening factor α _A	Scat- ter %	Tightening method	Setting method	Comments
1,1 to 1,5	±5 to ±20	Tightening with mechanical elongation measurement or inspection	Direct method: setting by means of length measurement Indirect method: axial clearance to	 Precise determination of the proportional axial elastic compliance of the screw necessary Scatter essentially dependent on the accuracy of the measurement method Calibration necessary for low values If <i>I_k/d</i> < 2, pay attention to progressive increase in errors
1,1 to 1,4	±5 to ±17	Hydraulic friction- free and torsion-free tightening	Setting by means of compression or elongation measurement or prevailing angle of nut	 If I_k/d ≥ 5, smaller values can be achieved, in the case of machined screw and plates α_A = 1,05 is possible In the case of standard screws and nuts α_A ≥ 1,2 Smaller clamping length ratios lead to larger α_A values. Spring-back losses occur that are not considered in the tightening factor. Application from M20
1,2 to 2,0	±9 to ±33	Impulse wrench with hydraulic impulse cell, torque- controlled and/or angle-controlled	Setting by means of rotation angle or prevailing torque	 Small values only with presetting to the screw joint by means of rotation angle, compressed air servo valve and impulse count In special cases, over-elastic mounting is also possible
1,2 to 1,4	±9 to ±17	Yield strength- controlled tight- ening, motorised or manual	Specification of relative torque/ angle coefficient	The scatter in preload force is essentially determined by the scatter in yield strength of the screw batch fitted. The screws are dimensioned in this case for F _{M min} :
1,2 to 1,4	±9 to ±17	Angle-controlled tightening, motorised or manual	Test-based determination of initial tightening torque and rotation angle (steps)	design of the screws for F_{Mmax} with the tightening factor α_{A} is therefore omitted for these tightening methods.
1,4 to	±17 to	Torque-controlled tightening using	Setting by means of pressure	At or above approx. M30

Continuation of table on R1 – Determining the tightening factor α_A from Page 520.

Continuation of table, see Page 522.

hydraulic tool

Source: VDI 2230.

1,6

±23

Note: Smaller tightening factors are possible in specific cases. They require increased work in relation to the setting method, the quality of the tool or the quality of connectors and components.

measurement

Tight- ening factor	Scat- ter	Tightening method	Setting method	Comments	
α _A 1,4 to 1,6 1,6	% ±17 to ±23 ±23	Torque-controlled tightening with a torque wrench, signal-emitting wrench or motorised screwdriver with dynamic torque measurement Torque-controlled	Test-based determi- nation of the nominal tightening torques on the original screw mounting part (for example by elongation measurement of the screw) Determination	Low values: Large number of setting or control tests (for example 20) required; small scatter of outputted torque (for example ±5%) necessary	Low values: for small rotation angles, (relatively rigid connections) for relatively low hardness of the mating position ¹⁾ for mating positions without a tendency to "fretting"
to 2,0 ²) 1,7 to 2,5 ³)	to ± 33 ± 26 to ± 43	tightening with a torque wrench, signal-emitting wrench or motorised screwdriver with dynamic torque measurement	of the nominal tightening torque by estimation of the friction coefficient (high influence of surface and lubrication conditions)	for measuring torque wrench with uniform tightening and for precision screwdriver High values: for signal- emitting or buckling torque wrenches	 (for example with phosphate coating or adequate lubrication) High values: for large rotation angles, (relatively compliant connections) as well as fine pitch threads for high hardness of the mating position combined with a rough surface
2,5 to 4	±43 to ±60	Tightening with impact wrench, "choke" wrench or impulse wrench; tightening by hand	Setting of the screwdriver by the retightening torque that results from the nominal tightening torque (for the estimated friction coefficient) and an allowance; hand tightening on a subjective basis	Low values: for large number of (retightening torq on horizontal axis diagram for clearance-free Method only suitable with tightening by ha risk of stretching with	of setting tests ue) of screw characteristic impulse transmission for preliminary tightening; nd, M10 and smaller

Continuation of table on R1 – Determining the tightening factor α_{A} from Page 521.

Source: VDI 2230.

 Mating position: clamped part whose surface is in contact with the tightening element of the connection (screw head or nut).

2) Friction coefficient class B

3) Friction coefficient class A

Note: Smaller tightening factors are possible in specific cases. They require increased work in relation to the setting method, the quality of the tool or the quality of connectors and components.
R2 - Determining the requisite minimum clamping force

This gives frictional locking for transmission of the transverse force F_Q and/or a torque M_Y about the screw axis:

Equation 7

F	F _{Q max}	M _{Y max}
KQ -	$\overline{q_F\cdot\mu_T}_{min}$	$q_{M} \cdot r_{a} \cdot \mu_{T \min}$

or for sealing against a medium:

Equation 8

 $F_{KP} = A_D \cdot p_{imax}$

R3 - Subdivision of operating force

Force ratio:

.

Equation 9

$$\Phi = \frac{F_{SA}}{F_A}$$

R4 - Changing the preload force

Due to settling, there is a preload force loss:

Equation 10

F-	_	fZ
Z	_	$\delta_S + \delta_P$

Guide values for the settling rates can be found in the following table.

Mean roughness	Load	Guide values for settling rates					
depth in accordance with ISO 4287 ¹⁾		in thread	per head or nut seating	per internal parting line			
ĸz			Surrace				
μm		μ m	μm	μm			
<10	Tension/ compression	3	2,5	1,5			
	Thrust	3	3	2			
10 to <40	Tension/ compression	3	3	2			
	Thrust	3	4,5	2,5			
40 to <160	Tension/ compression	3	4	3			
	Thrust	3	6,5	3,5			

Source: VDI 2230.

¹⁾ Mean value of the maximum roughness depths Rt from at least two individual measurement distances. If five individual measurement distances are used, Rz corresponds with good approximation to the old R_z in accordance with DIN 4768.

R5 – Determining the minimum mounting preload force

The minimum mounting preload force F_{M min} is determined as follows:

F

$$M_{min} = F_{K req} + (1 - \Phi_{en}^{*}) \cdot F_{A max} + F_{Z} + \Delta F'_{Vth}$$

R6 – Determining the maximum mounting preload force The maximum mounting preload force F_{M max} is determined as follows:

Equation 12

 $F_{M max} = \alpha_A \cdot F_{M min}$

R7 – Determining the mounting stress $F_{M per}$ and checking the screw size With 90% utilisation of the minimum yield strength $R_{p0,2 min}$, the mounting preload force based on $F_{M per} = F_{M Tab}$ can be taken from the following table. The table is valid for coarse pitch threads; for further tables, see VDI 2230.

Coars	Coarse pitch thread														
Size	Grade	Moun	ting pr	eload f	orce				Tighte	ntening torque					
		F _{M Tab}							M _A						
		kN							Nm						
		μ _G =							μ _K =μ	. _G =					
		0,08	0,10	0,12	0,14	0,16	0,20	0,24	0,08	0,10	0,12	0,14	0,16	0,20	0,24
M4	8.8	4,6	4,5	4,4	4,3	4,2	3,9	3,7	2,3	2,6	3,0	3,3	3,6	4,1	4,5
	10.9	6,8	6,7	6,5	6,3	6,1	5,7	5,4	3,3	3,9	4,6	4,8	5,3	6,0	6,6
	12.9	8,0	7,8	7,6	7,4	7,1	6,7	6,3	3,9	4,5	5,1	5,6	6,2	7,0	7,8
M5	8.8	7,6	7,4	7,2	7,0	6,8	6,4	6,0	4,4	5,2	5,9	6,5	7,1	8,1	9,0
	10.9	11,1	10,8	10,6	10,3	10,0	9,4	8,8	6,5	7,6	8,6	9,5	10,4	11,9	13,2
	12.9	13,0	12,7	12,4	12,0	11,7	11,0	10,3	7,6	8,9	10,0	11,2	12,2	14,0	15,5
M6	8.8	10,7	10,4	10,2	9,9	9,6	9,0	8,4	7,7	9,0	10,1	11,3	12,3	14,1	15,6
	10.9	15,7	15,3	14,9	14,5	14,1	13,2	12,4	11,3	13,2	14,9	16,5	18,0	20,7	22,9
	12.9	18,4	17,9	17,5	17,0	16,5	15,5	14,5	13,2	15,4	17,4	19,3	21,1	24,2	26,8
M7	8.8	15,5	15,1	14,8	14,4	14,0	13,1	12,3	12,6	14,8	16,8	18,7	20,5	23,6	26,2
	10.9	22,7	22,5	21,7	21,1	20,5	19,3	18,1	18,5	21,7	24,7	27,5	30,1	34,7	38,5
	12.9	26,6	26,0	25,4	24,7	24,0	22,6	21,2	21,6	25,4	28,9	32,2	35,2	40,6	45,1
M8	8.8	19,5	19,1	18,6	18,1	17,6	16,5	15,5	18,5	21,6	24,6	27,3	29,8	34,3	38,0
	10.9	28,7	28,0	27,3	26,6	25,8	24,3	22,7	27,2	31,8	36,1	40,1	43,8	50,3	55,8
	12.9	33,6	32,8	32,0	31,1	30,2	28,4	26,6	31,8	37,2	42,2	46,9	51,2	58,9	65,3
M10	8.8	31,0	30,3	29,6	28,8	27,9	26,3	24,7	36	43	48	54	59	68	75
	10.9	45,6	44,5	43,4	42,2	41,0	38,6	36,2	53	63	71	79	87	100	110
	12.9	53,3	52,1	50,8	49,4	48,0	45,2	42,4	73	73	83	93	101	116	129
M12	8.8	45,2	44,1	43,0	41,9	40,7	38,3	35,9	63	73	84	93	102	117	130
	10.9	66,3	64,8	63,2	61,5	59,8	56,3	52,8	92	108	123	137	149	172	191
	12.9	77,6	75,9	74,0	72,0	70,0	65,8	61,8	108	126	144	160	175	201	223

Continuation of table, see Page 525.

Source: VDI 2230.

Continuation of table on R7 – Determining the mounting stress $\rm F_{M\ per}$ and checking the screw size from Page 524.

Coars	Coarse pitch thread														
Di-	Grade	Mount	ting pre	load fo	rce				Tightening torque						
men- sion		F _{M Tab}							M _A						
5.5.1		kN							Nm	Nm					
		μ _G =							μ _K =μ	ι _G =					
		0,08	0,10	0,12	0,14	0,16	0,20	0,24	0,08	0,10	0,12	0,14	0,16	0,20	0,24
M14	8.8	62,0	60,6	59,1	57,5	55,9	52,6	49,3	100	117	133	148	162	187	207
	10.9 12.9	91,0 106,5	88,9 104,1	86,7 101,5	84,4 98,8	82,1 96,0	77,2 90,4	72,5 84,4	146 171	172 201	195 229	218 255	238 279	274 321	304 356
M16	8.8	84,7	82,9	80,9	78,8	76,6	72,2	67,8	153	180	206	230	252	291	325
	10.9	124,4	121,7	118,8	115,7	112,6	106,1	99,6	224	264	302	338	370	428	477
M18	8.8	145,5	142,4	102	00	96	01	85	202	250	205	320	360	615	//62
	10.9	152	149	145	141	137	129	121	314	369	421	469	513	592	657
	12.9	178	174	170	165	160	151	142	367	432	492	549	601	692	769
M20	8.8 10.9	136 194	134 190	130 186	127 181	123 176	116 166	109 156	308 438	363 517	415 592	464 661	509 725	588 838	655 933
	12.9	227	223	217	212	206	194	182	513	605	692	773	848	980	1092
M22	8.8	170	166	162	158	154	145	137	417	495	567	634	697	808	901
	10.9 12.9	242 283	237 277	231 271	225 264	219 257	207 242	194 228	595 696	704 824	807 945	904 1057	993 1162	1151 1347	1284 1502
M24	8.8	196	192	188	183	178	168	157	529	625	714	798	875	1011	1126
	10.9	280	274	267	260	253	239	224	754	890	1017	1136	1246	1440	1604
M27	12.9	257	252	246	240	290	279	202	772	015	1050	1329	1 202	1605	1677
11127	10.9	367	359	351	342	333	314	295	1100	1304	1496	1674	1840	2134	2 381
	12.9	429	420	410	400	389	367	345	1287	1526	1750	1959	2153	2 4 9 7	2787
M30	8.8 10.9	313	307 437	300 427	292 416	284 405	268 382	252	1053	1246	1428	1597	1754	2031	2 265
	12.9	522	511	499	487	474	447	420	1755	2077	2 380	2 6 6 2	2 9 2 3	3 386	3775
M33	8.8	389	381	373	363	354	334	314	1415	1679	1928	2161	2 377	2759	3 0 8 1
	10.9 12.9	554 649	543 635	531 621	517 605	504 589	475 556	447 523	2 015 2 358	2 392 2 799	2747 3214	3 078 3 601	3 385 3 961	3930 4598	4 388 5 1 3 5
M36	8.8	458	448	438	427	415	392	368	1825	2164	2 4 8 2	2778	3054	3541	3951
	10.9	652	638	623	608	591	558	524	2600	3082	3 5 3 5	3957	4349	5043	5627
Mag	12.9	703	/4/ 527	729 535	/11 E12	692	670	014	2242	3 701	4130	2 5 0 7	2 059	5 902	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M39	8.8 10.9	548 781	537 765	525 748	729	498 710	470 670	443 630	2 3 4 8 3 3 4 5	3975	3 208 4 569	5 597 5 1 2 3	5 958 5 637	4 5 9 8 6 5 4 9	513/ 7317
	12.9	914	895	875	853	831	784	738	3914	4652	5 3 4 6	5 994	6 5 9 6	7664	8 5 6 2

Source: VDI 2230.

In order that the screw size determined approximately in step R0 can be reused, the following must apply:

Equation 13

 $F_{M Tab} \ge F_{M max}$

Otherwise, a larger screw diameter must be selected and calculations carried out again starting from step R2.

R8 – Determining the operating stress $\sigma_{red,B}$

For connections in which the yield strength of the screw is not to be exceeded under load, the maximum screw force should be as follows:

Equation 14

 $F_{\text{S max}} = F_{\text{M per}} + \Phi_{\text{en}}^{\star} \cdot F_{\text{A max}} - \Delta F_{\text{Vth}}$

For the maximum tensile stress, the following applies:

Equation 15

$$\sigma_{z \max} = \frac{F_{S \max}}{A_0}$$

and for the maximum torsional stress:

Equation 16

$$\begin{split} \tau_{max} &= \frac{M_G}{W_P} \\ \text{where} \quad M_G &= F_{M \text{ per}} \, \frac{d_2}{2} \bigg(\frac{P}{\pi \cdot d_2} + 1,155 \, \mu_{G \text{ min}} \bigg) \\ &\qquad W_P \,= \frac{\pi}{16} \, d_0^3 \end{split}$$

For reduced stress or equivalent stress in operating condition (operating stress), the following applies:

Equation 17

$$\sigma_{\text{red,B}} = \sqrt{\sigma_{\text{z max}}^2 + 3(k_{\tau} \cdot \tau_{\text{max}})^2}$$

Equation 18

$$\sigma_{red,B} < R_{p0,2 min}$$

R9 – **Determining the continuous alternating stress** σ_a The fatigue behaviour is checked by means of:

Equation 19

$$\sigma_a = \frac{F_{SAo} - F_{SAu}}{2A_S}$$

R10 - Determining the maximum contact pressure pmax

The mounting preload force or maximum force in operation should not cause contact pressures that lead to creep processes and thus a loss in preload force.

For the mounted state, the following should apply:

Equation 20

$$p_{M max} = \frac{F_{M per}}{A_{P min}} \le p_{G}$$

For yield strength-controlled or angle-controlled tightening methods, the following applies with the values for F_{M Tab} from the table on R7 – Determining the mounting stress F_{M per} and checking the screw size from Page 524:

Equation 21

$$p_{max} = \frac{F_{M Tab}}{A_{P min}} \cdot 1.4$$

R11 - Determining the minimum screw depth

In order to prevent failure due to stripping of the mating threads, adequate overlap is necessary between the screw and nut threads.

Equation 22

The following applies:

 $F_{mS} \le \min(F_{mGM}, F_{mGS})$

R12 – Determining the security against sliding S_G and the shearing stress $\tau_{O\mbox{ max}}$

Transverse forces occurring in a screw connection must be transmitted by frictional locking.

For the minimum residual clamping force, the following applies:

Equation 23

$$F_{KR min} = \frac{F_{M per}}{\alpha_{A}} - \left(1 - \Phi_{en}^{\star}\right) \cdot F_{A max} - F_{Z} - \Delta F_{Vth}$$

For the clamping force necessary to transmit the transverse forces, the following applies:

Equation 24

$$F_{KQ req} = \frac{F_{Q max}}{q_{F} \cdot \mu_{T min}} + \frac{M_{Y max}}{q_{M} \cdot r_{a} \cdot \mu_{T min}}$$

R13 – Determining the tightening torque M_A The tightening torque is calculated as follows:

Equation 25

$$M_{A} = F_{M per} \left(0.16 \cdot P + 0.58 \cdot d_{2} \cdot \mu_{G min} + \frac{D_{Km}}{2} \cdot \mu_{K min} \right)$$

For torque-controlled tightening, the torque required can be taken from the relevant tables.

The following tables show some calculation examples.

Example 1:

Application of a static operating force $\mathbf{F}_{\mathbf{A}}$ under the screw head and the nut

Additional loading of the screw due to F_{A}	$F_{SA} = F_A \cdot \delta_P / (\delta_S + \delta_P)$	
Load alleviation of clamped parts due to F_{A}	$F_{PA} = F_A \cdot \delta_S / (\delta_S + \delta_P)$	
Additional elongation of the screw due to $\mathrm{F}_{\!A}$	$f_{SA} = F_{SA} \cdot \delta_S$	$f_{SA} = f_{PA}$
Spring-back of clamped parts due to F_{A}	$f_{PA} = F_{PA} \cdot \delta_P$	$f_{PA} = f_{SA}$
Critical operating force at which the residual clamping force of the parts becomes zero	$F_{Acrit.}=F_V\left(1+\delta_P/\delta_S\right)$	

 $\delta_{p}' = \delta_{h}$

Example 2:

Apparent elastic compliance of clamped parts

With δ_{S}' and δ_{P}' , the relationships on the previous page apply

Example 3:

Application of the operating force F _A in the parting line of the clamped parts						
Apparent elastic compliance of screw	$\delta_{S}{}' = \delta_{S} + \delta_{a} + \delta_{c}$					
Apparent elastic compliance of clamped parts	$\delta_{p}' \to \ 0$					
Critical operating force at which the residual clamping force of the parts becomes zero	$F_{A \text{ crit.}} = F_{V}$					

Contact pressure

The contact pressure at the head and nut seating surfaces is calculated at the head and for standardised hexagon head and hexagon socket screws on the basis **nut seating surfaces** of utilisation of the yield stress of the screws.

Dimen- sions	Width across flats	Diameter of seating plate ¹⁾	Through hole ²⁾	Seating surface	Cross- sectional area of thread	Contact pressure under head				
d	s _{max}	d _{w min}	d _h	A _P	A _S	$p = \frac{A_S}{A_P}$	0,7 R _{p0,2}	$\frac{N}{mm^2}$		
mm	mm	mm	mm	mm ²	mm ²	8.8	10.9	12.9		
M3	5,5	4,84	3,4	9,3	5,03	242	340	408		
M4	7	6,2	4,5	14,3	8,78	275	387	465		
M5	8	7,2	5,5	17,0	14,2	374	526	631		
M6	10	8,88	6,6	27,7	20,1	325	457	548		
M7	11	9,63	7,6	27,5	28,9	471	663	795		
M8	13	11,63	9	42,6	36,6	385	541	648		
M10	16	14,63	11	73,1	58	356	500	600		
M12	18	16,63	13,5	74,1	84,3	510	717	860		
M14	21	19,64	15,5	114,3	115	451	634	761		
M16	24	22,49	17,5	156,7	157	449	631	757		
M18	27	24,85	20	170,8	192	503	708	850		
M20	30	27,7	22	222,5	245	493	694	832		
M22	34	31,35	24	319,5	303	425	597	717		
M24	36	33,25	26	337,4	353	469	659	791		
M27	41	38	30	427,3	459	481	677	812		
M30	46	42,75	33	580,1	561	433	609	731		

Example 1: Seating surfaces for hexagon head screws to DIN EN ISO 4014 and nuts to DIN EN ISO 4032

1) In accordance with DIN 4032.

2) In accordance with DIN EN 20273.

Dimen- sions	Width across flats	Diameter of seating plate	Through hole ¹⁾	Seating surface	Cross- sectional area of thread	Contact p under hea	ressure ad	
d	S	d _{w min} ²⁾	d _h	A _P	A _S	$p = \frac{A_S}{A_P}$	0,7 R _{p0,2}	$\frac{N}{mm^2}$
mm	mm	mm	mm	mm ²	mm ²	8.8	10.9	12.9
M3	2,5	5,07	3,4	11,1	5,03	203	285	343
M4	3	6,53	4,5	17,6	8,78	223	314	377
M5	4	8,03	5,5	26,9	14,2	236	333	399
M6	5	9,38	6,6	34,9	20,1	258	363	435
M8	6	12,33	9	55,8	36,6	294	412	496
M10	8	15,33	11	89,5	58	290	408	490
M12	10	17,23	13,5	90	84,3	420	590	708
M14	12	20,17	15,5	131	115	393	552	664
M16	14	23,17	17,5	181	157	388	546	656
M18	14	25,83 ³⁾	20	210	192	410	576	691
M20	17	28,87	22	274	245	400	563	676
M22	17	31,61 ³⁾	24	332	303	409	575	690
M24	19	34,81	26	421	353	376	528	634
M27	19	38,61 ³⁾	30	464	459	443	623	748
M30	22	43,61	33	638	561	394	554	665

Example 2: Seating surfaces for hexagon socket head screws to DIN EN ISO 4762, DIN 6912

¹⁾ In accordance with DIN EN 20273.

²⁾ In accordance with DIN EN ISO 4762.

3) In accordance with DIN 6912.

Material closure connections

In the case of material closure connections, the parts are connected by joining using either an additional material of a characteristic type (welding) or an additional material of an uncharacteristic type (soldering, adhesive bonding). These belong to the class of non-separable connections, in other words, they cannot be separated without the occurrence of damage.

Sealing

Overview

The principal function of seals is the separation of two functionally different areas under equal or differing pressure such that there is no exchange of solid, liquid or gaseous media between these or at least that such exchange is within permissible limits (permissible leakage quantity).

Examples:

- Prevention of the loss of operating materials (for example the egress of oil from bearings or of air from pneumatic lines)
- Prevention of the ingress of foreign bodies (for example, into bearings)
- Separation of different operating materials (for example, of bearing grease and lye in washing machines)

Some specific examples of sealing elements can be found in the section on rolling bearings.

Generating force and motion

Overview In technical systems such as machinery, plant and vehicles, it is always necessary to consider suitable drive systems as well as the actuation and adjustment functions involved. For this purpose, there is a wide spectrum available of different subsystems with a very wide range of functionality, complexity and performance capability.

Elements for generating force and motion convert particular initial forms of energy (such as flow energy of fluids, chemically bound energy in internal combustion engines, electrical energy in electric motors) into mechanical, kinetic energy (of rotational or translational character). This is always associated with conversion losses.

Subdivision by operating principle

In technical systems, prime movers provide the necessary drive for a wide range of driven machines. For the wide range of possible requirements, a wide spectrum of drive machines is available. These can be subdivided according to their operating principle.

Transmitting rotary motion

Overview In technical systems (machines, plant, vehicles) it is always necessary to transmit mainly rotary motion between the drive machine and the driven machine. Couplings and gearboxes are essential components of drive systems (comprising the three subsystems: drive machine or prime mover, drive train, driven machine).

In the drive train of such a drive system, couplings and gearboxes with their various characteristics and features play a decisive role alongside the shafts, bearings and seals. In the transmission of power in the drive system, the couplings mainly take up the function of routing power, while the gearboxes are able to convert torque and speed.

Couplings Couplings are design elements based on form fit or force locking for the connection of rotating shafts abutting each other (with or without alignment) or rotating bodies as well as the transmission of power (torque and speed). They thus have a routing function.

In addition to this principal function, they can take up additional functions, such as: compensation of offset (axial, radial, angular) or torsion, disengagement (closure or interruption as necessary of the power flow) as well as influencing the dynamic characteristics of a drive system (for example, reducing or damping of torque shocks and the displacement of natural frequencies).

Brakes can be defined as special examples of switchable couplings in which one half of the coupling is stationary.

Characteristics:

The wide range of functions leads to a large number of different types and designs that are available in the market in various sizes depending on the torque to be transmitted. A distinction must be made between couplings based on form fit, force locking and material closure.

Properties:

Couplings are characterised by the fact that, in stationary operation, the input torque of the coupling is always equal to the output torque. In contrast, the output speed can lie between zero and the drive speed depending on the design.

Torsionally rigid couplings transmit not only the necessary torque but also – without change – fluctuations in torque, shocks and vibrations that may arise from the drive machine or driven machine. In contrast, torsionally elastic couplings transmit torque by means of elastic metal or rubber spring elements, in which case they act as torsion springs and can thus reduce or damp shocks.

Switchable couplings allow the interruption and restoration of the connection between drive components as required in operational behaviour. Depending on the type of actuation, a distinction is made between switchable couplings with external actuation (by mechanical, electromagnetic, hydraulic or pneumatic means) or couplings with integral switching (actuated by speed, torque or direction).

In the case of slip couplings, there is always a difference between the input speed and output speed.

- Brakes Brakes are couplings with a stationary output component. Their functions can include the following:
 - locking (in one direction)
 - holding (in both directions)
 - stopping (halting motion)
 - controlling (velocity)
 - loading of prime movers (power brake)

Gearboxes Gearboxes fulfil the function of speed and torque conversion.

Systematic subdivision and overview of the wide range of gearboxes is possible and advisable on the basis of the following criteria $^{1)}\colon$

- Kinematics
 - uniform
 - non-uniform
- Physical principle
 - mechanical
 - hydraulic/pneumatic
 - electrical
- Operating principle
 - form fit
 - force locking
- Type of transmission
 - constant
 - stepped
 - stepless

In practice, gearboxes fulfil different adjustment tasks, such as:

- Kinematic adjustment
 - speed
 - velocity
 - type of motion
- Geometrical adjustment
 - centre distance
 - angular position
- Adjustment of characteristics
 - operating point
 - characteristic pattern
- Adjustment of power flow
 - addition
 - division
 - conversion

Depending on the intended purpose, a distinction can also be made between gearboxes in mobile power transmission (vehicle engineering) and in stationary power transmission (machine tools, industrial plant, wind turbines).

W. Steinhilper; B. Sauer: Konstruktionselemente des Maschinenbaus Band 2, Springer Verlag 2005.

In the case of gearboxes with a uniform transmission ratio, a distinction must be made between tooth set gearboxes and traction element gearboxes. Tooth set gearboxes can be subdivided in accordance with the arrangement of axes and the type of tooth set. Traction element gearboxes can be realised by means of form fit or force locking.

Tooth set gearboxes

Characteristics:

Toothed gears are drive elements that transmit power in the form of rotary motion with form fit from one shaft to the other. Toothed gears are defined by the form of the base elements, the characteristics of the flank lines and the profile form¹⁾.

Depending on the type of tooth set and the gear form or arrangement of the axes relative to each other, a distinction is made between the following:

- spur gearbox
- bevel gearbox
- helical gearbox
- hypoid gearbox
- worm gearbox

The material predominantly used for the toothed gears is steel, which can be subjected to heat treatment in order to increase the load carrying capacity of the flanks. In pairs of toothed gears with a high sliding motion component, the mating gear is normally made from bronze in order to reduce friction. Where small loads are present, plastics can be used.

Properties:

Tooth set gearboxes are suitable for the transmission of power at a consistently high level of efficiency, while it is only in such gearboxes with a high sliding motion component that efficiency remains low. Through the combination of toothed gears with different numbers of teeth, it is possible to achieve different transmission ratios (i = ratio between input speed and output speed). Depending on the ratio between the input speed and output speed, it is possible to achieve transmission ratios to a slower or faster speed. As a result, tooth set gearboxes are highly suitable for the conversion of speeds and torques.

Envelope drives

Characteristics:

Envelope drives (also known as traction element gearboxes) comprise two or more discs or wheels that are not in contact with each other but are wrapped by means of a traction element (belt or chain)¹⁾.

W. Steinhilper; B. Sauer: Konstruktionselemente des Maschinenbaus Band 2, Springer Verlag 2005.

A distinction must be made between traction element gearboxes based on force (frictional) locking and based on form fit:

- Force locking
 - flat belt
 - vee belt
 - vee-ribbed belt
 - round belt
- Form fit
 - toothed belt
 - roller chain, pin chain, bush chain
 - toothed chain

Properties:

Envelope drives are suitable for the conversion of torques and speeds as well as changes in direction of rotation and also for the spanning of large centre distances.

Special gearboxes

Special gearboxes are characterised by the implementation of very high transmission ratios in a small design envelope.

Examples of special gearboxes include:

- cycloid gearboxes, such as Cyclo
- wave gearboxes, such as Harmonic Drive

Collecting/storing/dispensing/converting energy

Overview

This category is defined as comprising elements that, due to their elastic material behaviour, appropriate form or by using the compressibility of fluids, are able to collect and store energy, dispense energy or convert energy.

Springs Springs are elastic elements that are characterised by their ability to store potential energy through contraction, expansion or torsion of the spring body and provide the energy at a later point in time in the form of work (minus the associated friction losses).

Accordingly, the use of springs covers the following functions:

- Work storage: the storage of potential energy (e.g. the tension spring in an air gun, the springs in mechanical timepieces)
- Force-travel converter: the conversion of force into travel (e.g. spring scales, expansion screws, springs in switchable and slip couplings)
- Energy converter: the damping of impacts and vibrations, the conversion of impact energy into thermal energy (e.g. shock absorber, buffer, rubber-bonded-tometal elements)

The following section considers mechanical springs only. The behaviour of a spring is described by the spring diagram or the spring characteristic. This is defined as the dependence of the spring force F (or the spring torque M_t) on the deformation (change in length f or torsion angle φ).

Figure 33

Spring characteristics

① Linear
 Characteristic line
 ② Curved
 characteristic line
 a = progressive
 b = degressive
 ③ Characteristic pattern
 of damping springs

For linear spring characteristics, as displayed by most metal springs, Hooke's law applies:

Equation 26

$$F = c \cdot f$$
 or $M_t = c_t \cdot \phi$

Equation 27

Coving rate.

$$c = \frac{F}{f} \qquad \text{or} \qquad c_t = \frac{M_t}{\varphi}$$

In the case of non-linear springs, a spring rate c (spring stiffness) can be specified for the operating point by means of the tangent gradient:

Equation 28

dF	dMt
$c = \frac{df}{df}$	$c_t = \frac{1}{d\varphi}$

The elastic spring work W is the energy that is stored in a spring as potential energy when under an external load. It is given by the content of the area underneath the spring characteristic line:

Equation 29

$$W = \int_{0}^{f} F df \qquad \text{or} \qquad W = \int_{0}^{\phi} M_{t} d\phi$$

In the case of springs with a linear characteristic line, the following elastic spring work is stored between the unloaded and the loaded state:

Equation 30

$W = \frac{1}{2} \cdot c \cdot f^2 = \frac{1}{2} F \cdot f \qquad \text{or} \qquad$	$W = \frac{1}{2} \cdot c \cdot \phi^2 = \frac{1}{2} M_t \cdot \phi$
---	---

If a spring is repeatedly subjected to load and then relieved, and if its damping capacity is sufficient (material damping or external friction), the characteristic line for loading will differ from that for relief. The area enclosed by these two characteristic lines is a measure of the damping work W_{R} , see Figure 33 (3), Page 543.

Spring rates The following table shows spring rates, deformations and loads for metallic springs for metallic springs.

Spring type	Spring rate c, c_t Deformation f, ϕ	Principal load	Degree of utilisation
Rectangular spring			
	$c = \frac{3EI}{l^3} = \frac{bh^3E}{4l^3}$ $f = \frac{Fl^3}{3EI} = \frac{4Fl^3}{bh^3E}$	$\sigma_{b} = \frac{M_{b}}{W} = \frac{6Fl}{bh^{2}}$	$\eta_A = \frac{1}{9}$
Trienguler enving			

Triangular spring

E I	$c = \frac{2EI_0}{l^3} = \frac{b_0 h^3 E}{6l^3}$	$\sigma_{b} = \frac{M_{b}}{W_{0}} = \frac{6Fl}{b_{0}h^{2}}$	Identical load
	$f = \frac{Fl^3}{2El_0} = \frac{6Fl^3}{b_0 h^3 E}$	$\mathbf{b}(\mathbf{x}) = \frac{\mathbf{b}_0}{\mathbf{l}} \cdot \mathbf{x}$	$\eta_A = \frac{1}{3}$

Continuation of table, see Page 545.

Spring type	Spring rate c, c_t Deformation f, ϕ	Principal load	Degree of utilisation
Cylindrical coil spring			
G	$c = \frac{Gd^4}{8iD^3}$ $f = \frac{8FiD^3}{Gd^4}$ $I = number of spring windings$	$\tau = \frac{M_t}{W_p} = \frac{8FD}{\pi d^3}$	$\eta_A = \frac{1}{2}$
Disc spring			
	$\begin{split} c &\approx \frac{4E}{1 - \nu^2} \frac{t^3}{K_1 D_e{}^2} \\ & \text{for} (l_0 - t) / t \leqq 0, 4 \\ & D_e / D_i = 2; K_1 = 0, 69 \end{split}$	$\begin{split} \sigma_{I,II} &\approx \pm F \frac{K_3}{t^2} \\ \sigma_{III,IV} &\approx \pm F \frac{K_3}{t^2} \frac{D_i}{D_e} \\ K_3 = 1,38 \end{split}$	$\eta_A < \frac{1}{3}$
Spiral spring			
	$\begin{split} c_t &= \frac{EI}{l} = \frac{Ebs^3}{12 \cdot l} \\ \phi &= \frac{M_t l}{EI} = \frac{12M_t l}{bs^3 E} \\ l &= length of spring \end{split}$	$\sigma_{b} = \frac{M_{t}}{W} = \frac{6M_{t}}{bs^{2}}$ $M_{b} = M_{t} = \text{const.}$	Rectangular cross-section b, s $\eta_A = \frac{1}{3}$
Cylindrical helical torsion spring (le	g spring)		
EId	$c_{t} = \frac{EI}{l} = \frac{E\pi d^{4}}{64 \cdot l}$ $\varphi = \frac{M_{t}l}{EI} = \frac{64M_{t}l}{\pi d^{4}E}$ $l = \text{straightened length}$ of turns	$\sigma_{b} = \frac{M_{t}}{W} = \frac{32M_{t}}{\pi d^{3}}$ $M_{b} = M_{t} = \text{const.}$	Circular cross-section d $\eta_A = \frac{1}{4}$
Torsion bar spring			
Mt G Ip Mt	$c_t = \frac{GI_p}{l} = \frac{G\pi d^4}{32 \cdot l}$ $\varphi = \frac{M_t l}{GI_p} = \frac{32M_t l}{\pi d^4 G}$	$\tau = \frac{M_t}{W_p} = \frac{16M_t}{\pi d^3}$	$\eta_A = \frac{1}{2}$

Continuation of table, Spring rates for metallic springs, from Page 544.

 The equations provided are only an approximation. For more precise calculation, see DIN EN 16984.

Spring rates for some alastic systems are shown below. elastic systems

Bending bar supported on bot	th sides	Pin support	
a + b + b + b + b + b + b + b + b + b +	$c = \frac{3EII}{a^2b^2}$ $c = \frac{48EI}{a^3}$	F L E A	$c = \frac{EA}{l}$ E·A = longitudinal
Torsion bar with protruding e	ر ار nd	Rotatable bar spring-support	stiffness
	$c = \frac{3EI}{(a+b)b^2}$ 12EI	rigid	$c = c_1 \left(\frac{a}{l}\right)^2$
Special case: $a = b = l/2$	$c = \frac{l_3}{l_3}$	Special case = $a = b = l/2$	$c = \frac{c_1}{4}$
Torsion bar clamped and supp	oorted	Rotatable bar, spring-support	ed
Special case: $a = b = 1/2$	$c = \frac{12EII^3}{a^3b^2(3I+b)}$ $c = \frac{768EI}{7.1^3}$	$ \begin{array}{c} l \\ a \\ b \\ c_1 $	$\frac{1}{c_{tot}} = \frac{1}{c_1} \left(\frac{l}{a}\right)^2 + \frac{(a+b)b^2}{3El}$
Torsion bar clamped and guid	ed	Latticework	
E I	$c = \frac{12EI}{I^3}$		$c = 1 F \sum_{i=1}^{n} \frac{E_{i} A_{i}}{N_{i} \overline{N_{i}} l_{i}}$ $\overline{N_{i}} = normal forces$ as a result of "1"
Torsion bar clamped on both	sides	Lift	
$a + F_{b}$ E L Special case: a = b = 1/2	$c = \frac{3EII^3}{a^3b^3}$ $c = \frac{192EI}{l^3}$		$c = A \cdot \rho \cdot g$
Springs in parallel		Springs in series	
	$c_{tot} = c_1 + c_2$		$\frac{1}{c_{tot}} = \frac{1}{c_1} + \frac{1}{c_2}$ $c_{tot} = \frac{c_1 c_2}{c_1 + c_2}$

Spring rate, deformation and loading of rubber springs

The following table gives spring rates, deformations and loads for rubber springs.

Spring type	Spring type Deformation f/ spring rate c					
Woodruff key (compression)						
F	$f = \frac{Fh}{EA} = \frac{4Fh}{E\pi d^2}$	$\sigma_{d} = E\epsilon = \frac{F}{A}$				
- f	$c = \frac{F}{f} = \frac{EA}{h} = \frac{E\pi d^2}{4h}$	$F_{per} = \frac{\pi d^2}{4} \sigma_{per}$				
TXTTTTXL.	Shape lactor					
d	$k = \frac{d}{4h}$	$\varepsilon = \frac{f}{h}$				
Rectangular spring (thrust)						
	$f = \frac{Ft}{GA} = \frac{Ft}{Gbl}$	$\tau = G\gamma = \frac{F}{A}$				
Vf	$c=\frac{F}{f}=\frac{Gbl}{t}$	$F_{per} = G b l \gamma_{per}$				
	Width b	$\gamma=\frac{f}{t}$				
Sleeve type spring (thrust)						
F	$f = \frac{F}{2\pi hG} ln \frac{r_a}{r_i}$	$\tau_i = \frac{F}{A_i} = \frac{F}{2\pi r_i h}$				
f f	$c = \frac{F}{f}$	$F_{per} = 2\pi r_i h G \gamma_{per}$				
Sleeve type spring (rotational thrust)						
"e "Mt	$\phi = \frac{M_t}{4\pi lG} \left(\frac{1}{r_i^2} - \frac{1}{r_a^2} \right)$	$\tau_i = \frac{F}{A_i} = \frac{M_t}{2\pi r_i^2 l}$				
	$c_t = \frac{M_t}{\phi}$	$M_{t per} = 2\pi G r_i^2 l \gamma_{per}$				
Sleeve type spring (compressio	n. thrust)					

Calculation The following table shows reference values for the approximate calculation of rubber springs.

Shore hardness Sh	Modulus of E _{st}	elasticity	Shear modulus G _{st}	Permissible static deformation under permanent load		Permissible static stress under permanent load		
(A)	N/mm ²		N/mm ²	%		N/mm ²		
	Compressio	on		Compression Thrust		Compression		Thrust
	k = 1/4	k = 1,0			Tension	k = 1/4	k = 1,0	Tension
30	1,1	4,5	0,3	10 15	50 75	0,18	0,7	0,20
40	1,6	6,5	0,4		45 70	0,25	1,0	0,28
50	2,2	9,0	0,55		4060	0,36	1,4	0,33
60	3,3	13,0	0,8		30 45	0,50	2,0	0,36
70	5,2	20,0	1,3		2030	0,80	3,2	0,38

Permissible alternating stresses 1/3 to 1/2 of the permissible static stresses.

Properties The following table gives some properties of elastomers for rubber springs. of elastomers for rubber springs

Elastomers	Styrene butadiene rubber	Natural rubber (polyisoprene)	Butyl rubber	Ethylene propylene diene rubber	Chloro butadiene rubber	Acrylonitrile butadiene rubber	Polyurethane rubber	Silicone rubber	Polyacrylate rubber (PA)	Fluorocarbon rubber
Desig- nation	SBR	NR	JIR	EPDM	CR	NBR	AU, EU	DMV	ACM	FKM
Example trade name	Buna, Hüls	Rubber	Butyl	Buna AP	Neoprene	Perbunan	Vulkollan	Silopren	Cyanacryl	Viton
Density g/cm ³	0,92	0,95	0,93	-	1,23	0,98	1,26	1,19	-	-
Tensile strength (DIN 53504) N/mm ²	≤ 24	≤ 28	≤15	18	20 27	22 27	30 32	≤10	15	15
Elongation at fracture Maximum value (DIN 53504) %	700	1000	900	800	800	800	600	500	-	-
Shore hardness Sh (DIN 53505) (A)	40 95	30 98	40 90	40 90	40 95	40 95	65 95	40 90	55 85	60 90
Operating temperature range °C	-30 +90	-40 +70	-25 +110	-35 +130	-25 +100	-25 +100	-15 +80	-60 +200	-15 +150	-20 +220

Continuation of table, see Page 549.

Continuation of table, Properties of elastomers for rubber springs, from Page 548.

Elastomers	Styrene butadiene rubber	Natural rubber (polyisoprene)	Butyl rubber	Ethylene propylene diene rubber	Chloro butadiene rubber	Acrylonitrile butadiene rubber	Polyurethane rubber	Silicone rubber	Polyacrylate rubber (PA)	Fluorocarbon rubber
Desig- nation	SBR	NR	JIR	EPDM	CR	NBR	AU, EU	VMQ	ACM	FKM
Example trade name	Buna, Hüls	Rubber	Butyl	Buna AP	Neoprene	Perbunan	Vulkollan	Silopren	Cyanacryl	Viton
Oil resistance	Slight	Slight	Slight	Mod- erate	Mod- erate	Good	Very good	Good	Very good	Very good
Petrol resistance	-	-	-	-	-	Good	Good	Mod- erate	Very good	Very good
Ozone resistance	Slight	Slight	Very good	Excel- lent	Good	Slight	Very good	Very good	Very good	Very good
Creep resistance	Very good	Ex- cellent	Me- dium	Good	Good	Very good	Good	Good	Good	Good
Rebound elasticity	Good	Very good	Slight	Good	Good	Good	Very good	Good	Slight	Slight
Damping	Good	Mode- rate	Excel- lent	Good	Good	Very good	Good	Good	Very good	Ex- cellent
Abrasion resistance	Very good	Very good	-	-	Good	-	Very good	-	-	-
Adherence to metal	Good	Ex- cellent	Mod- erate	Mod- erate	Good	Very good	Very good	Me- dium	Medium	Good
Special properties	-	3)	1) 2)	-	-	-	5)	4)	5)	2)
Processibility	-	-	-	-	-	-	-	-	Bright pro- duction possible	Diffi- cult
Electrical insulation capability	Good	Very good	Very good	Very good	Slight	-	Slight	Good	Poor	Good
Price	Low	Low	Low	Low	Fairly low	Fairly low	Me- dium	High	High	Very high

Source: Dubbel, Taschenbuch für den Maschinenbau, 21. Auflage.

1) Gas permeability very low.

²⁾ Acid resistance good.

³⁾ Flammable.

⁴⁾ Flame resistant.

5) Sensitive to water at 40 °C.

Dampers Dampers (vibration dampers) are elements that convert motion energy into heat energy. They are generally used in order to cause decay of the vibration of a sprung mass. In special cases, shock dampers can also be used to give gentle braking of a mass performing linear or rotary motion.

Various types of damping can be used here:

- material damping
- friction damping
- viscosity damping
- eddy current damping
- radiation damping
- turbulence damping

Influencing friction and wear

Overview

In most cases, friction and the resulting wear are undesirable. The aim is therefore to reduce friction through suitable material combinations for components and the use of lubricants, coatings or surface modifications.

Lubricants Depending on the application, lubricants in fluid, consistent, gaseous or solid form are used. These are intended principally to decrease friction and reduce wear.

Lubricants provide complete separation (full lubrication) or partial separation (partial lubrication) of surfaces moving relative to each other and subjected to load.

Fluid lubricants are mainly mineral oils and synthetic oils as well as animal-based and plant-based oils.

Consistent lubricants are greases comprising mineral and synthetic oils (thickened using soaps).

Examples of solid lubricants include graphite, molybdenum disulphide (MoS₂) and polytetrafluorethylene (PTFE).

	Castinga
Introduction	An increasing number of components in technical systems are subjected to surface loading that leads to the operating limits of most metallic materials being breached.
	The use of technologies from the field of industrial surface technology – in this case, mainly coating – makes it possible to refine the surfaces in such a way that the operating limits can be considerably expanded in comparison with their untreated original condition. Furthermore, it is possible to achieve functional integration or additional characteristics. In the selection and use of surface technology, the decisive factor for success is a holistic approach that takes the entire technical system into consideration.
The component surface – an active area	Technical components are used to fulfil particular functions within a higher level machine or installation. The component comprises a particular material and has a corresponding geometry as well as a production history. The geometry can be further subdivided into the component volume and the component surface. These perform various subfunctions: while the component surface in the form of an active area supports the external loads and transmits these to the interior regions, the actual load-bearing function is performed preferably by the component volume. The life of technical components is frequently determined not only by the strength but also by fatigue or wear of the surface. Since these phenomena take place on the surface, it is necessary for logical reasons to mainly address this area in order to solve the rating life issue.
Surface loading	The component surface generally represents the area subjected to the heaviest loading. This is where normal and frictional forces or heat flows are introduced. Electric potentials build up here or electric currents are transmitted. In many cases, wear or corrosion on the component surface determine the life of the entire component. In industrial and mobile applications, this surface loading originates essentially from the following categories: Tribological surface loading: Friction and wear (abrasive or adhesive) lead to damage in machine elements. Friction can be influenced and wear reduced by a specifically modified surface topography and coatings.

Corrosive surface loading:

Corrosion as a chemical or electrochemical reaction occurs in metallic materials in the presence of humidity, contact with water or aggressive media (alkalis or acids). A protective function can be provided here by suitable coatings.

Electrical surface loading:

As a result of current transfer or the buildup and discharge of potentials, electrical surface loading can occur. This can have effects on intervening media, which may bring about the premature ageing of lubricants. Surface engineering measures facilitate the application of insulating or current-conducting coatings.

Coatings as design elements – "Tailored Coatings"

The surfaces of components are therefore – with different functions – of enormous significance. Coatings for the refinement of surfaces must therefore be considered in terms of their different composition and application as design elements.

If this approach is followed logically, the selection and design of coatings must be carried out in the same meticulous manner as in the case of normal machine elements.

Systematic coatings development process

For a coatings development process, a systematic procedure is recommended in accordance with the **flow diagram** shown here.

When all the boundary conditions are taken into consideration, this gives the most suitable "tailored coating" for the application.

Available coatings	For the various types of surface loading, a wide range of different coatings
	is available.

Surface technology offers a large quantity of coatings as well as process engineering approaches to solutions for the production of the different coatings. The selection of the coating methods to be used is influenced by the material characteristics of the substrates and coatings, the geometry of the components and economic aspects.

In essence, the coating methods that are used for the production of coatings against tribological, corrosive or electrical surface loading can be subdivided into two groups:

- 1. Methods for the modification and transformation of the surface zone of the substrate
- 2. Methods for the creation of overlay coatings.

From an industrial perspective, the following coating methods are relevant especially for the production of large quantities in volume processes:

- thermochemical diffusion methods
- conversion methods
- chemical/electrochemical methods
- PVD method (Physical Vapor Deposition) or PACVD method (Plasma Assisted Chemical Vapor Deposition), also known as: PECVD method (Plasma Enhanced Chemical Vapor Deposition)
- thermal spraying
- painting

The coating materials that can be produced for the aforenamed areas of application by means of the above methods are explained, in greater detail and in conjunction with the applications, from Page 560.

Tribological coatings Tribological coatings can reduce fatigue close to the surface and wear. They can be used to specifically influence friction and thus make a contribution to energy efficiency and CO₂ reductions.

In order to prevent destruction of the surface, good surface quality (small roughness peaks, proportionally large load-bearing area) is advantageous. High friction can be reduced by means of friction-reducing coatings such as DLC (Diamond Like Carbon) or PTFE (polytetrafluoroethylene). Protection against **abrasive wear** requires a high surface hardness. The contact partners can be protected here by particularly hard coatings. The PVD and PACVD methods can be used to deposit coatings with hardnesses >2 000 HV. Furthermore, electroplated coatings such as chromium or NiP can prevent abrasive wear, since their hardness is greater than that of the base material.

Adhesive wear occurs principally in contact partners with similar bonding characteristics, such as metal/metal. In order to prevent this wear, it is sufficient to change the type of bonding close to the surface by the coating of one contact partner. A typical example of adhesive wear is slippage damage. This wear can be reduced by, for example, the targeted oxidation of the metal surface by means of black oxide coating. In this case, a metallic surface is converted into a surface (metal oxide) with heteropolar bonding. Through coating with an amorphous carbon layer, a covalent bonding character can be achieved on the surface.

In order to prevent wear by means of tribochemistry, solutions can be used that are similar to those for the prevention of adhesive wear. The tribochemical reactions can be suppressed by means of a suitable coating. An example of this is the phosphating of a surface.

Due to the increasing requirements in relation to performance capability and resource efficiency as well as the ever smaller availability of space, increasing importance is being attached to thin layers produced using highly eco-friendly vacuum plasma techniques. A general classification of these coatings is shown in Figure 37.

Figure 38 Examples of tribological thin film coating systems – overview

Anti-corrosion coatings

In contact with water or humidity, steels tend to undergo corrosion. In many cases, corrosion-resistant high grade steels cannot be quenched and tempered to the requisite hardnesses or lose their corrosion-inhibiting properties during the hardening process. In this case, assistance is possible using anti-corrosion coatings, mainly based on zinc and zinc alloys.

Bearing rings after 24 h on a test rig in the salt spray test

1 Coated with zinc alloy coating 2 Uncoated

Insulation coatings Rolling bearings can be damaged by current transmission. The damage resulting from current passage can lead to failure of the bearing. In order to give protection against electric current, there are various established solutions that are used according to the size and type of bearing. Solutions in the form of coatings or even glass fibre reinforced plastic housings are used.

Modular coating For the selection of coatings for different problem areas, Schaeffler has concept developed a modular coating concept.

The modular coating concept shown is intended to give easier selection of suitable coatings.

Corrotect

Corrotect covers all coating systems that are used primarily to give protection against corrosion (film and base metal corrosion). Depending on the coating system, they are applied by means of electrochemical methods (electroplating), as a paint or by thermal spraying.

Durotect

These coating systems are used primarily in applications that require protection against wear, reduction in friction or both. Depending on the coating system, they are applied by means of chemical or electrochemical methods, as a paint or by thermal spraying.

Triondur

Triondur coating systems offer the best combination of wear protection and friction reduction for components subjected to very high tribomechanical stress. They are applied under vacuum by means of PVD or plasma-assisted CVD methods.

Insutect

Insutect covers coating systems that are used primarily to achieve insulation against current. They are applied by means of thermal spraying.

Sensotect

Sensotect is a sensory coating that facilitates expansion in the functions of components. This is of particular significance in conjunction with the subjects of Industry 4.0 and digitalization. This coating system is used for the continuous measurement of force and torque on two-dimensional and three-dimensional component geometries. The particular feature in this case is that the sensor technology can be applied by means of PVD technology and subsequent laser structuring directly to the component surface.

Enertect

Coating systems for the conversion and storage of energy

Condutect

Coating systems for electrical and thermal conductivity and for EMC shielding

Application examples

Schaeffler has developed suitable coatings for various applications. The resulting recommendations are presented below.

Recommendations for tribological coatings

Friction reduction and wear protection

The quality of a rolling bearing is determined to a significant extent by its smooth running and wear resistance. A low friction coefficient reduces not only energy consumption but also the requirement for lubricant. This is associated with lower mechanical wear, while the operating life of the bearing increases. The different wear types (abrasive, adhesive, tribochemical) require different measures.

Protection against abrasive wear:

- High surface quality (high hardness, small roughness peaks) necessary
- Protection of contact partners by particularly hard coatings (hardness in excess of 2 000 HV) that are applied by means of PVD (Physical Vapor Deposition) or PACVD (Plasma Assisted Chemical Vapor Deposition)
- High friction can be reduced by means of friction-reducing coatings such as DLC (Diamond Like Carbon) or PTFE (polytetrafluoroethylene).
- This is also possible using electroplated coatings such as chromium or NiP, since their hardness is greater than that of the base material

Protection against adhesive wear:

- Occurs principally in contact partners with similar bonding characteristics, such as metal/metal.
- In order to prevent this wear (typically: slippage damage), it is sufficient to change the type of bonding close to the surface by the coating of one contact partner.
- Remedy by targeted oxidation of the metal surface by means of black oxide coating
- Through coating with an amorphous carbon layer, a covalent bonding character can be achieved on the surface.

Protection against wear by means of tribochemistry:

- Solutions similar to those for the prevention of adhesive wear
- Tribochemical reactions can be suppressed by means of suitable coatings. For example, phosphating of a surface.
- In order to improve the sliding friction contacts, bearing cages are coated by electroplating means with silver or copper. This also makes it possible to prevent fretting corrosion.

Recommendations for corrosioninhibiting coatings

Figure 41 Comparison of coated and uncoated stud type track rollers (1) Coated with Triondur C: no wear of any type (2) Uncoated: adhesive wear on raceway and mating body

> Bearing parts with corrosion – as a result of contact with water or humidity – can in the case of standard bearings lead to malfunctions, lower efficiency and premature failure. Corrosion-resistant rolling bearing steels provide a remedy here but are expensive. The most economical variant under moderate corrosion conditions is therefore the combination of a standard rolling bearing steel with an appropriate coating. The following coatings have proved effective:

- zinc phosphating with application of oil (for low requirements)
- extremely thin zinc alloy coatings, applied by electroplating
- columnar thin dense chromium coating as an anti-corrosion coating resistant to wear and overrolling
- nickel-phosphorus coatings (deposited by electroless methods) for highly corrosive media such as acids and alkalis

Principal function:	The following table shows Corrotect coating systems
Corrosion protection	for corrosion protection.

Coating Composition		Principal function		Additional	Main area of application,	
system		Cor- rosion protec- tion	Wear protec- tion	Friction reduction	function	special feature
Corrotect A*	Zinc-iron Thin film	Х			-	Belt drives, selector shafts, bearings, bearing components
Corrotect N*	Zinc-iron Thin film	Х			-	Belt drives, detent systems
Corrotect Zl	Zinc-iron	Х			-	Belt drives, bearing components, screws with moderate corrosion protection requirements
Corrotect ZN	Zinc-nickel	Х			-	Belt drives, bearing components, screws with high corrosion protection requirements
Corrotect ZK	Zinc	Х			-	Simple corrosion protection applications
Corrotect ZF	Zinc flakes	Х			-	Chassis engineering, components, screws and safety components with high tensile strength
Corrotect P	Paint systems	Х			Current-insulating according to coating variant	Housings, flanges, slewing rings, connectors, main bearings
Corrotect CTN	Copper- tin-nickel combination	Х			Wear protection based on hardness of coating	Corrosion protection in maritime applications
Corrotect H	Zinc or zinc- aluminium	Х			-	Corrosion protection for inner and outer rings of large size bearings, slewing rings, main bearings, generator bearings
Corrotect HP	Zinc or zinc- aluminium with topcoat	X			-	Corrosion protection for inner and outer rings of large size bearings, slewing rings, main bearings, generator bearings

Principal function: Wear protection and friction reduction

The following table shows Durotect coating systems for wear protection and friction reduction.

Coating	Composition	Principal	function		Additional function	Main area
system		Cor- rosion protec- tion	Wear protec- tion	Friction reduction		of application, special feature
Durotect B	Mixed iron oxide			х	 Improved running-in behaviour Reduced slippage damage Short-term corrosion protection (for example for transport) Reduced failures as a result of WEC 	Belt drives, selector shafts, bearings, bearing components
Durotect Z	Zinc phosphate			х	 Short-term corrosion protection (for example for transport) Protection against fretting corrosion Suitable for sliding seats Bonding layer for paint, soaps, oils, vulcanisation 	Aerospace, linear guidance systems, bearings, bearing components
Durotect M	Manganese phosphate			X	 Improved running-in behaviour Short-term corrosion protection (for example for transport) Emergency running lubrication Retention layer for dry lubricants 	Aerospace, bearing components
Durotect CK	Columnar thin dense chromium coating		Х		 Corrosion protection possible, depending on the application Slightly reduced friction Reduced fretting corrosion 	Linear technology, aerospace, vibratory screen bearings, spindle bearings
Durotect CK ⁺	Columnar thin dense chromium coating and mixed chro- mium oxide	Х	Х	Х	Reduced fretting corrosion	Bearing components, linear technology
Durotect CM, Durotect CMT	Microcracked thin dense chromium coating		Х		 Corrosion protection possible, depending on the application Slightly reduced friction 	Needle roller bearings, bearing and engine components

Continuation of table, see Page 564.

Continuation of table, Principal function: Wear protection and friction reduction, from Page 563.

Coating Composition		Principal function			Additional function	Main area	
system		Cor- rosion protec- tion	Wear protec- tion	Friction reduction		of application, special feature	
Durotect NP	Nickel- phosphorus	Х	Х		 Friction reduction by means of PTFE additives 	Drawn cups, guide ring segments	
Durotect C	Copper			Х	 Emergency running lubrication Dissipation of frictional heat 	Cages in bearings running at high speeds	
Durotect S	Silver			х	 Emergency running lubrication Dissipation of frictional heat 	Aerospace, linear guidance systems, bearing components, cages in bearings running at high speeds	
Durotect H	Chromium steel or manganese steel		Х		-	For dimensional correction of rolling bearing rings	
Durotect HT	Range of variants		Х		 Increase in adhesive friction (static or dynamic) 	Synchronizer rings, inner rings, intermediate rings	
Durotect HA	Hard anodising (Al)	Х	Х		Current insulation	Sliding sleeves, bearing cages, housing components	
Durotect CT	Copper- tin(-bronze) combination	Х	Х		 Corrosion protection Security against smearing and fretting Emergency running characteristics under inadequate lubrication 	Linear guidance systems	
Durotect P	Polymer-based coating			Х	 Protection against fretting corrosion Current insulation 	Bearing rings, guide sleeves, cages	

Principal function: Surfaces subjected to high tribomechanical loading

The following table shows Triondur coating systems for surfaces subjected to high tribomechanical loading.

Coating Composition		Principal function			Additional	Main area of application,	
system		Cor- rosion protec- tion	Wear protec- tion	Friction reduction	function	special feature	
Triondur C	a-C:H:Me (metal-containing hydrogenated amorphous carbon coating)		Х	Х	Reduction in slippage damage	Bearing components, engine components	
Triondur C ⁺	a-C:H (hydrogenated amorphous carbon coating)		Х	Х	-	Engine components, bearing components	
Triondur CX ⁺	a-C:H:X (modified hydrogenated amorphous carbon coating)		Х	Х	-	Engine components, bearing components, nanostructured, ideal combination of friction reduction and wear protection	
Triondur CH	ta-C (tetrahedral hydrogen- free amorphous carbon coating)		Х	Х	-	Engine components, friction reduction with appropriate lubricant, highest wear resistance of all coating systems	
Triondur CN	Cr _x N		Х	х	-	Valve train components	
Triondur TN	Titanium nitride TiN		Х		-	Bearing components, rib surfaces	
Triondur MN	CuMoN (nitridic hard material layer)		x	X	Increase in temperature resistance	Engine components, bearing components, nanostructured, wear protection and friction reduction under tribomechanical load	

Recommendations for electrically insulating coatings

In order to prevent rolling bearing failures as a result of current passage, the cylindrical surfaces and end faces of the bearing rings can be provided with ceramic insulating coatings, see Figure 42.

Current insulation is achieved by means of plasma spray coating of the outside diameter and the lateral faces on the outer ring or the bore and lateral faces of the inner ring. The insulation coating comprises aluminium oxide, in which the pores are sealed with resin to give protection against the ingress of moisture.

Principal function: Current insulation

The following table shows the features of the Insutect coating system for current insulation.

Coating system	Composition	Principal function	Main area of application, special feature
Insutect A	Aluminium oxide	Current insulation	Rail vehicles, electric motors, generators

Figure 42 Current-insulating bearings

Coating of outer ring
 Coating of inner ring

Advantages of coated bearings:

- High level of insulation, even in a damp environment, due to a special sealing process
- The external dimensions of the bearing correspond to the dimensions in accordance with DIN 616 and are thus interchangeable with standard bearings.
- The puncture strength of thin layers is up to 500 VDC, while the puncture strength of thick layers is guaranteed to be at least 1000 VDC.

Recommendations The innovative thin film sensor technology Sensotect allows, for sensory coatings with neutral effect on design envelope and in real time, measurement of the load condition at locations where classic sensors such as adhesive bonded strain gauges cannot be used.

Sensotect is a strain-sensitive metal coating with a thickness measured in the submicrometre range that is structured by microprocessing. This measurement structures allows the continuous measurement of force and torque during operation.

Principal function: Sensor technology

The following table shows the features of the Sensotec coating system for measuring force and torque.

Coating system	Composition	Principal function	Main area of application, special feature
Sensotect	Multi-layer system comprising insulation coating and strain- sensitive PVD coating	Measurement of force and torque	Rolling bearings, bottom bracket bearings, wheel bearings, shafts, bending beams

Figure 43 Wheel bearing with Sensotect coating

Advantages of Sensotect:

- Very precise measurement of force and torque on functional components where the possibilities associated with conventional methods are limited.
- Sensor layer is deposited directly on the substrate surface.
- Measurement possible on 2D and 3D geometries
- Sensor technology with neutral effect on design envelope
- No use of adhesives or transfer polymers
- Continuous measurement of force and torque during operation
- High sensitivity with very little deviation in hysteresis and linearity
- No temperature deviations
- No ageing effects
- Wireless transfer of data and energy (telemetry)

Overview Technical systems must implement various functional operations in order to be able to achieve the required operational states. For this purpose, subsystems and the complete system must be switched, controlled and regulated in a suitable form.

> In addition to the classical mechanical and hydraulic/pneumatic systems, a decisive role is now being played by electronic and IT-based systems and components. The latter are now represented, in modern mechatronic systems, by the information processing component of the complete system.

Guiding elements in a rotary direction - rolling bearings

Rotary bearings allow relative rotary motions. These can involve rotation in one direction or oscillation.

Support and guidance function

The task (function) of rotary rolling bearings is to guide parts that are movable in relation to each other and support them relative to the adjacent structure. They support forces and transmit these into the adjacent construction. In this way, they perform support and guidance tasks and thus form the connection between stationary and moving machine elements.

Support as a function The function "Support" comprises the transmission of forces and moments between parts moving relative to each other.

Guidance as a function The function "Guidance" principally comprises defining to an appropriate (normally high) accuracy the position of parts moving relative to each other.

Principal requirements placed on bearings Technical implementation is oriented to the two principal requirements: Function must be ensured and fulfilled for as along as possible.

The resistance to motion (bearing friction) should be as low as possible in order to reduce the energy required for motion (energy efficiency).

Overview of common rolling bearings

The following diagram shows an overview of common bearing types for rotary motion, which are then described in detail starting on Page 650.

Dimensioning and design of rolling bearing arrangements

The design of rolling bearing arrangements requires consideration of a large number of factors. This includes the following steps:

- selection of the bearing type and bearing arrangement
- calculation of the bearing size
- design of the bearing position
- definition of the lubrication
- considerations relating to mounting and dismounting

Objectives and influencing factors Long operating life, high reliability and cost-efficiency are essential objectives in the design of a rolling bearing arrangement. In order to achieve this, the designers must record in a design brief all the conditions and requirements that are an influence on the bearing arrangement.

At the draft stage, it is important to select not only the correct bearing type, bearing design and bearing arrangement, but also to ensure that the adjacent parts, namely the shaft, housing and fasteners, as well as the sealing and, in particular, the lubrication, are matched to the influences recorded in the design brief.

Design data The following data should be available:

machine, device and mounting positions of the bearings (diagram)

Operating conditions

(load, speed, design envelope, temperature, ambient conditions, shaft arrangement, rigidity of the adjacent components)

Requirements

(rating life, accuracy, noise, friction and operating temperature, lubrication and maintenance, mounting and dismounting)

Commercial data

(delivery dates, quantities, costs)

Technical principles The following chapters give an overview of the technical principles that must be applied in the design of a bearing arrangement:

- Dimensioning load carrying capacity and life, Page 571
- Speeds, Page 599
- Noise, Page 604
- Lubrication, Page 606
- Bearing data, Page 614
- Design of bearing arrangements, Page 625

In addition to the approximate calculation specifications in the printed catalogues, online software programs from the Schaeffler Group such as \rightarrow Bearinx and \rightarrow medias are available for more precise calculations of the bearing arrangement.

At the end of the chapter, various applications are presented to give examples of the design of bearing arrangements.

Dimensioning – load carrying capacity and life The rating life calculation standardised in ISO 281 is based on Lundberg and Palmgren's fatigue theory which always gives a final rating life. However, modern, high quality bearings can exceed by a considerable margin the values calculated for the basic rating life under favourable operating conditions. Ioannides and Harris have developed a further model of fatigue in rolling contact that expands on the Lundberg and Palmgren theory and gives a better description of the performance capability of modern bearings.

The method "Expanded calculation of the adjusted rating life" takes account of the following influences:

- the bearing load
- the fatigue limit of the material
- the extent to which the surfaces are separated by the lubricant
- the cleanliness in the lubrication gap
- the additives in the lubricant
- the internal load distribution and friction conditions in the bearing

The influencing factors, particularly those relating to contamination, are very complex. A great deal of experience is essential for an accurate assessment. The tables and diagrams can give only guide values.

Calculation The required size of a rolling bearing is dependent on the demands of the bearing size made on its:

- rating life
- load carrying capacity
- operational reliability

Dynamic load carrying capacity and operating life

g The dynamic load carrying capacity of the rolling bearing is determined
 by the fatigue behaviour of the material. The dynamic load carrying
 capacity is described in terms of the basic dynamic load ratings, which are based on DIN ISO 281.

The dynamic load carrying capacity is described in terms of the basic dynamic load rating C and the basic rating life.

The fatigue life is dependent on:

- the load
- the operating speed
- the statistical probability of the initial appearance of failure

The basic dynamic load rating C applies to rotating rolling bearing. It is:

- a constant radial load C_r for radial bearings
- a constant, concentrically acting axial load C_a for axial bearings

The basic dynamic load rating C is that load of constant magnitude and direction which a sufficiently large number of apparently identical bearings can endure for a basic rating life of one million revolutions.

Calculation of the rating life	 The methods for calculating the ratin. the basic rating life L₁₀ and L_{10h} in the adjusted rating life L_{na} in acco (no longer a constituent part of IS) the expanded adjusted rating life see Page 573 	g life are: n accordance with ISO 281 rdance with DIN ISO 281:1990 O 281:2007) L _{nm} in accordance with ISO 281,				
Basic rating life Equation 31	The basic rating life L_{10} and L_{10h} is defined as $L_{10} = \left(\frac{C}{P}\right)^p$	etermined as follows:				
Equation 32	$L_{10h} = \frac{16666}{n} \cdot \left(\frac{C}{P}\right)^{p}$					
Legend	$\begin{array}{cc} & 10^6 \mbox{ revolutions} \\ The basic rating life in millions \\ of revolutions is the life reached or \\ exceeded by 90% of a sufficiently large \\ group of apparently identical bearings \\ before the first evidence of material \\ fatigue develops \\ L_{10h} & h \\ The basic rating life in operating hours \\ according to the definition for L_{10} \\ \end{array}$	C N Basic dynamic load rating P N Equivalent dynamic bearing load for radial and axial bearings p - Life exponent; for roller bearings: $p = 10/3$ for ball bearings: $p = 3$ n min ⁻¹ Operating speed (nominal speed).				
	Equivalent dynamic bearing load The equivalent dynamic bearing load P is a calculated value. This value is constant in magnitude and direction; it is a radial load for radial bearings and an axial load for axial bearings. A load corresponding to P will give the same rating life as the combined load occurring in practice.					
Equation 33	$P = X \cdot F_{r} + Y \cdot F_{a}$					
Legend	P N	X –				

P N	Х –
Equivalent dynamic bearing load	Radial load factor
F _r N Radial bearing load	Product tables: see Schaeffl catalogue HR 1, Rolling Bear
F _a N	Y –

This calculation cannot be applied to radial needle roller bearings, axial needle roller bearings and axial cylindrical roller bearings. Combined loads are not permissible with these bearings.

Expanded adjusted rating life	Calculation of the expanded adjusted rating life L_{nm} was standardised in DIN ISO 281 Appendix 1. Since 2007, it has been standardised in the worldwide standard ISO 281. Computer-aided calculation to DIN ISO 281 Appendix 4 has been specified since 2008 in ISO/TS 16281 and standardised since 2010 in DIN 26281.						
Equation 34	L_{nm} is calculated as follows: $L_{nm} = a_1 \cdot a_{ISO} \cdot L_{1O}$						
Legend	L _{nm} 10 ⁶ revolutions a _{ISO} –						

10⁶ revolutions Lnm also Expanded adjusted rating life in millions of revolutions in accordance with ISO 281:2007 a₁ L₁₀ Life adjustment factor for a requisite reliability other than 90%, see following

Life adjustment factor for operating conditions

10⁶ revolutions Basic rating life, see Page 572.

Life adjustment factor a1

table

The values for the life adjustment factor a1 were redefined in ISO 281:2007 and differ from the previous data.

Requisite reliability	Expanded adjusted rating life	Life adjustment factor
%	L _{nm}	a ₁
90	L _{10m}	1
95	L _{5m}	0,64
96	L _{4m}	0,55
97	L _{3m}	0,47
98	L _{2m}	0,37
99	L _{1m}	0,25
99,2	L _{0,8m}	0,22
99,4	L _{0,6m}	0,19
99,6	L _{0,4m}	0,16
99,8	L _{0,2m}	0,12
99,9	L _{0,1m}	0,093
99,92	L _{0,08m}	0,087
99,94	L _{0,06m}	0,08
99,95	L _{0,05m}	0,077

Life adjustment factor aiso

The standardised method for calculating the life adjustment factor also essentially takes account of the following influences:

- the load on the bearing
- the lubrication conditions (viscosity and type of lubricant, speed. bearing size, additives)
- the fatigue limit of the material
- the type of bearing
- the residual stress in the material
- the ambient conditions
- contamination of the lubricant

Equation 35

$a_{ISO} = f\left[\frac{e_C \cdot C_u}{P}, \kappa\right]$

Legend	
--------	--

a _{ISO} – Life adjustment factor for operating conditions, see Figure 45, Page 575 to Figure 48, Page 576	P N Equivalent dynamic bearing load
e _C – Life adjustment factor for contamination, see table Contamination factor e _C , Page 579 C _u N Fatigue limit load	κ – Viscosity ratio, see Page 577 For $\kappa > 4$, calculation should be carried out using $\kappa = 4$. This calculation method cannot be used for $\kappa < 0,1$.

In accordance with ISO 281, EP additives in the lubricant can be taken into consideration as follows:

- For a viscosity ratio $\kappa < 1$ and a contamination factor $e_{C} \ge 0,2$, calculation of lubricants with EP additives that have been proven effective can be carried out using the value $\kappa = 1$. Under severe contamination (contamination factor $e_c < 0.2$), evidence must be obtained of the effectiveness of the additives under these contamination conditions. The effectiveness of the EP additives can be demonstrated in the actual application or on a rolling bearing test rig FE8 in accordance with DIN 51819-1.
- If calculation in the case of EP additives that have been proven effective is carried out using the value $\kappa = 1$, the life adjustment factor must be restricted to $a_{ISO} \leq 3$. If the value a_{ISO} calculated for the actual κ is greater than 3, this value can be used in calculation.
- For practical purposes, the life adjustment factor should be restricted to $a_{ISO} \leq 50$. This limit value also applies if $e_{C} \cdot C_{II}/P > 5$.

The following diagrams show the life adjustment factor \mathbf{a}_{ISO} for various bearings.

$Life adjustment factor a_{ISO}$ for radial roller bearings $a_{ISO} = life adjustment$ factor $C_u = fatigue limit load$ $e_c = contamination factor$ P = equivalent dynamicbearing load $\kappa = viscosity ratio$

Figure 46

Life adjustment factor a_{ISO} for axial roller bearings

 $\begin{array}{l} a_{ISO} = life \ adjustment \\ factor \\ C_u = fatigue \ limit \ load \\ e_C = contamination \ factor \\ P = equivalent \ dynamic \\ bearing \ load \\ \kappa = viscosity \ ratio \end{array}$

Fatigue limit load

The fatigue limit load C_u in accordance with ISO 281 is defined as the load below which, under laboratory conditions, no fatigue occurs in the material.

Viscosity ratio

The viscosity ratio κ is an indication of the quality of lubricant film formation:

Equation 36

$x = \frac{\nu}{2}$			
ν_1			

Legend

mm²/s
 Kinematic viscosity of the lubricant at operating temperature

 $\nu_1 mtext{mm}^2/s$ Reference viscosity of the lubricant at operating temperature.

The reference viscosity ν_1 is determined from the mean bearing diameter d_M = (D+d)/2 and the operating speed n, see Figure 49, Page 578.

The nominal viscosity of the oil at +40 °C is determined from the required operating viscosity ν and the operating temperature ϑ , see Figure 50, Page 578. In the case of greases, the operating viscosity ν of the base oil is the decisive factor.

In the case of heavily loaded bearings with a high proportion of sliding contact, the temperature in the contact area of the rolling elements may be up to 20 K higher than the temperature measured on the stationary ring (without the influence of any external heat sources).

For information on taking account of EP additives in calculation of the expanded adjusted rating life L_{nm} , see Page 574.

Life adjustment factor for contamination e_C

The life adjustment factor for contamination $e_{\rm C}$ takes account of the influence of contamination in the lubrication gap on the rating life.

The rating life is reduced by solid particles in the lubrication gap and is dependent on:

- the type, size, hardness and number of particles
- the relative lubricant film thickness
- the size of the bearing

Due to the complex interactions between these influencing factors, it is only possible to give approximate guide values. The values in the tables are valid for contamination by solid particles (factor e_c). No account is taken of other contamination such as that caused by water or other fluids. Under severe contamination ($e_c \rightarrow 0$), the bearings may fail due to wear. In this case, the operating life is substantially less than the calculated life.

Contamination	Contamination factor e _C		
	$\rm d_{M}{<}100mm^{1)}$	$\rm d_M {\cong}100mm^{1)}$	
Extreme cleanliness Particle size within the order of magnitude of the lubricant film thickness Laboratory conditions 	1	1	
High cleanliness ■ Oil filtered through extremely fine filter ■ Sealed, greased bearings	0,8 to 0,6	0,9 to 0,8	
Normal cleanliness Oil filtered through fine filter 	0,6 to 0,5	0,8 to 0,6	
Slight contamination Slight contamination of oil	0,5 to 0,3	0,6 to 0,4	
Typical contamination Bearing contaminated by wear debris from other machine elements	0,3 to 0,1	0,4 to 0,2	
Heavy contamination Bearing environment heavily contaminated Bearing arrangement inadequately sealed	0,1 to 0	0,1 to 0	
Very heavy contamination	0	0	

For contamination of various degrees of severity, the contamination
factors e_{C} are in accordance with the following table:

¹⁾ $\overline{d_M}$ = mean bearing diameter (d + D)/2.

The rating life equations are based on the assumption that the bearing load P and bearing speed n are constant. If the load and speed are not constant, equivalent operating values can be determined that induce the same fatigue as the actual loading conditions.

The equivalent operating values calculated here already take account of the life adjustment factors a_{ISO} . This factor a_{ISO} must not be applied again in calculation of the expanded adjusted rating life. If only a basic rating life is to be calculated, the terms $1/a_{ISO}$ can be omitted from the equations.

Variable load and speed

If the load and speed vary over a time period T, the speed n and the equivalent bearing load P are calculated as follows (for an explanation of the designations used, see Page 582):

Equation 37

 $n = \frac{1}{T} \int_{0}^{T} n(t) \cdot dt$

Equation 38

$$P = p \frac{\int_{0}^{T} \frac{1}{a_{ISO}(t)} \cdot n(t) \cdot F^{p}(t) \cdot dt}{\int_{0}^{T} n(t) \cdot dt}$$

Variation in steps

If the load and speed vary in steps over a time period T, n and P are calculated as follows:

Equation 39

$$n = \frac{q_1 \cdot n_1 + q_2 \cdot n_2 + \dots + q_z \cdot n_z}{100}$$

Equation 40

$$\mathsf{P} = \sqrt[p]{\frac{1}{a_{ISO\,i}} \cdot q_i \cdot n_i \cdot F_i^p + ... + \frac{1}{a_{ISO\,z}} \cdot q_z \cdot n_z \cdot F_z^p}{q_i \cdot n_i + ... + q_z \cdot n_z}}$$

Variable load at constant speed

If the function F describes the variation in the load over a time period T and the speed is constant, P is calculated as follows:

Equation 41

$$\mathsf{P} = \sqrt[p]{\frac{1}{\mathsf{T}}\int_{0}^{\mathsf{T}}\frac{1}{\mathsf{a}_{\mathsf{ISO}}(t)}\cdot\mathsf{F}^{\mathsf{p}}(t)\cdot\mathsf{d}t}$$

Load varying in steps at constant speed

If the load varies in steps over a time period T and the speed is constant, P is calculated as follows:

Equation 42

$$\mathsf{P} = \sqrt{\frac{\frac{1}{a_{\text{ISO } i}} \cdot \mathsf{q}_i \cdot \mathsf{F}_i^p + \dots + \frac{1}{a_{\text{ISO } z}} \cdot \mathsf{q}_z \cdot \mathsf{F}_z^p}{100}}$$

Constant load at variable speed

If the speed varies but the load remains constant, this gives:

Equation 43

$$n = \frac{1}{T} \int_{0}^{T} \frac{1}{a_{ISO}(t)} \cdot n(t) \cdot dt$$

Constant load at speed varying in steps

If the speed varies in steps, this gives:

Equation 44

$$n = \frac{\frac{1}{a_{\rm ISO\,i}} \cdot q_{\rm i} \cdot n_{\rm j} + ... + \frac{1}{a_{\rm ISO\,z}} \cdot q_{\rm z} \cdot n_{\rm z}}{100}$$

For oscillating bearing motion

The equivalent speed is calculated as follows:

Equation 45

$$n = n_{osc} \cdot \frac{\phi}{180^{\circ}}$$

The equation is valid only if the swivel angle is larger than twice the pitch angle of the rolling elements. If the swivel angle is smaller, there is a risk of false brinelling.

The following diagram shows the swivel angle φ .

Figure 51 Swivel angle φ

Symbols, units and definitions The following values are used in calculation of the equivalent operating values:

Legend n r Mean speed

> T min Time period under consideration

min⁻¹

P N Equivalent bearing load

р

Life exponent; for roller bearings: p = 10/3for ball bearings: p = 3

 $\begin{array}{l} a_{ISO\,i},\,a_{ISO}(t)-\\ \text{Life adjustment factor }a_{ISO}\\ \text{for current operating condition,}\\ \text{see Page 574} \end{array}$

n_i, n(t) min⁻¹ Bearing speed for a particular operating condition

 $\begin{array}{ll} q_i & \% \\ \text{Duration of an operating condition as} \\ \text{a proportion of the total operating} \\ \text{period; } q_i = (\Delta t_i/T) \cdot 100 \end{array}$

 $\begin{array}{ll} F_{i},\,F(t) & N\\ Bearing \mbox{ load for a particular operating }\\ condition \end{array}$

n_{osc} min⁻¹ Frequency of swivel motion

φ ° Swivel angle, see Figure 51.

Requisite rating life

If no information is available on the rating life, guide values can be taken from tables or diagrams, such as Figure 52 and the following table. Guide values for dimensioning: see also Schaeffler catalogue HR 1, Rolling Bearings.

Bearings should not be overspecified, for the precise rating life see Schaeffler catalogue HR 1, Rolling Bearings.

Pay attention to the minimum load for the bearings, see Schaeffler catalogue HR 1, Rolling Bearings.

Operating mode	Operating hours/year
Intermittent operation	pprox 500 to 1000 h
Single shift operation	$\approx 2000h$
Double shift operation	\approx 4 000 h
Triple shift operation	$\approx 6000h$
Continuous operation	$\approx 8000h$

t = operating hours

(1) DIY tools (2) Power tools (3) Household appliances (4) Agricultural machinery (5) Tractors (6) Passenger cars (7) Commercial vehicles (8) Construction machinerv (9) Hydraulic units, mobile (1) Hydraulic units, stationary (1) Office and computer equipment 12 Compressors (13) Handling equipment (14) Industrial gearboxes (15) Construction materials machinerv 16 Crushers 17 Machine tools 18 Extruders 19 Rolling mills (20) Textile machinery (2) Printing machinery

Static load carrying capacity	If high, static or shock loads occur, the raceways and rolling elements may undergo plastic deformation. These deformations limit the static load carrying capacity of the rolling bearing with respect to the permissible noise level during operation of the bearing.			
	If a rolling bearing operates without rotary motion or with only infrequent rotary motion, its size is determined in accordance with the basic static load rating C_0 .			
	In accordance with DIN ISO 76, this is: a constant radial load C _{or} for radial bearings			
	a constant, concentrically acting a	xial load C _{0a} for axial bearings		
	The basic static load rating C_0 is that load under which the Hertzian pressure at the most heavily loaded point between the rolling elements and raceways reaches the following values: a for roller bearings, 4 000 N/mm ²			
	■ for ball bearings, 4 200 N/mm ²			
	■ for self-aligning ball bearings, 4 600 N/mm ²			
	Under normal contact conditions, this load causes a permanent deformation at the contact points of approximately one tenth of a thousandth of the rolling element diameter.			
Static load safety factor	In addition to dimensioning on the basis of the fatigue life, it is advisable to check the static load safety factor. The guide values for shock loads occurring in operation as given in the following table should be taken into consideration.			
	The static load safety factor S_0 is the ratio between the basic static load rating C_0 and the equivalent static bearing load P_0 :			
Equation 46	$S_0 = \frac{C_0}{P_0}$			
Legend	S ₀ – Static load safety factor	P ₀ (P ₀ r, P _{0a}) N Equivalent static load on the radial or axial bearing, see Page 585.		
	C ₀ (C ₀ r, C _{0a}) N Basic static load rating			

Guide values for static load safety factor

Guide values for axial spherical roller bearings and high precision bearings: see Schaeffler catalogue HR 1, Rolling Bearings. For drawn cup needle roller bearings, the value must be $S_0 \ge 3$.

For the static load safety factor, the following guide values can be used:

Operating conditions and application	Static load safety factor S ₀ min.		
	Ball bearings	Roller bearings	
Low-noise, smooth running, free from vibrations, high rotational accuracy	2	3	
Normal, smooth running, free from vibrations, normal rotational accuracy	1	1,5	
Pronounced shock loading ¹⁾	1,5	3	

¹⁾ If the order of magnitude of the shock loading is not known, the values used for S₀ should be at least 1,5. If the order of magnitude of the shock loading is known precisely, lower values are possible.

Equivalent static bearing load

The equivalent static bearing load P₀ is a calculated value. It corresponds to a radial load in radial bearings and a concentric axial load in axial bearings.

 P_0 induces the same load at the centre point of the most heavily loaded contact point between the rolling element and raceway as the combined load occurring in practice.

Xo

Radial load factor

The relationship is as follows:

Equation 47

 $P_0 = X_0 \cdot F_r + Y_0 \cdot F_a$

Legend

P₀ N Equivalent static bearing load

F_r N Largest radial load present Product tables: see Schaeffler catalogue HR 1, Rolling Bearings Y₀ – Axial load factor

F_a N Largest axial load present Axial load factor Product tables: see Schaeffler catalogue HR 1, Rolling Bearings.

This calculation cannot be applied to radial needle roller bearings, axial needle roller bearings and axial cylindrical roller bearings. Combined loads are not permissible with these bearings.

In the case of radial needle roller bearings and all radial cylindrical roller bearings, $P_0 = F_{0r}$. For axial needle roller bearings and axial cylindrical roller bearings, $P_0 = F_{0a}$.

Operating life The operating life is defined as the life actually achieved by the bearing. It may differ significantly from the calculated value.

This may be due to wear or fatigue as a result of:

- deviations in the operating data
- misalignment between the shaft and housing
- insufficient or excessive operating clearance
- contamination
- inadequate lubrication
- excessive operating temperature
- oscillating bearing motion with very small swivel angles (false brinelling)
- high vibration loads and false brinelling
- very high shock loads (static overloading)
- prior damage during installation

Due to the wide variety of possible mounting and operating conditions, it is not possible to precisely predetermine the operating life. The most reliable way of arriving at a close estimate is by comparison with similar applications.

Rigidity The rigidity is determined by the type, size and operating clearance of the bearing. It increases with the number of rolling elements supporting the load. Due to the line contact between the rolling elements and raceways, it is higher in roller bearings than in ball bearings. Figure 53 shows typical characteristic curves for the radial deflection of various bearings with the same bore diameter.

Figure 53 Radial deflection of various radial bearings of bore diameter d = 50 mm

 δ_r = radial deflection F_r = radial bearing load

Calculation of the radial or axial displacement

Rolling bearings have a progressive deflection rate. The displacement values for needle and cylindrical roller bearings can be determined using approximation equations. This simplified calculation cannot be applied to other bearing types. The displacement and rigidity at the operating point can be determined using the calculation program → Bearinx-online.

The equations are valid for bearings without misalignment and with a rigid surrounding structure. In axial bearings, a concentrically acting load is assumed.

Equation 48

$$\delta_{\rm r} = \frac{1}{c_{\rm s}} \cdot F_{\rm r}^{0,84} + \frac{\rm s}{2}$$

Equation 49

 $\delta_a = \frac{1}{c_s} \cdot \left[\left(F_{aV} + F_a \right)^{0,84} - F_{aV}^{0,84} \right]$

Equation 50

Legend c_s

c_s N^{0,84} / μm Rigidity parameter

 $c_s = K_c \cdot d^{0,65}$

d mm Bearing bore diameter

 $\begin{array}{lll} \delta_r & \mu m \\ \text{Radial displacement between shaft axis} \\ \text{and bore centre, Figure 54, Page 588} \end{array}$

 $\begin{array}{lll} \delta_a & \mu m \\ \text{Axial displacement between shaft} \\ \text{locating washer and housing locating} \\ \text{washer, Figure 55, Page 588} \end{array}$

s μm Radial operating clearance of fitted, unloaded bearing F_r N Radial bearing load

F_aN Axial bearing load

F_{aV} N Axial preload force

K_c – Factor for determining the rigidity parameter, see table Page 587.

Factor K _c	The factor K _c is given in the following table
-----------------------	---

Bearing series	Factor K _c	Bearing series	Factor K _c	Bearing series	Factor K _c
NA48	24,9	NJ2E	11,1	SL1818	12,8
NA49	23,5	NJ3E	11,3	SL1829, SL1830, SL1923	16
NA69	37,3	NJ22E	15,4	SL1850, SL0148, SL0248, SL0249	29,2
NKIS	21,3	NJ23E	16,9	K811,811,K812,	36,7
NKI	4,4 · B ^{0,8} /d ^{0,2}	NU10	9,5	812	
нк, вк	4,2 · C ^{0,8} /d ^{0,2}	NU19	11,3	K893, 893, K894,	59,7
		NN30AS-K	18,6	894	

The following diagrams show the radial and axial displacement.

Friction and increases in temperature

The friction in a rolling bearing is made up of several components. Due to the large number of influencing factors, such as dynamics in speed and load, tilting and skewing as a result of mounting, actual frictional torques and frictional power may deviate significantly from the calculated values.

If the frictional torque is an important design criterion, please consult Schaeffler. The calculation module → Bearinx-online Easy Friction, which is available from Schaeffler free of charge, can be used to calculate and analyse the frictional torque.

The frictional component and the influencing factor are shown in the following table.

Frictional component	Influencing factor
Rolling friction	Magnitude of load
Sliding friction of rolling elements Sliding friction of cage	Magnitude and direction of load Speed and lubrication conditions, running-in condition
Fluid friction (flow resistance)	Type and speed Type, quantity and operating viscosity of lubricant
Seal friction	Type and preload of seal

The idling friction is dependent on the lubricant quantity, speed, operating viscosity of the lubricant, seals and the running-in condition of the bearing.

Heat dissipation via the lubricant

Lubricating oil dissipates a portion of the heat. Recirculating oil lubrication with additional cooling is particularly effective. Grease does not give dissipation of heat.

Heat dissipation via the shaft and housing

Heat dissipation via the shaft and housing is dependent on the temperature difference between the bearing and the surrounding structure.

Any additional adjacent sources of heat or thermal radiation must be taken into consideration.

 Determining the friction values
 For this process, the speed and load must be known. The type of lubrication, lubrication method and viscosity of the lubricant at operating temperature are further important factors in calculation.

Total frictional torque M_R:

(calculation of axially loaded cylindrical roller bearings, see Page 597):

Equation 51

$$M_{R} = M_{0} + M_{1}$$

Frictional power N_R:

Equation 52

$$N_{R} = M_{R} \cdot \frac{n}{9550}$$

	Frictional torque as a function of spee	ed for $\nu \cdot n \ge 2000$:		
Equation 53	$M_{0} = f_{0} \cdot \left(\nu \cdot n\right)^{2/3} \cdot d_{M}^{-3} \cdot 10^{-7}$			
Equation 54	Frictional torque as a function of speed for $\nu \cdot n < 2000$: $M_0 = f_0 \cdot 160 \cdot d_M^{-3} \cdot 10^{-7}$			
Equation 55	Frictional torque as a function of load for needle roller and cylindrical roller bearings:			
,	$M_1 = f_1 \cdot F \cdot d_M$			
Equation 56	Frictional torque as a function of load for ball bearings, tapered roller bearings and spherical roller bearings: $M_1 = f_1 \cdot P_1 \cdot d_M$			
Legend	M _R Nmm Total frictional torque	f ₁ – Bearing factor for frictional torque as a function of load, see tables from Page 591 to Page 596		
	M ₀ Nmm Frictional torque as a function of speed	ν mm ² /s Kinematic viscosity of lubricant at operating temperature. In the case of grease, the decisive factor is the viscosity of the base oil at operating temperature		
	M ₁ Nmm Frictional torque as a function of load	F _r , F _a N Radial load for radial bearings, axial load for axial bearings		
	N _R W Frictional power	P ₁ N Decisive load for frictional torque. For ball bearings, tapered roller bearings and spherical roller bearings, see Page 596		
	n min ⁻¹ Operating speed	d _M mm Mean bearing diameter (d + D)/2.		
	f ₀ – Bearing factor for frictional torque as a function of speed, see Figure 56, Page 591 and tables from Page 591 to Page 596			

Bearing factors The bearing factors f_0 and f_1 are mean values derived from series of tests and correspond to the data according to ISO 15312.

They are valid for bearings after running-in and with uniform distribution of lubricant. In the freshly greased state, the bearing factor f_0 can be two to five times higher.

If oil bath lubrication is used, the oil level must reach the centre of the lowest rolling element. If the oil level is higher, f_0 may be up to 3 times the value given in the table, Figure 56.

Figure 56 Increase in the bearing factor, as a function of the oil level

> h = oil level $d_M = mean bearing$ diameter (d + D)/2

(1) Increase in the bearing factor f_0

The bearing factors for various rolling bearings are given in the following tables.

Bearing factors for needle roller bearings, drawn cup needle roller bearings, needle roller and cage assemblies:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
NA48	3	5	0,000 5
NA49	4	5,5	
RNA48	3	5	
RNA49	4	5,5	
NA69, RNA69	7	10	
NKI, NK, NKIS, NKS, NAO, RNO, RNAO, K	(12 · B)/(33 + d)	(18 · B)/(33 + d)	
NKTW, NKITW, NKD	(10 · B)/(33 + d)	(15 · B)/(33 + d)	
HK, BK	(24 · B)/(33 + d)	(36 · B)/(33 + d)	
HN	(30 · B)/(33 + d)	(45 · B)/(33 + d)	

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
SL1818	3	5	0,000 55
SL1829	4	6	
SL1830	5	7	
SL1822	5	8	
SL0148, SL0248	6	9	
SL0149, SL0249	7	11	
SL1923	8	12	
SL1850	9	13	

Bearing factors for cylindrical roller bearings, full complement:

Bearing factors for cylindrical roller bearings with cage:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
LSL1923	1	3,7	0,000 20
ZSL1923	1	3,8	0,000 25
NU2E, NNU41	1,3	2	0,000 30
NU3E			0,000 35
NU4			0,000 40
NU10, NU19			0,000 20
NU22E	2	3	0,000 40
NU23E	2,7	4	0,000 40
NU30E, NN30E	1,7	2,5	0,000 40

Bearing factors for axial roller bearings:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
AXK, AXW	3	4	0,0015
810, K810, 811, K811, 812, K812, 893, K893, 894, K894	2	3	

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
ZARN, ZARF	3	4	0,0015
NKXR	2	3	
NX, NKX	2	3	$0,001 \cdot (P_0/C_0)^{0,33}$
ZKLN, ZKLF	4	6	0,000 5
NKIA, NKIB	3	5	

Bearing factors for combined bearings:

Bearing factors for tapered roller bearings:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
302, 303, 329 320, 330, JKOS, T4CB, T4DB, T7FC	2	3	0,0004
313, 322, 323, 331, 332, T2EE, T2ED, T5ED	3	4,5	

Bearing factors for axial and radial spherical roller bearings:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
213E1	2,3	3,5	0,0005 · (P ₀ /C ₀) ^{0,33}
222E1	2,7	4	
223	3	4,5	0,0008 · (P ₀ /C ₀) ^{0,33}
238, 239, 230			$0,00075 \cdot (P_0/C_0)^{0,5}$
231	3,7	5,5	$0,0012 \cdot (P_0/C_0)^{0,5}$
232	4	6	$0,0016 \cdot (P_0/C_0)^{0,5}$
240	4,3	6,5	$0,0012 \cdot (P_0/C_0)^{0,5}$
248, 249, 241	4,7	7	$0,0022 \cdot (P_0/C_0)^{0,5}$
292Е	1,7	2,5	0,000 23
293Е	2	3	0,000 30
294Е	2,2	3,3	0,000 33

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
С22К	3,7	5,5	$0,0012 \cdot (P_0/C_0)^{0,5}$
C22V	4	6	
С23К	3,8	5,7	$0,0014 \cdot (P_0/C_0)^{0,5}$
C23V	4,3	6,5	
С30К	3,3	5	
C30V, C31V	4	6	
С31К	3,7	5,5	
С32К	3,8	5,7	$0,0016 \cdot (P_0/C_0)^{0,5}$
С39К	3,3	5	$0,0014 \cdot (P_0/C_0)^{0,5}$
С40К, С41К	5	7,5	0,0018 · (P ₀ /C ₀) ^{0,5}
C40V, C41V	6	9	

Bearing factors for toroidal roller bearings:

Bearing factors for deep groove ball bearings:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
618	1,1	1,7	$0,0005 \cdot (P_0/C_0)^{0,5}$
160, 60, 619	1,1	1,7	$0,0007 \cdot (P_0/C_0)^{0,5}$
622, 623	1,1	1,7	0,0009 · (P ₀ /C ₀) ^{0,5}
62	1,3	2	
63, 630, 64	1,5	2,3	
60C	1,1	1,5	$0,0006 \cdot (P_0/C_0)^{0,5}$
62C	1,3	1,7	$0,0007 \cdot (P_0/C_0)^{0,5}$
63C	1,5	2	
42B	2,3	3,5	$0,0010 \cdot (P_0/C_0)^{0,5}$
43B	4	6	
Series	Bearing factor f ₀		Bearing factor f ₁
-----------------------------	-------------------------------	--------------------------------	---
	Grease, oil mist	Oil bath, recirculating oil	
708, 719, 718B, 70B, 72B	1,3	2	0,001 · (P ₀ /C ₀) ^{0,33}
73В	2	3	
74B	2,5	4	
30B, 32B, 38B	2,3	3,5	
33В	4	6	
32BD	2	3	
33BD	3,5	5	

Bearing factors for angular contact ball bearings:

Bearing factors for self-aligning ball bearings:

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
10, 112	1,7	2	$0,0003 \cdot (P_0/C_0)^{0,4}$
12	1,7	2,5	
13	2,3	3,5	
22	2	3	
23	2,7	4	

Bearing factors for four point contact bearings:

Series	Bearing factor \mathbf{f}_0		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
QJ2	1,3	2	$0,001 \cdot (P_0/C_0)^{0,33}$
QI3	2	3	
QJ10	1,3	2	

Series	Bearing factor f ₀		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
511, 512, 513, 514, 532, 533, 534	1	1,5	$0,0012 \cdot (F_a/C_0)^{0,33}$
522, 523, 524, 542, 543, 544	1,3	2	

Bearing factors for axial deep groove ball bearings:

The following table shows the decisive load P_1 for the frictional torque as a function of load M_1 for ball bearings, tapered roller bearings and spherical roller bearings:

Bearing type	Decisive load P ₁		
	Single bearing	Bearing pair	
Deep groove ball bearings	$3,3 \cdot F_a - 0,1 \cdot F_r$	-	
Angular contact ball bearings, single row	$F_a - 0, 1 \cdot F_r$	$1,4 \cdot F_a - 0,1 \cdot F_r$	
Angular contact ball bearings, double row	$1,4 \cdot F_a - 0,1 \cdot F_r$	-	
Four point contact bearings	$1,5 \cdot F_a + 3,6 \cdot F_r$	-	
Tapered roller bearings	$2 \cdot Y \cdot F_a$ or F_r , use the greater value	$1,21 \cdot Y \cdot F_a$ or F_r , use the greater value	
Spherical roller bearings	$\begin{array}{l} 1,6\cdot F_a/e, \text{ if } F_a/F_r > e \\ F_r \cdot \{1+0,6\cdot [F_a/(e \cdot F_r)]^3\}, \text{ if } F_a/F_r \leq e \end{array}$		
Cylindrical roller bearings	F_{rp} the friction component of the axial load F_{a} must be taken into consideration by means of M_{2}		

If $P_1 \leq F_r$, then $P_1 = F_r$.

Cylindrical roller bearings under axial load	In radial cylindrical roller bearings under axial load, sliding friction between the end faces of the rolling elements and the ribs on the rings leads to an additional frictional torque M_2 . The total frictional torque M_R is therefore calculated as follows:		
Equation 57	$M_{R} = M_{0} + M_{1} + M_{2}$		
Equation 58	$M_2 = f_2 \cdot F_a \cdot d_M$		
Equation 59	$A = k_B \cdot 10^{-3} \cdot d_M^{2,1}$		
Legend	M _R Nmm Total frictional torque	A – Bearing parameter	
	M _o Nmm Frictional torque as a function of speed	F _a N Axial dynamic bearing load	
	M ₁ Nmm Frictional torque as a function of radial load	k _B – Bearing factor as a function of the bearing series, see table, Page 599	
	M ₂ Nmm Frictional torque as a function of axial load	d _M mm Mean bearing diameter (d + D)/2.	
f ₂ – Factor as a function of the bearing series, Figure 57 and Figure 58, Page 598			
The bearing factors f_2 are subject to wide scatter. They are valid			

for recirculating oil lubrication with an adequate quantity of oil. The curves must not be extrapolated, Figure 57 and Figure 58, Page 598.

Bearings of TB design

In the case of bearings of TB design (bearings with a toroidal roller end), the axial load carrying capacity has been significantly improved through the use of new calculation and manufacturing methods.

Optimum contact conditions between the roller and rib are ensured by means of a special curvature of the roller end faces. As a result, axial surface pressures on the rib are significantly reduced and a lubricant film with improved load carrying capacity is achieved. Under normal operating conditions, wear and fatigue at the rib contact running and roller end faces is completely eliminated.

In addition, axial frictional torque is reduced by up to 50%. The bearing temperature during operation is therefore significantly lower.

Bearing factor k_B

The bearing factor k_B in the equations takes into consideration the size and thus the load carrying capacity of the hydrodynamic contacts at the bearing ribs; see table Page 599.

The following diagrams show the bearing factors for cylindrical roller bearings.

 $\nu \cdot n \cdot d_M$

mm³s⁻¹min⁻¹

Bearing factor ka				
bearing factor kg	Bearing series	Bearing factor k _B	Bearing series	Bearing factor k _B
	SL1818, SL0148	4,5	SL1923 NJ2E, NJ22E,	30
	SL1829, SL0149	11		15
	SL1830, SL1850	17	NUP2E, NUP22E	
	SL1822	20	NJ3E, NJ23E, NUP3 -F, NUP23 -F	20
	LSL1923, ZSL1923	28	NJ4	22
Speeds	Calculation of the t	hermal speed rati	ng n _{ðr} is standardis	ed in ISO 15312.
Limiting speed	The limiting speed n _G is based on practical experience and takes account of additional criteria such as smooth running, sealing function and centrifugal forces. The limiting speed must not be exceeded even under favourable operating and cooling conditions.			nd takes account nction and led even under
Thermal speed rating	The thermal speed rating $n_{\vartheta r}$ is used as an ancillary value in calculating the thermally safe operating speed n_{ϑ} . This is the speed at which, under defined reference conditions, a bearing operating temperature of +70 °C is achieved. The thermal speed rating is not a speed limit for the application of a bearing. It is primarily for the purpose of comparing the speed suitability of different bearing types under defined reference conditions. A speed limit taking account of the thermal balance can be calculated using the thermally safe operating speed.			
Reference conditions	The reference cond of the most signific in ISO 15312 as fol mean ambient t load on radial be $P_1 = 0.02 \cdot C_{0a}$ oil bath lubricat rolling element lubricant with a - radial bearing - axial bearing heat dissipation calculation is ba under the refere seating surfaces	nditions are based on the normal operating condition ficant bearing types and sizes and are defined follows: t temperature ϑ_{Ar} = +20 °C temperature at the outer ring ϑ_r = +70 °C bearings (pure, constant radial load) P ₁ = 0,05 · C ₀ r bearings (concentrically acting, constant axial load) a ation with an oil level up to the centre of the lowest tt a kinematic viscosity v _r at ϑ_r = +70 °C ngs: v _r = 12 mm ² /s (ISO VG 32) 1gs: v _r = 24 mm ² /s (ISO VG 32) 1gs: v _r = 24 mm ² /s (ISO VG 68) on via the bearing seating surfaces. As a simplificati based on the bearing seating surfaces dissipating herence conditions A _r . For the calculation of the bearing		ing conditions efined C = 0,05 · C _{0r} t axial load) f the lowest a simplification, dissipating heat of the bearing conditions,

For radial bearings with a heat-dissipating bearing seating surface under reference conditions, $A_r \le 50\,000 \text{ mm}^2$:

Equation 60

For radial bearings with a heat-dissipating bearing seating surface under reference conditions, $A_r > 50\,000 \text{ mm}^2$:

Equation 61

$$q_r = 0.016 \cdot \left(\frac{A_r}{50\,000}\right)^{-0.34} W/mm^2$$

For axial bearings with a heat-dissipating bearing seating surface under reference conditions, $A_r \leqq 50\,000~mm^2$:

Equation 62

 $q_r = 0,020 \text{ W} / \text{mm}^2$

For axial bearings with a heat-dissipating bearing seating surface under reference conditions, $A_r > 50\,000 \text{ mm}^2$:

Equation 63

$$q_r = 0.020 \cdot \left(\frac{A_r}{50\,000}\right)^{-0.16} W/mm^2$$

Thermally safe operating speed

The thermally safe operating speed n_{ϑ} is calculated in accordance with DIN 732:2010. The basis for the calculation is the heat balance in the bearing, the equilibrium between the frictional energy as a function of speed and the heat dissipation as a function of temperature. When conditions are in equilibrium, the bearing temperature is constant.

The permissible operating temperature determines the thermally safe operating speed n_ϑ of the bearing. The preconditions for calculation are correct mounting, normal operating clearance and constant operating conditions.

The calculation method is not valid for:

- sealed bearings with contact seals, since the maximum speed is restricted by the permissible sliding velocity at the seal lip
- yoke and stud type track rollers
- aligning needle roller bearings
- axial deep groove ball bearings and axial angular contact ball bearings

The limiting speed n_G must always be observed.

Calculation of the thermally safe operating speed Equation 64 The thermally safe operating speed n_{ϑ} is a product of the thermal speed rating $n_{\vartheta r}$ and the speed ratio f_n :

 $n_{\vartheta} = n_{\vartheta r} \cdot f_n$

The equation derived from the equilibrium of the frictional power and the heat dissipation can be expressed, through the introduction of a lubricant parameter K_L , a load parameter K_P and the speed ratio f_n in the following form:

Equation 65

 $K_{L} \cdot f_{n}^{5/3} + K_{P} \cdot f_{n} = 1$

The speed ratio f_n can be determined, in the normal value range of $0,01 \leq K_L \leq 10$ and $0,01 \leq K_P \leq 10$, using an approximation equation, see also Figure 59, Page 602:

Equation 66

$$\sum_{n}^{1} = 490,77 \cdot \left(1 + 498,78 \cdot K_{L}^{0.599} + 852,88 \cdot K_{P}^{0.963} - 504,5 \cdot K_{L}^{0.055} \cdot K_{P}^{0.832}\right)^{-1}$$

Heat dissipation via the bearing seating surfaces \dot{Q}_{S} , Figure 60, Page 602:

$$\dot{Q}_{S} = k_{q} \cdot A_{S} \cdot \Delta \vartheta_{A}$$

Heat dissipation via the lubricant \dot{Q}_1 :

Equation 68

$$\dot{Q}_{L} = 0,0286 \frac{kW}{l/\min \cdot K} \cdot \dot{V}_{L} \cdot \Delta \vartheta_{L}$$

Total dissipated heat flow Q:

Equation 69

$$\dot{Q} = \dot{Q}_{S} + \dot{Q}_{L} + \dot{Q}_{E}$$

Lubricant parameter K_L:

Equation 70

$$K_{L} = 10^{-6} \cdot \frac{\pi}{30} \cdot n_{\vartheta r} \cdot \frac{10^{-7} \cdot f_{0} \cdot (\nu \cdot n_{\vartheta r})^{\frac{2}{3}} \cdot d_{M}^{3}}{\dot{Q}}$$

$$\zeta_{\rm P} = 10^{-6} \cdot \frac{\pi}{30} \cdot n_{\vartheta \rm r} \cdot \frac{f_1 \cdot P_1 \cdot d_{\rm M}}{\dot{\rm Q}}$$

The following diagrams show the speed ratio and the heat transition coefficient.

Symbols, units and definitions

The following values are used in calculation of the thermally safe operating speed n_{ϑ} :

mm² Leaend As Heat-dissipating bearing seating surface: In general, $A_c = A_r$ mm² Α. Heat-dissipating bearing seating surface under reference conditions: radial bearings: $A_r = \pi \cdot B \cdot (D + d)$ axial bearings: $A_r = (\pi/2) \cdot (D^2 - d^2)$ tapered roller bearings: $A_r = \pi \cdot T \cdot (D + d)$ axial spherical roller bearings: $A_r = (\pi/4) \cdot (D^2 + d_1^2 - D_1^2 - d^2)$ R mm Bearing width mm Bearing bore diameter mm Bearing outside diameter d₁ mm Outside diameter of shaft locating washer D1 mm Inside diameter of housing locating washer d۸ mm Mean bearing diameter (D + d)/2 fo Bearing factor for frictional torque as a function of speed, see section Friction and increases in temperature, Page 588 f1 Bearing factor for frictional torque as a function of load, see section Friction and increases in temperature, Page 588 Speed ratio, Figure 59, Page 602 K Lubricant parameter Kp Load parameter min⁻¹ næ Thermally safe operating speed min⁻¹ nær

Thermal speed rating Product tables: see Schaeffler catalogue HR 1, Rolling Bearings k_q 10⁻⁶ kW/(mm² ⋅ K) Heat transition coefficient of bearing seating surface, Figure 60, Page 602. This is dependent on the housing design and size, the housing material and the mounting situation. For normal applications, the heat transition coefficient for bearing seating surfaces up to 25,000 mm² is between 0,2 and 1,0 ⋅ 10⁻⁶ kW/(mm² ⋅ K)

P₁ N Radial load for radial bearings, axial load for axial bearings

q_r W/mm² Heat flow density

Q kW Total dissipated heat flow

 \dot{Q}_E kW Heat flow due to heating by external source

 $\begin{array}{cc} \dot{Q}_S & kW \\ \text{Heat flow dissipated via the bearing} \\ \text{seating surfaces} \end{array}$

T mm Total width of tapered roller bearing

└L l/min Oil flow

mm²/s
 Kinematic viscosity of lubricant at operating temperature.

Noise Schaeffler Noise Index

The Schaeffler Noise Index (SGI) has been developed as a new feature for comparing the noise level of different bearing types. The SGI value is based on the maximum permissible noise level of a bearing in accordance with internal standards, which is calculated on the basis of ISO 15242.

In order that different bearing types and series can be compared, the SGI value is plotted against the basic static load rating C_0 , allowing the direct comparison of bearings of the same load carrying capacity. The upper limit value is given in the diagrams. This means that the average noise level of the bearings is lower than illustrated in the diagram.

Until now, the Noise Index has only been available for the main series of radial deep groove ball bearings, radial angular contact ball bearings, tapered roller bearings and cylindrical roller bearings. Additional bearing types and series will be updated and introduced in subsequent publications.

The SGI is an additional performance characteristic in the selection of bearings for noise-sensitive applications. The specific suitability of a bearing for an application in terms of installation space, load carrying capacity or speed limit, for example, must be checked independently of this.

The following section presents the diagrams for radial deep groove ball bearings and tapered roller bearings and an example assessment is shown using the radial deep groove ball bearings. Diagrams for other types of bearings can be found in the Schaeffler catalogue HR 1, Rolling Bearings, or in the electronic product catalogue **medias**: https://medias.schaeffler.com.

Example of Noise Index calculation

If the requisite basic load rating is known for an application, the bearing arrangement can also be designed using the Noise Index as an additional performance characteristic.

If the requisite basic static load rating is $C_0 = 20300$ N, for example, various ball bearings are available with a different SGI value,

see Figure 61, Page 605. As a result, the calculation can be carried out for the bearing application using the smallest SGI value. In particular, bearings of Generation C offer an advantage in this respect.

Lubrication Lubrication and maintenance are important for the reliable operation and long operating life of rolling bearings.

Functions The lubricant should:

- of the lubricant form a lubricant film sufficiently capable of supporting loads on the contact surfaces and thus prevent wear and premature fatigue.
 - dissipate heat in the case of oil lubrication.
 - provide additional sealing for the bearing against external solid and fluid contaminants in the case of grease lubrication.
 - give damping of running noise and protect the bearing against corrosion.

Selection of the type of lubrication It should be determined as early as possible in the design process whether bearings should be lubricated using grease or oil. The following factors are decisive in determining the type of lubrication and quantity of lubricant: the operating conditions, the type and size of the bearing, the adjacent construction and the type of lubricant feed.

Characteristics of grease lubrication

In the case of grease lubrication, the following advantages and disadvantages must be considered:

- very little design work required
- the sealing action and reservoir action
- Iong operating life with little maintenance work (lifetime lubrication) possible in certain circumstances)
- in the case of relubrication, the provision of collection areas for old grease and feed ducts
- no heat dissipation by the lubricant
- no rinsing out of wear debris and other particles

Characteristics of oil lubrication

In the case of oil lubrication, the following criteria must be considered:

- good lubricant distribution and supply to contact areas
- the possibility for dissipation of heat from the bearing (significant principally at high speeds and loads)
- rinsing out of wear debris
- very low friction losses with minimal quantity lubrication
- more demanding requirements in terms of feed and sealing

Grease lubrication For grease lubrication, rolling bearing greases K in accordance with DIN 51825 are suitable.

Greases should be selected in accordance with the operating conditions of the bearing: temperature, pressure capacity, speed, water and moisture.

Pressure capacity

The viscosity at operating temperature must be sufficiently high for the formation of a lubricant film capable of supporting loads. At high loads, greases with EP (extreme pressure) characteristics and high base oil viscosity should be used (KP grease to DIN 51825). Such greases should also be used for bearings with a substantial sliding component and with line contact.

Silicone greases can only be used at low loads (P \leq 0,03 \cdot C).

Greases with solid lubricants should preferably be used for applications with mixed or boundary friction conditions. The solid lubricant particle size should not exceed 5 μ m.

Speed

Greases should be selected in accordance with the speed parameter $n \cdot d_M$ for grease, see table Lubricating greases, Page 608:

- For rolling bearings running at high speeds or with a low starting torque, greases with a high speed parameter should be selected.
- For bearings running at low speeds, greases with a low speed parameter should be used.

Under centrifugal accelerations $> 500 \cdot g$, separation (of the thickener and base oil) may occur. In this case, please consult the lubricant manufacturer.

The consistency of polycarbamide greases can be altered by shear stresses to a greater extent than that of metal soap greases.

Water and moisture

Water in the grease has a highly detrimental effect on the operating life of bearings:

- The static behaviour of greases in the presence of water is assessed in accordance with DIN 51807.
- The anti-corrosion characteristics can be tested in accordance with DIN 51802 (Emcor test) (information in the datasheets of grease manufacturers).

Designation ¹⁾	Classification	Type of grease
GA01	Ball bearing grease for ϑ < +180 °C	Polycarbamide Ester oil
GA02	Ball bearing grease for $\vartheta <$ +160 °C	Polycarbamide SHC
GA13	Standard ball bearing and insert bearing grease for $D>62~mm$	Lithium soap Mineral oil
GA14	Low noise ball bearing grease for $D \leqq 62~mm$	Lithium soap Mineral oil
GA15	Low noise ball bearing grease for high speeds	Lithium soap Ester oil/SHC
GA22	Free-running grease with low frictional torque	Lithium soap Ester oil, mineral oil
L069	Insert bearing grease for wide temperature range	Polycarbamide Ester oil
GA08	Grease for line contact	Lithium complex soap Mineral oil
GA26	Standard grease for drawn cup roller clutches	Calcium/lithium soap Mineral oil
GA28	Screw drive bearing grease	Lithium soap Synthetic oil/mineral oil
GA11	Rolling bearing grease resistant to media for temperatures up to +250 °C	PTFE Alkoxyfluoroether
GA47	Rolling bearing grease resistant to media for temperatures up to +140 °C	Barium complex soap Mineral oil

Lubricating greases The following greases have proved particularly suitable:

 $^{1)}$ GA.. stands for Grease Application Group..., based on Grease Spec 00.

2) The upper continuous limit temperature θ_{upperlimit} must not be exceeded if a reduction in the grease operating life due to temperature is to be avoided.

³⁾ Dependent on bearing type.

Operating temperature range	Upper continuous limit temperature $\vartheta_{upperlimit}^{2}$	NLGI class	Speed parameter n · d _M	ISO VG class (base oil) ³⁾	Desig- nation ¹⁾	Recommended Arcanol grease for relubrication
°C	°C		min ^{−1} • mm			
-30 to +180	+125	2 to 3	600 000	68 to 220	GA01	-
-40 to +160	+90	2 to 3	500 000	68 to 220	GA02	-
-20 to +120	+75	3	500 000	68 to 150	GA13	MULTI3
-30 to +120	+75	2	500 000	68 to 150	GA14	MULTI2
-40 to +120	+75	2 to 3	1000000	22 to 32	GA15	-
-50 to +120	+70	2	1 500000	10 to 22	GA22	-
-40 to +180	+120	2	700 000	68 to 220	L069	-
-20 to +140	+95	2 to 3	500 000	150 to 320	GA08	LOAD150
-20 to +80	+60	2	500 000	10 to 22	GA26	-
-30 to +140	+80	2	800 000	15 to 100	GA28	MULTITOP
-30 to +260	+200	2	300 000	460 to 680	GA11	TEMP200
-20 to +130	+70	1 to 2	350 000	150 to 320	GA47	-

Oil lubrication For the lubrication of rolling bearings, mineral oils and synthetic oils are essentially suitable. Oils with a mineral oil base are used most frequently. They must, as a minimum, fulfil the requirements in accordance with DIN 51517 or DIN 51524.

Reference viscosity for mineral oils

The guide value for ν_1 is dependent on the mean bearing diameter d_M and the speed n. It takes account of the EHD theory of lubricant film formation and practical experience. Depending on the operating speed, the oil at operating temperature must as a minimum have the reference viscosity ν_1 , see Figure 63.

Figure 63 Reference viscosity and v/ϑ diagram for mineral oils

Calculation of reference viscosity

The reference viscosity v_1 is determined as follows:

- Allocate v₁ to an ISO VG nominal viscosity between 10 and 1500 (mid-point viscosity in accordance with ISO 3448).
- Round intermediate values to the nearest ISO VG (due to the steps between groups).

This method cannot be used for synthetic oils, since these have different V/P (viscosity/pressure) and V/T (viscosity/temperature) characteristics.

Influence of temperature on viscosity

As the temperature increases, the viscosity of the oil decreases. This temperature-dependent change in the viscosity is described using the viscosity index VI. In the case of mineral oils, the viscosity index should be at least 95.

When selecting the viscosity, the lower operating temperature must be taken into consideration, since the increasing viscosity will reduce the flowability of the lubricant. As a result, the level of power losses may increase.

A very long life can be achieved with a viscosity ratio $\kappa = \nu/\nu_1 = 3$ to 4. Highly viscous oils do not, however, bring only advantages. In addition to the power losses arising from lubricant friction, there may be problems with the feed and removal of oil at low or even at normal temperatures.

The oil selected must be sufficiently viscous that it gives the highest possible fatigue life. At the same time, it must be ensured that the bearings are always supplied with adequate quantities of oil.

Pressure capacity and anti-wear additives

If the bearings are subjected to high loads or the operating viscosity ν is less than the reference viscosity ν_1 , oils with anti-wear additives (type P in accordance with DIN 51502) should be used. Such oils are also necessary for rolling bearings with a substantial proportion of sliding contact (for example, bearings with line contact).

These additives form boundary layers to reduce the harmful effects of metallic contact occurring at various points (wear). The suitability of these additives varies and is normally heavily dependent on temperature. Their effectiveness can only be assessed by means of testing in the rolling bearing (for example, on a test rig FE8 in accordance with DIN 51819).

Silicone oils should only be used for low loads ($P \leq 0.03 \cdot C$).

Lubrication methods The essential lubrication methods are:

- drip feed oil lubrication
- pneumatic oil lubrication (also used, in order to protect the environment, as a substitute for oil mist lubrication)
- oil bath lubrication (immersion or sump lubrication)
- recirculating oil lubrication

Drip feed oil lubrication

This is suitable for bearings running at high speeds. The oil quantity required is dependent on the type and size of bearing, the operating speed and the load. The guide value is between 3 drops/min and 50 drops/min for each rolling element raceway (one drop weighs approx. 0,025 g). Excess oil must be allowed to flow out of the bearing arrangement.

Pneumatic oil lubrication

This method is particularly suitable for radial bearings running at high speeds and under low loads ($n \cdot d_M = 800\,000$ to $3\,000\,000$ min⁻¹ · mm). Oil is fed to the bearing by means of clean, compressed air that is free from water. As a result, an excess pressure is generated. This prevents contaminants from entering the bearing.

With a pneumatic oil lubrication system designed for minimal quantity lubrication, low frictional torque and a low operating temperature can be achieved.

Oil bath lubrication

The oil level should reach the centre line of the lowest rolling element. If the oil level is higher than this, the bearing temperature may increase at high circumferential velocities (with losses due to splashing). Furthermore, foaming of the oil may occur.

The speed capacity is generally up to $n\cdot d_M$ = 300 000 min⁻¹ \cdot mm. At $n\cdot d_M < 150\,000$ min⁻¹ \cdot mm, the bearing may be completely immersed.

In bearings with an asymmetrical cross-section (such as angular contact ball bearings), oil return ducts must be provided due to the pumping effect so that recirculation can be achieved.

In axial bearings, the oil level must cover the inside diameter of the axial cage.

The oil quantity in the housing must be adequately proportioned, otherwise very short oil change intervals will be necessary.

Recirculating oil lubrication

During recirculating oil lubrication, the oil is cooled. The oil can therefore dissipate heat from the bearing. The quantity of oil required for heat dissipation is dependent on the cooling conditions, see section Speeds, Page 599.

For bearings with an asymmetrical cross-section (such as angular contact ball bearings, tapered roller bearings, axial spherical roller bearings), larger throughput quantities are permissible due to the pumping effect than for bearings with a symmetrical cross-section. Large quantities can be used to dissipate wear debris or heat.

Design of adjacent construction for oil lubrication

The lubrication holes in the housing and shaft must align with those in the rolling bearings.

Adequate cross-sections must be provided for annular slots, pockets, etc. The oil must be able to flow out without pressure (this prevents oil build-up and additional heating of the oil).

In axial bearings, the oil must always be fed from the inside to the outside.

Oil injection lubrication

In bearings running at high speeds, the oil is injected into the gap between the cage and bearing ring. Injection lubrication using large recirculation quantities is associated with high power loss.

Heating of the bearings can only be held within limits with a considerable amount of effort. The appropriate upper limit for the speed parameter $n \cdot d_M = 1\,000\,000 \text{ min}^{-1} \cdot \text{mm}$ can, in the case of suitable bearings (for example, spindle bearings), be exceeded to a considerable degree when using injection lubrication.

Heat dissipation via the lubricant

Oil can dissipate frictional heat from the bearing. It is possible to calculate the heat flow $\dot{\mathbf{Q}}_L$ that is dissipated by the lubricant and the necessary lubricant volume flow $\dot{\mathbf{V}}_L$, see Schaeffler catalogue HR 1, Rolling Bearings.

Oil change At temperatures in the bearing of less than +50 °C and with only slight contamination, an oil change once per year is generally sufficient. The precise oil change intervals should be agreed in consultation with the oil manufacturer.

Severe operating conditions

Under more severe conditions, the oil should be changed more frequently. This applies, for example, in the case of higher temperatures and low oil quantities with a high circulation index.

The circulation index indicates how often the entire oil volume available is circulated or pumped around the system per hour, see Schaeffler catalogue HR 1, Rolling Bearings.

Equation 72

Circulation index = $\frac{\text{Pump displacement m}^3/\text{h}}{\text{Container volume m}^3}$

Bearing data The difference between internal clearance and operating clearance is explained below. In addition, bearing parts such as bearing materials, cages, guides, etc. are described.

Radial internal The radial internal clearance applies to bearings with an inner ring and clearance is determined on the unmounted bearing. It is defined as the amount by which the inner ring can be moved relative to the outer ring in a radial direction from one extreme position to the other, see Figure 65, Page 615.

The following table gives the radial internal clearance groups in accordance with DIN 620-4 and ISO 5753-1 respectively.

Internal clearance group in accordance with DIN 620-4	Internal clearance group in accordance with ISO 5753-1	Description	Area of application
C2	Group 2	Internal clearance < CN	For heavy alternating loads combined with swivel motion
CN	Group N	Normal internal clearance, CN is not normally included in bearing designations	For normal operating conditions with shaft and housing tolerances, see section Operating clearance, Page 615, and Design of bearing arrangements, Page 625
С3	Group 3	Internal clearance > CN	For bearing rings with press fits and
C4	Group 4	Internal clearance > C3	large temperature differential between the inner and outer ring
C5	Group 5	Internal clearance > C4	

Enveloping circle

e For bearings without an inner ring, the enveloping circle F_w is used. This is the inner inscribed circle of the rolling elements in clearance-free contact with the outer raceway, see Figure 64.

Figure 64 Enveloping circle

F_w = enveloping circle diameter

Rolling element
 Outer raceway

Operating clearance	The operating clearance is determined on a mounted bearing still warm
	from operation. It is defined as the amount by which the shaft can be
	moved in a radial direction from one extreme position to the other.
	The operating clearance is derived from the radial internal clearance and
	the change in the radial internal clearance as a result of interference fit and thermal influences in the mounted condition.

Operating The operating clearance value is dependent on the operating and mounting clearance value conditions of the bearing, see also section Design of bearing arrangements, Page 625.

A larger operating clearance is, for example, necessary if heat is transferred via the shaft, the shaft undergoes deflection or if misalignment occurs. An operating clearance smaller than CN should only be used in special cases, for example in high precision bearing arrangements. The normal operating clearance is achieved with an internal clearance of CN or, in the case of larger bearings, predominantly with C3 if the recommended shaft and housing tolerances are maintained, see section Design of bearing arrangements, Page 625.

The operating clearance can be calculated as follows:

Equation 73

 $s = s_r - \Delta s_P - \Delta s_T$

Legend s μm Radial operating clearance of mounted bearing warm from operation

s_r μm Radial internal clearance

Axial internal clearance

The axial internal clearance s_a is defined as the amount by which one bearing ring can be moved relative to the other, without load, along the bearing axis, see Figure 65.

Figure 65 Axial and radial

internal clearance

s_a = axial internal clearance s_r = radial internal clearance

With various bearing types, the radial internal clearance s_r and the axial internal clearance s_a are dependent on each other. The following table shows guide values for the relationship between the radial and axial internal clearance for some bearing types.

Bearing type	Ratio between axial and radial internal clearance s _a /s _r	
Self-aligning ball bearings		2,3 · Y ₀ ¹⁾
Spherical roller bea	2,3 · Y ₀ ¹⁾	
Tapered roller bearings	Single row, arranged in pairs	4,6 · Y ₀ ¹⁾
	Matched pairs (N11CA)	2,3 · Y ₀ ¹⁾
Angular contact	Double row, series 32 and 33	1,4
ball bearings	Double row, series 32B and 33B	2
Four point contact	1,4	

¹⁾ $\overline{Y_0}$ = axial load factor in accordance with product table.

Bearing materials Schaeffler rolling bearings fulfil the requirements for fatigue strength, wear resistance, hardness, toughness and structural stability.

> The material used for the rings and rolling elements is generally a low-alloy, through hardening chromium steel of high purity. For bearings subjected to considerable shock loads and reversed bending stresses, case hardening steel is also used.

In recent years, the improved quality of rolling bearing steels has been the principal factor in achieving considerable increases in basic load ratings.

The results of research as well as practical experience confirm that bearings made from the steel currently used as standard can achieve their endurance limit if loads are not excessively high and the lubrication and cleanliness conditions are favourable.

Through the use of special bearings made from HNS (High Nitrogen Steel), High Nitrogen Steel it is possible to achieve adequate service life even under the most challenging conditions (high temperatures, moisture, contamination).

 High performance
 For increased performance requirements, highly corrosion-resistant, nitrogen-alloyed martensitic HNS steels are available such as Cronitect

 Cronitect
 Cronidur and Cronitect.

> In contrast to Cronidur, the more economical alternative Cronitect has nitrogen introduced into the structure by means of a surface layer hardening process.

Both steels are clearly superior to conventional corrosion-resistant steels for rolling bearings in terms of corrosion resistance and fatigue strength.

Ceramic materials Ceramic hybrid spindle bearings contain balls made from silicon nitride. These ceramic balls are significantly lighter than steel balls. The centrifugal forces and friction are considerably lower.

Hybrid bearings allow very high speeds, even with grease lubrication, as well as long operating life and low operating temperatures.

Materials for bearing components The following table shows suitable materials and their applications in bearing technology.

Material	Bearing components (example)
Through hardening steel – rolling bearing steel in accordance with ISO 683-17	Outer and inner ring, axial washer, balls, rollers
HNS – High Nitrogen Steel	Outer and inner ring
Corrosion-resistant steel – rolling bearing steel in accordance with ISO 683-17	Outer and inner ring
Case hardening steel	For example, outer ring of yoke type track rollers
Flame or induction hardening steel	Roller stud of stud type track rollers
Steel strip in accordance with EN 10139, SAE J403	Outer ring for drawn cup needle roller bearings
Silicon nitride	Ceramic balls
Brass alloy	Cage
Aluminium alloy	Cage
Polyamide (thermoplastic)	Cage
NBR, FPM, TPU	Sealing ring

Cages	 The most important functions of the cage are: ■ to separate the rolling elements from each other, in order to minimise friction and heat generation.
	to maintain the rolling elements at the same distance from each other, in order to ensure uniform load distribution.
	to prevent the rolling elements from falling out in bearings that can be dismantled or swivelled out.
	to guide the rolling elements in the unloaded zone of the bearing.
	Rolling bearing cages are subdivided into sheet metal and solid section cages.
Sheet metal cages	These cages are predominantly made from steel and for some bearings from brass, see Figure 66, Page 619. In comparison with solid section cages made from metal, sheet metal cages are of lower mass.
	Since a sheet metal cage only fills a small proportion of the gap between the inner and outer ring, lubricant can easily reach the interior of the bearing and is held on the cage.
	In general, a sheet steel cage is only included in the bearing designation if it is not defined as a standard version of the bearing.
Solid section cages	These cages are made from metal, laminated fabric or plastic, see Figure 67 and Figure 68, Page 619. They can be identified from the bearing designation.
	Solid section cages made from metal or laminated fabric Solid section cages made from metal are used where there are requirements for high cage strength and at high temperatures.
	Solid section cages are also used if the cage must be guided on ribs. Rib-guided cages for bearings running at high speeds are made in many cases from light materials, such as light metal or laminated fabric, in order to achieve low inertia forces.
	Solid section cages made from polyamide PA66 Solid section cages made from polyamide PA66 are produced using injection moulding, see Figure 68, Page 619. As a result, cage types can generally be realised that allow designs with particularly high load carrying capacity. The elasticity and low mass of polyamide are favourable under shock type bearing loads, high accelerations and decelerations and tilting of the bearing rings in relation to each other. Polyamide cages have very good sliding and emergency running characteristics.
	Cages made from glass fibre reinforced polyamide PA66 are suitable for long term temperatures up to +120 °C. For higher operating temperatures, plastics such as PA46 or PEEK can be used.
	When using oil lubrication, additives in the oil can impair the cage operating life. Aged oil can also impair the cage operating life at high temperatures, so attention must be paid to compliance with the oil change intervals.

Cage designs The following images show some typical cage designs.

Figure 66 Sheet steel cages

Figure 67 Solid brass cages

 Riveted solid section cage for deep groove ball bearings
 Window cage for angular contact ball bearings
 Riveted cage with crosspiece rivets for cylindrical roller bearings

Figure 68

Solid section cages made from glass fibre reinforced polyamide

 Window cage for single row angular contact ball bearings
 Window cage for cylindrical roller bearings
 Window cage for needle roller bearings

ISO dimension plans for bearing types

German and international standards (DIN, ISO) contain the external dimensions of common rolling bearings defined in the form of dimension plans. The principal basis for the formulation of dimension plans is several series of rolling bearings that were manufactured to coincident external dimensions as early as the start of the 20th Century. These series have been systematically expanded and additional series have been added. In order to prevent dimensions from multiplying and spreading in an uncontrolled manner, attention was paid not simply to the range to be considered at present but also to defining the dimensions of bearings that may be designed and manufactured in future.

ISO describes the dimension plans for the various types in separate documents as follows:

- radial bearings (excluding single row needle roller bearings, radial insert ball bearings and tapered roller bearings) in ISO 15
- tapered roller bearings in ISO 355
- axial bearings in ISO 104

DIN 616 describes dimension plans for radial and axial bearings. An overview of ISO and DIN rolling bearing standards is given in DIN 611:2010.

Advantages of dimension plans

The dimension plans are valid for different bearing types. Standard rolling bearings of different types can be manufactured to the same external dimensions. As a result, a designer working on the same design envelope can make a selection between bearings of several types with the same external dimensions.

In the dimension plans, one bearing bore is allocated several outside diameters and width dimensions, see Figure 71, Page 622. In this way, it is possible to design several bearings of the same type that, for the same bore, exhibit different load carrying capacities. The development of new bearing series and individual new rolling bearings in accordance with the dimension plans has considerable advantages for users and manufacturers. The dimension plans should always be used as a basis for all future developments.

Width and diameter series

Width and diameter series are described using numbers. In the case of radial bearings in accordance with DIN 616 and ISO 15, these are as follows:

- for identification of the width series, the numbers 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, see Figure 69, Page 621
- for identification of the diameter series, the numbers 7, 8, 9, 0, 1, 2, 3, 4, 5, see Figure 70, Page 621

The dimension series, part series and diameter series are included in numerous standardised rolling bearing designations.

Dimension series

The specific number of the width and diameter series, when combined. identifies the dimension series, see following table. When this table is used, for example, for a radial bearing of the width series 2 and the diameter series 3, the result is the dimension series 23, see Figure 71, Page 622. If the bearing bore code is then added, the bearing size is completely defined.

Width series – increase in cross-sectional width											
		8	9	0	1	2	3	4	5	6	7
neter series crease in cross-sectional height	5	-	-	-	-	-	-	-	-	-	-
	4	-	-	04	-	24	-	-	-	-	I
	3	83	-	03	12	23	33	-	-	-	I
	2	82	-	02	12	22	32	42	52	62	I
	1	-	-	01	11	21	31	41	51	61	I
	0	-	-	00	10	20	30	40	50	60	I
	9	-	-	09	19	29	39	49	59	69	-
	8	-	-	08	18	28	38	48	58	68	-
Dial - in	7	-	-	-	17	27	37	47	-	-	-

Identifying the width series

1 Width series

the diameter series

1 Diameter series

Width series
 Diameter series
 Dimension series

Specification of the bearing bore

For certain bearing types, the bearing bores are stated directly or in an encoded form in accordance with DIN 623-1. Up to d < 10 mm, the bearing bore diameter is specified in the dimension-specific part of the designation (basic designation) directly as a number indicating the diameter.

Example: Deep groove ball bearing 623, bore diameter = 3 mm.

Bore code

For nominal dimensions d \ge 10 mm to d < 500 mm, the diameter is described by means of a bore code.

For bores from 10 mm to 17 mm, this is as follows:

- d = 10 mm, bore code 00
- d = 12 mm, bore code 01
- d = 15 mm, bore code 02
- d = 17 mm, bore code 03.

For all rolling bearings in the range from d = 20 mm to d = 480 mm(with the exception of double direction axial bearings), the bore code is generated by dividing the bearing bore dimension by 5. Example: Bearing bore d = 360 mm divided by 5 (360 : 5), bore code = 72.

At or above d > 480 mm, the unencoded bore diameter is indicated with an oblique after the bearing series, for example 618/500 with bore diameter d = 500 mm. The intermediate sizes such as bore diameter d = 22, 28 and d = 32 mm are also indicated with an oblique as /22, /28 and /32.

In the case of magneto bearings, the unencoded nominal bore dimension is given.

Bearing designations Each rolling bearing has a designation that clearly indicates the type, dimensions, tolerances and internal clearance, if necessary with other important features. Bearings that have the same standardised designation are interchangeable with each other. In the case of separable bearings, it cannot always be ensured that individual parts with the same origin can be interchanged with each other.

In Germany, the bearing designations are standardised in DIN 623-1. These designations are also used in many other countries.

Rolling bearing designations

The designation for the bearing series comprises numbers and letters or letters and numbers. This indicates the type of bearing, the diameter series and, in many cases, the width series as well, see Figure 72.

Basic designation, prefix and suffix

The basic designation contains the code for the bearing series and the bearing bore. Examples of basic designations: see section Bearing designations comprising the basic designations – examples, Page 624.

The prefix normally identifies individual bearing parts of complete bearings or material variants of a bearing (in certain cases, this may also be part of the basic designation).

The suffix defines special designs and features.

The prefix and suffix describe other features of the bearing but are not standardised in all cases and may vary in use depending on the manufacturer.

Figure 72 shows an example of designations on the basis of their definition.

Prefix	Basic designation	-Suffix		
	Designation Dimension Bore of bearing type series code			
	61820	-2RSR-Y		
	6 Designation of bearing type: deep groove ball bearing 18 Dimension series: 18 Dimension series: 20 Bore code → bore diameter 100 mm	2RSR Contact seals on both sides s 8 Y Sheet brass cage		

Bearing designations comprising the basic designations – examples

6203

- 62 = bearing series 62, deep groove ball bearing, width series 0 (not included in basic designation), diameter series 2
- 03 = bore code, bore d = 17 mm
- 2201
 - 22 = bearing series 22, self-aligning ball bearing, width series 2, diameter series 2
 - 01 = bore code, bore d = 12 mm
- 239/800
 - 239 = bearing series 239, spherical roller bearing, width series 3, diameter series 9
 - 800 = bore code, bore d = 800 mm
- 3315
 - 33 = bearing series 33, angular contact ball bearing, double row, width series 3, diameter series 3
 - 15 = bore code, bore $d = 75 mm (15 \cdot 5)$
- NU2314

NU23 = bearing series NU23, cylindrical roller bearing with two ribs on outer ring, width series 2, diameter series 3

14 = bore code, bore d = 70 mm $(14 \cdot 5)$

51268

- 512 = bearing series 512, axial deep groove ball bearing, height series 1, diameter series 2
- 68 = bore code, bore d = 340 mm ($68 \cdot 5$).

Bearing designations that comprise only the basic designation and do not include prefixes or suffixes, identify normal bearings with normal dimensional, geometrical and running accuracy as well as with normal radial internal clearance.

Deviations from the normal design are indicated in the prefixes and suffixes.

Design of bearing arrangements	The guidance and support of a rotating machine part generally requires at least two bearings arranged at a certain distance from each other (exceptions: four point contact, crossed roller and slewing bearings). Depending on the application, a decision is made between a locating/ non-locating bearing arrangement, an adjusted bearing arrangement and a floating bearing arrangement.
Locating/non-locating bearing arrangement	On a shaft supported by two radial bearings, the distances between the bearing seats on the shaft and in the housing frequently do not coincide as a result of manufacturing tolerances. The distances may also change as a result of temperature increases during operation. These differences in distance are compensated in the non-locating bearing. Examples of locating/non-locating bearing arrangements, see Figure 73, Page 626 to Figure 76, Page 627.
	Non-locating bearings Ideal non-locating bearings are cylindrical roller bearings with cage N and NU or needle roller bearings, see Figure 73 ②, ④, Page 626. In these bearings, the roller and cage assembly can be displaced on the raceway of the bearing ring without ribs.
	All other bearing types, for example deep groove ball bearings and spherical roller bearings, can only act as non-locating bearings if one bearing ring has a fit that allows displacement, see Figure 74, Page 627. The bearing ring subjected to point load therefore has a loose fit; this is normally the outer ring, see table Conditions of rotation, Page 634.
	Locating bearings The locating bearing guides the shaft in an axial direction and supports external axial forces. In order to prevent axial stresses, shafts with more than two bearings have only one locating bearing. The type of bearing selected as a locating bearing depends on the magnitude of the axial forces and the accuracy with which the shafts must be axially guided.
	A double row angular contact ball bearing, see Figure 75 (1), Page 627, will, for example, give closer axial guidance than a deep groove ball bearing

A double row angular contact ball bearing, see Figure 75 (1), Page 627, will, for example, give closer axial guidance than a deep groove ball bearing or a spherical roller bearing. A pair of symmetrically arranged angular contact ball bearings or tapered roller bearings, see Figure 76, Page 627, used as a locating bearing will provide extremely close axial guidance.

There are particular advantages in using angular contact ball bearings of the universal design, see Figure 77, Page 628. The bearings can be fitted in pairs in any O or X arrangement without shims. Angular contact ball bearings of the universal design are matched so that, in an X or O arrangement, they have a low axial internal clearance (design UA), zero clearance (UO) or slight preload (UL).

Spindle bearings of the universal design UL, see Figure 78, Page 628, have slight preload when mounted in an X or O arrangement.

In gearboxes, a four point contact bearing is sometimes mounted directly adjacent to a cylindrical roller bearing to give a locating bearing arrangement, see Figure 75 (3), Page 627. The four point contact bearing, without radial support of the outer ring, can only support axial forces. The radial force is supported by the cylindrical roller bearing.

If a lower axial force is present, a cylindrical roller bearing with cage NUP can also be used as a locating bearing, see Figure 76 (3), Page 627.

No adjustment or setting work with matched pairs of tapered roller bearings

Mounting is also made easier with a matched pair of tapered roller bearings as a locating bearing (313...DF), see Figure 79 (2), Page 628. They are matched by the manufacturer with appropriate axial internal clearance such that no adjustment or setting work is required.

Examples of locating/non-locating bearing arrangements

The following figures show examples of locating/non-locating bearing arrangements.

Figure 73

Locating/non-locating bearing arrangements

 Locating bearing: deep groove ball bearing
 Non-locating bearing: cylindrical roller bearing NU
 Locating bearing: axial angular contact ball bearing ZKLN
 Non-locating bearing: needle roller bearing NKIS

Figure 74

Locating/non-locating bearing arrangements

 Locating bearing: deep groove ball bearing: @ Non-locating bearing: deep groove ball bearing ③ Locating bearing: spherical roller bearing % Non-locating bearing: spherical roller bearing

Figure 75 Locating/non-locating

bearing arrangements

 Locating bearing: double row angular contact ball bearing
 Non-locating bearing: cylindrical roller bearing NU
 Locating bearing: four point contact bearing and cylindrical roller bearing
 Non-locating bearing: cylindrical roller bearing NU

Figure 76

Locating/non-locating bearing arrangements

 Locating bearing: two tapered roller bearings
 Non-locating bearing: cylindrical roller bearing NU
 Locating bearing: cylindrical roller bearing NUP
 Non-locating bearing: cylindrical roller bearing NUP

Adjusted bearing arrangement arrangement tapered roller bearings), see Figure 80. The inner and outer rings of the bearings are displaced relative to each other until the required clearance or the required preload is achieved. This process is known as "adjustment".

Angular contact bearings and deep groove ball bearings suitable for adjusted bearing arrangements

Angular contact bearings support forces comprising a radial and an axial component. These are thus a combination of a radial and an axial bearing. Depending on the size of the nominal contact angle α , angular contact bearings are classified as radial or axial bearings. Deep groove ball bearings can also be used for an adjusted bearing arrangement; these are then angular contact ball bearings with a small nominal contact angle. Due to the possibility of regulating the clearance, adjusted bearing arrangements are particularly suitable if close guidance is necessary.

O or X arrangement

In an adjusted bearing arrangement, an O or X arrangement of the bearings is essentially possible, see Figure 80.

In the O arrangement, the cones and their apexes S formed by the contact lines point outwards; in the X arrangement, the cones point inwards. The support base H, i.e. the distance between the apexes of the contact cones, is wider in the O arrangement than in an X arrangement. An O arrangement should be used in preference if the component with small bearing spacing must be guided with the smallest possible tilting clearance or tilting forces must be supported.

Influence of thermal expansion in O and X arrangements

When deciding between an O and X arrangement, attention must also be paid to the temperature conditions and thermal expansions. This is based on the position of the roller cone apexes R. The roller cone apex R represents the intersection point of the extended inclined outer ring raceway with the bearing axis, see Figure 81, Page 630.

If the shaft is warmer than the housing ($T_W > T_G$), the shaft expands more than the housing in an axial and radial direction. As a result, the clearance set in an X arrangement decreases in every case (assuming the following precondition: shaft and housing of same material).

Figure 80 Adjusted bearing arrangement

- S = contact cone apex H = support distance Angular contact ball bearings
 - (1) O arrangement (2) X arrangement

Figure 81 Adjusted bearing arrangement

S = contact cone apex R = roller cone apex Tapered roller bearings

X arrangement

The behaviour is different in an O arrangement. A distinction is made here between three cases:

- If the roller cone apexes R coincide at a point, the axial and radial thermal expansion cancel each other out and the clearance set is maintained, see Figure 82 (1).
- If there is a small distance between the bearings and the roller cones overlap, see Figure 82 (2), the radial expansion has a stronger effect than the axial expansion on the bearing clearance: the axial clearance is reduced. This must be taken into consideration in the adjustment of the bearings.
- If there is a large distance between the bearings and the roller cones do not overlap, see Figure 82 (3), the radial expansion has a lesser effect than the axial expansion on the bearing clearance: the axial clearance is increased.

Figure 82

Tapered roller bearings, O arrangement

S = contact cone apex R = roller cone apex

 Roller cone apexes coincide
 Roller cone apexes overlap
 Roller cone apexes do

not overlap

Schaeffler
Elastic adjustment

Adjusted bearing arrangements can also be achieved by preloading using springs, see Figure 83 ①. This elastic adjustment method compensates for thermal expansion. It can also be used where bearing arrangements are at risk of vibration while stationary.

Figure 83 Adjusted bearing arrangement

Deep groove ball bearing preloaded by means of spring washer

 $\textcircled{1} \mathsf{Spring} \, \mathsf{washer}$

Floating bearing arrangement

The floating bearing arrangement is essentially similar in its arrangement to the adjusted bearing arrangement. While freedom from clearance or even preload is desirable when warm from operation in the latter case, floating bearing arrangements always have an axial clearance s of several tenths of a millimetre depending on the bearing size; see Figure 84, Page 632. The value s is defined as a function of the required guidance accuracy such that the bearings are not axially stressed even under unfavourable thermal conditions.

Suitable bearing types

For a floating bearing arrangement, almost all bearing types that cannot be adjusted may be considered; examples: see Figure 84, Page 632. Floating arrangements are thus possible with, for example, deep groove ball bearings, self-aligning ball bearings and spherical roller bearings; one ring of each of the two bearings (usually the outer ring) then has a sliding seat. In the floating bearing arrangement with cylindrical roller bearings NJ, length compensation is possible within the bearing.

Tapered roller bearings and angular contact ball bearings are not usually suitable for a floating bearing arrangement with a large axial clearance.

s = axial displacement (axial clearance)

> Two deep groove ball bearings
> Two spherical roller bearings
> Two cylindrical roller bearings NJ

Fits Rolling bearings are located on the shaft and in the housing in a radial, axial and tangential direction in accordance with their function. In a radial and tangential direction, this occurs by means of a tight fit. However, this is only possible under certain conditions in an axial direction, therefore rolling bearings are generally axially located by means of form fit.

Criteria for selection of fits

The following must be taken into consideration in determining the fit:

- The bearing rings must be well supported on their circumference in order to allow full utilisation of the load carrying capacity of the bearing.
- The rings must not creep on their mating parts, otherwise the seats will be damaged.
- The non-locating bearing must compensate changes in the length of the shaft and housing, so one ring must be axially adjustable.
- The bearings must be easy to mount and dismount.

Good support of the bearing rings on their circumference requires a tight fit. The requirement that rings must not creep on their mating parts also requires a tight fit. If non-separable bearings must be mounted and dismounted, a tight fit can only be achieved for one bearing ring. In the case of cylindrical roller bearings N, NU and needle roller bearings, both rings can have tight fits, since the length compensation takes place within the bearing and since the rings can be fitted separately.

As a result of tight fits and a temperature differential between the inner and outer ring, the radial internal clearance of the bearing is reduced. This must be taken into consideration when selecting the radial internal clearance.

If a material other than cast iron or steel is used for the adjacent construction, the modulus of elasticity and the differing coefficients of thermal expansion of the materials must also be taken into consideration to achieve a tight fit.

For aluminium housings, thin-walled housings and hollow shafts, a closer fit should be selected if necessary in order to achieve the same force locking as with cast iron, steel or solid shafts.

Higher loads, especially shocks, require a larger interference fit and narrower geometrical tolerances.

Bearing seat for axial bearings

Axial bearings, which support axial loads only, must not be guided radially – with the exception of axial cylindrical roller bearings which have a degree of freedom in the radial direction due to flat raceways. In the case of grooveshaped raceways this is not present and must be achieved by a loose seat for the stationary washer. A rigid seat is normally selected for the rotating washer.

Where axial bearings also support radial forces, such as in axial spherical roller bearings, fits should be selected in the same way as for radial bearings.

The contact surfaces of the mating parts must be perpendicular to the axis of rotation (total axial run-out tolerance to IT5 or better), in order to ensure uniform load distribution over all the rolling elements.

Conditions of rotation The condition of rotation indicates the motion of one bearing ring with respect to the load direction and is present as either circumferential load or point load, see table Conditions of rotation, Page 634.

Point load

If the ring remains stationary relative to the load direction, there are no forces that displace the ring relative to its seating surface. This type of loading is described as point load.

There is no risk that the seating surface will be damaged. In this case, a loose fit is possible.

Circumferential load

If forces are present that displace the ring relative to its seating surface, every point on the raceway is subjected to load over the course of one revolution of the bearing. This type of loading is described as circumferential load.

There is a risk that the seating surface will be damaged. A tight fit should therefore be provided.

Indeterminate load direction

If the load changes in direction irregularly or by swivelling, or if shocks or vibrations occur, the raceway is also subjected to load. This type of loading is described as an indeterminate load direction.

There is a risk that the seating surface will be damaged. A tight fit should therefore be provided.

Guidelines for the selection of shaft and hole tolerances for the various bearing designs under specific mounting and loading conditions can be found in the Schaeffler catalogues for rolling bearings.

The following table shows different conditions of rotation (conditions of motion):

Conditions of rotation	Example	Schematic	Load case	Fit
Rotating inner ring	Shaft with weight		Circumferen- tial load	Inner ring: tight fit
Stationary outer ring	1080		on inner ring and	necessary and
Constant load direction		F _r	Point load on outer ring	Outer ring: loose fit permissible
Stationary inner ring	Hub bearing arrangement	ω _a F _{ru}		
Rotating outer ring	with significant imbalance			
Load direction rotates with outer ring				
Stationary inner ring	Passenger car front wheel,	wa	Point load on inner ring	Inner ring: loose fit
Rotating outer ring	(hub bearing arrangement)	Q_{5}	and Circumferen-	and
Constant load direction		F _r	tial load on outer ring	Outer ring: tight fit necessary
Rotating inner ring	Centrifuge, vibrating	Fru		·····
Stationary outer ring	screen			
Load direction rotates with inner ring				

 $\begin{array}{ll} \mbox{Shaft and housing} \\ \mbox{tolerances} \\ \mbox{tolerances} \\ \mbox{(ISO 286), in conjunction with the tolerances for shafts and housings} \\ \mbox{t}_{\Delta Dmp} \mbox{ for the outside diameter of the bearings} (ISO 492 \mbox{ for radial bearings}, ISO 199 \mbox{ for axial bearings}). \end{array}$

ISO tolerance classes The shaft and housing tolerances are defined in the form of ISO tolerance classes to ISO 286-1 and ISO 286-2. The designation of the tolerance classes, for example "E8", comprises one or two upper case letters for housings or lower case letters for shafts (= fundamental deviation identifier, which defines the tolerance position relative to the zero line, such as "E") and the grade number of the standard tolerance grade (this defines the tolerance quality, for example "8").

Reference to tables
of shaft and
housing tolerancesThe tables on Page 635 to Page 638 contain recommendations
for the selection of shaft and housing tolerances that are valid for normal
mounting and operating conditions.

Deviations are possible if particular requirements apply, for example in relation to running accuracy, smooth running or operating temperature. Increased running accuracies thus require closer tolerances such as standard tolerance grade 5 instead of 6. If the inner ring is warmer than the shaft during operation, the seating may loosen to an impermissible extent. A tighter fit must then be selected, for example m6 instead of k6.

In such cases, the question of fits can only be resolved by a compromise. The individual requirements must be weighed against each other and those selected that give the best overall solution.

Shaft tolerances for radial bearings with cylindrical bore

For radial bearings with a cylindrical bore, the shaft tolerances are as follows:

Condition of rotation	Bearing type	Shaft diameter in mm over incl.		Shaft diameter in mm		Shaft diameter in mm		Displacement facility Load	Tolerance class ¹⁾
Point load on inner ring	Ball bearings, roller bearings	All sizes All sizes		All sizes		Inner ring easily displaced	g6 (g5)		
				Inner ring not easily displaced Angular contact ball bearings and tapered roller bearings with adjusted inner ring	h6 (j6)				
	Needle roller bearings			Non-locating bearings	h6 (g6) ²⁾				

Continuation of table, see Page 636.

1) The envelope requirement (2) applies.

²⁾ For easier mounting.

Continuation of table, Shaft tolerances for radial bearings with cylindrical bore, from Page 635.

Condition of rotation	Bearing type	Shaft diameter in mm		Displacement facility Load	Tolerance class ¹⁾	
		over	incl.			
Circumferential	Ball	-	50	Normal loads ²⁾	j6 (j5)	
load on inner ring or	bearings	50	100	Low loads ³⁾	j6 (j5)	
indeterminate				Normal and high loads ⁴⁾	k6 (k5)	
load direction		100	200	Low loads ²⁾	k6 (m6)	
				Normal and high loads ⁵⁾	m6 (m5)	
		200	-	Low loads	m6 (m5)	
				Normal and high loads	n6 (n5)	
	Roller	-	60	Low loads	j6 (j5)	
	bearings			Normal and high loads	k6 (k5)	
		60	200	Low loads	k6 (k5)	
				Normal loads	m6 (m5)	
				High loads	n6 (n5)	
		200	500	Normal loads	m6 (n6)	
				High loads, shocks	p6	
		500	-	Normal loads	n6 (p6)	
				High loads	p6	
Circumferential	Needle roller bearings	-	50	Low loads	k6	
load on inner ring or				Normal and high loads	m6	
indeterminate		50	120	Low loads	m6	
load direction				Normal and high loads	n6	
		120	250	Low loads	n6	
				Normal and high loads	p6	
		250	400	Low loads	p6	
				Normal and high loads	r6	
		400	500	Low loads	r6	
				Normal and high loads	s6	
		500	-	Low loads	r6	
				Normal and high loads	s6	

 $^{1)}$ The envelope requirement $\textcircled{\mbox{\sc e}}$ applies.

Shaft tolerances for axial bearings

For axial bearings, the shaft tolerances are as follows:

Load	Bearing type	Shaft diameter in mm		Shaft diameter in mm		Shaft diameter Operating conditions	
		over	incl.				
Axial load	Axial deep groove ball bearing	All sizes		-	j6		
	Axial deep groove ball bearing, double direction					-	k6
	Axial cylindrical roller bearing with shaft locating washer					-	h8
	Axial cylindrical roller and cage assembly			-	h8		
Combined load	Axial spherical roller bearing	All sizes		Point load on shaft locating washer	j6		
		-	200	Circumferential	j6 (k6)		
		200	-	load on shaft locating washer	k6 (m6)		

1) The envelope requirement (2) applies.

Housing tolerances for radial bearings

For radial bearings with a cylindrical bore, the housing tolerances are as follows:

Condition of rotation	Displacement facility Load	Operating conditions	Tolerance class ¹⁾
Point load on outer ring	Outer ring easily displaced, housing unsplit	The tolerance grade is determined	H7 (H6) ²⁾
	Outer ring easily displaced, housing split	by the running accuracy required	H8 (H7)
	Outer ring not easily displaced, housing unsplit	High running accuracy required	H6 (J6)
	Outer ring not easily displaced, angular contact ball bearings and tapered roller bearings with adjusted outer ring, housing split	Normal running accuracy	H7 (J7)
	Outer ring easily displaced	Heat input via shaft	G7 ³⁾

Continuation of table, see Page 638.

1) The envelope requirement (2) applies.

- $^{(2)}$ G7 for housings made from flake graphite cast iron if bearing outside diameter D > 250 mm and temperature differential between outer ring and housing > 10 K.
- ³⁾ F7 for housings made from flake graphite cast iron if bearing outside diameter
 - D > 250~mm and temperature differential between outer ring and housing > 10~K.

Continuation of table, Housing tolerances for radial bearings, from Page 637.

Condition of rotation	Displacement facility Load	Operating conditions	Tolerance class ¹⁾
Circumferen- tial load on	Low loads, outer ring cannot be displaced	For high running accuracy	K7 (K6)
outer ring or indeterminate load direction	Normal loads, shocks, outer ring cannot be displaced	requirements: K6, M6, N6 and P6	M7 (M6)
	High loads, shocks (C ₀ /P ₀ < 6), outer ring cannot be displaced		N7 (N6)
	High loads, severe shocks, thin- walled housing, outer ring cannot be displaced		P7 (P6)

1) The envelope requirement (2) applies.

Housing tolerances for axial bearings

For axial bearings with a cylindrical bore, the housing tolerances are as follows:

Load, condition of rotation	Bearing type	Operating conditions	Tolerance class ¹⁾
Axial load	Axial deep groove ball bearing	Normal running accuracy	E8
		High running accuracy	H6
	Axial cylindrical roller bearing with housing locating washer	-	Н9
	Axial cylindrical roller and cage assembly	-	H10
	Axial spherical roller	Normal loads	E8
	bearing	High loads	G7
Combined load Point load on housing locating washer	Axial spherical roller bearing	-	H7
Combined load Circumferential load on housing locating washer	Axial spherical roller bearing	-	K7

1) The envelope requirement (E) applies.

Geometrical and positional tolerances of bearing seating surfaces

Figure 85 Guide values for the geometrical and positional tolerances of bearing seating surfaces

 t_1 = roundness tolerance t_2 = parallelism tolerance t_3 = total axial run-out tolerance of abutment shoulders t_6 = coaxiality tolerance In order to achieve the required fit, the bearing seats and fit surfaces of the shaft and housing bore must conform to certain tolerances, see Figure 85 and table, Page 640.

For bearing seating surfaces,	the geometrical ar	nd positional tolerances
are as follows:		

Tolerance of bearings	lass	Bearing seating	Fundamental tolerance grades ¹⁾				
To ISO 492	To DIN 620	surface	Diameter tolerance	Load case	Roundness tolerance	Parallelism tolerance	Total axial run-out tolerance of abutment shoulder
					t ₁	t ₂	t ₃
Normal 6X	PN (P0) P6X	Shaft	IT6 (IT5)	Circumferential load	IT4/2	IT4/2	IT4
				Point load	IT5/2	IT5/2	
		Housing	IT7 (IT6)	Circumferential load	IT5/2	IT5/2	IT5
				Point load	IT6/2	IT6/2	
6	P6	Shaft	IT5	Circumferential load	IT3/2	IT3/2	IT3
				Point load	IT4/2	IT4/2	
		Housing	IT6	Circumferential load	IT4/2	IT4/2	IT4
				Point load	IT5/2	IT5/2	
5	P5	Shaft	IT5	Circumferential load	IT2/2	IT2/2	IT2
				Point load	IT3/2	IT3/2	
		Housing	IT6	Circumferential load	IT3/2	IT3/2	IT3
				Point load	IT4/2	IT4/2	
4	P4 P4S ²⁾	Shaft	IT4	Circumferential load	IT1/2	IT1/2	IT1
	SP ²⁾			Point load	IT2/2	IT2/2	
		Housing	IT5	Circumferential load	IT2/2	IT2/2	IT2
				Point load	IT3/2	IT3/2	
	UP ²⁾	Shaft	IT3	Circumferential load	IT0/2	IT0/2	ITO
				Point load	IT1/2	IT1/2	
		Housing	IT4	Circumferential load	IT1/2	IT1/2	IT1
				Point load	IT2/2	IT2/2	

1) ISO fundamental tolerances (IT grades) in accordance with DIN ISO 286.

²⁾ Not included in DIN 620.

Accuracy of bearing seating surfaces The degree of accuracy of the bearing seat tolerances on the shaft and in the housing is given in the table Geometrical and positional tolerances of bearing seating surfaces, Page 640.

Second bearing seat

The positional tolerances t_4 for a second bearing seat on the shaft (d₂) or in the housing (D₂) are dependent on the types of bearings used and the operating conditions. Values for the tolerances t_4 can be requested from Schaeffler.

Housings

In split housings, the joints must be free from burrs. The accuracy of the bearing seats is determined as a function of the accuracy of the bearing selected.

Roughness of bearing seats

The roughness of the bearing seats must be matched to the tolerance class of the bearings. The mean roughness value Ra must not be too high, in order to maintain the interference loss within limits. Shafts must be ground, while bores must be precision turned.

Nominal dia of bearing s d (D) mm	ameter seat	Recommended mean roughness value for ground bearing seats Ramax µ.m			
		Diameter tolerance (IT grade)			
over	incl.	IT7	IT6	IT5	IT4
-	80	1,6	0,8	0,4	0,2
80	500	1,6	1,6	0,8	0,4
500	1250	3,2 ¹⁾	1,6	1,6	0,8

For bearing seating surfaces, the guide values for roughness are as follows:

 $^{1)}$ For the mounting of bearings using the hydraulic method, do not exceed the value Ra = 1.6 $\mu m.$

- Axial location of the bearing rings is matched to the specific bearing of bearings arrangement (locating bearings, non-locating bearings, bearings in adjusted and floating arrangements).
- Design guidelines The bearing rings must be located by force locking or form fit in order to prevent lateral creep. The bearing rings must only be in contact with the shaft or housing shoulder, but not with the fillet.

The shoulders on the mating parts must be large enough to provide a sufficiently wide contact surface even with the largest chamfer dimension of the bearing (DIN 5418).

Locating bearings

Locating bearings support axial forces. The retaining element must be matched to these axial forces. Shoulders on the shaft and housing, retaining rings, snap rings, housing covers, shaft covers, nuts and spacer rings are suitable.

Non-locating bearings

Non-locating bearings must support low axial forces occurring in thermal expansion. The means of axial location therefore only needs to prevent creep of the rings. A tight fit is often sufficient for this purpose.

Self-retaining bearings

In non-separable bearings, one bearing ring must have a tight fit, while the other ring is retained by the rolling elements.

For further information, see the Schaeffler catalogues.

Seals The sealing arrangement has a considerable influence on the operating life of a bearing arrangement. Its function is to retain the lubricant in the bearing and prevent the ingress of contaminants into the bearing.

Contaminants may have various effects:

- A large quantity of very small, abrasive particles causes wear in the bearing. The increase in clearance or noise brings the operating life of the bearing to an end.
- Large, overrolled hard particles reduce the fatigue life since pitting occurs at the indentation points under high bearing loads.

A basic distinction is made between contact and non-contact seals in the adjacent construction and the bearing.

Non-contact seals in the adjacent construction

With non-contact seals, only lubricant friction occurs in the lubrication gap. The seals do not undergo wear and remain capable of operation for a long period. Since they generate no heat, non-contact seals are also suitable for very high speeds.

Gap seals

A simple design, although adequate in many cases, is a narrow seal gap between the shaft and housing.

Labyrinth seals

A considerably greater sealing action than with gap seals is achieved by labyrinths incorporating gaps filled with grease. In contaminated environments, grease should be pressed from the interior into the seal gap at short intervals.

Figure 86 Gap seals and labyrinth seals

Simple gap seal
 Labyrinth seal

Ring with runoff edges

Where oil lubrication is used with a horizontal shaft, rings with a runoff edge are suitable for preventing the escape of oil. The oil outlet hole on the underside of the seal location must be sufficiently large that it cannot be clogged by contamination.

Baffle plates

Stationary (rigid) baffle plates ensure that grease remains in the area around the bearing. The grease collar that forms at the seal gap protects the bearing against contaminants.

Flinger shields

Co-rotating flinger shields have the effect of shielding the seal gap from heavy contamination.

Lamellar rings

Lamellar rings made from steel and radially sprung either outwards or inwards require little mounting space. They give protection against loss of grease and ingress of dust and are also used as an outer seal against spray water.

Figure 87 Flinaer shields

and lamellar rings

1 Flinger shield 2 Lamellar rings

Non-contact seals Non-contact seals can be fitted in the bearing instead of the adjacent in the bearing construction.

Sealing shields

Sealing shields are compact sealing elements fitted on one or both sides of the bearing. Bearings with sealing shields on both sides are supplied with a grease filling.

BRS seals (labyrinth seals)

The friction in this case is as low as that in bearings with sealing shields. They have the advantage over these, however, that the outer rubber-elastic rim gives good sealing when fitted in the slot in the outer ring. This is important with a rotating outer ring since the base oil in the grease is separated from the soap suspension by centrifugal force and would escape through the unsealed metallic seat in the outer ring if sealing shields were fitted.

in the adiacent construction

Contact seals Contact seals are normally in contact with the running surface under radial contact force. The contact force should be kept small in order to avoid an excessive increase in frictional torque and temperature. The frictional torque and temperature as well as the wear of the seal are also affected by the lubrication condition at the running surface, the roughness of the running surface and the sliding velocity.

Felt rings

Felt rings and felt strips are sealing elements that have proved very effective with grease lubrication. They are impregnated with oil before mounting and give particularly good sealing against dust. They are suitable for circumferential velocities at the running surface of up to 4 m/s. In unfavourable environmental conditions, two felt rings are arranged adjacent to each other. Felt rings and annular slots are standardised in accordance with DIN 5419.

Rotary shaft seals

For the oil sealing of rotating shafts, rotary shaft seals (RWDR) in accordance with DIN 3760 and DIN 3761 and with spring preload are suitable. The sealing rings are designed for applications with slight pressure differentials. Depending on the seal material and the surface structure of the shaft, the geometry of the seal lips generates a pumping action in the sealing gap towards the steep flank of the seal lip. The sealing ring is therefore mounted with the steep flank facing in the direction of the medium against which sealing is required.

In the case of grease lubrication, the steep flank of the rotary shaft seal is often placed in the direction of grease egress. As a result, some grease passes under the seal lip for lubrication of the sealing edge.

Springless Schaeffler sealing rings for needle roller bearings

Low-friction sealing of bearing positions with a small radial design envelope, such as bearing positions with needle roller bearings, can be effectively achieved using sealing rings G, GR and SD, see Figure 88. These sealing rings can be used individually or in a double arrangement.

In the double arrangement, one seal lip faces inwards to seal the lubrication medium, while the second seal lip faces outwards to give protection against contamination. In order to improve the protective function, the space between the seals can be filled with grease. With an extended inner ring, a sealing ring with the same outside diameter as the outer ring can be used, where the seal lip runs on the extended inner ring. Sealing rings give good protection against contamination and spray water as well as against the egress of oil and grease under slight pressure differentials. In order to reduce friction and protect the seal lip against damage, the sealing edge must be lubricated.

Lip seal with axial sealing action

Lip seals are seals with one or more seal lips that give axial or radial sealing. These seals are predominantly elastomer seals.

The V-ring is a lip seal with axial sealing action. The ring is made from elastic rubber NBR. During mounting, it is stretched and slid onto the shaft so that the seal lip is in contact with the housing wall. At circumferential velocities over 12 m/s, experience shows that the V-ring must be radially located so that it does not become detached due to centrifugal force. Precise circumferential velocities for specific applications must always be agreed in consultation with the sealing ring manufacturer.

Metallic sealing washers

When using grease lubrication, effective sealing can also be achieved by means of axially sprung sealing shields. The sheet metal shields are clamped to the end face of the inner ring or outer ring and are axially sprung against the other bearing ring.

Figure 88 Schaeffler sealing rings

 Single arrangement, bearing with extended inner ring
 Double arrangement, bearing with inner ring
 G sealing ring
 G sealing ring
 S bealing ring

Contact seals in the bearing	Contact seals can be fitted in the bearing instead of the adjacent construction.
	Sealing washers Bearings fitted with one or two sealing washers allow simple designs. The washers are suitable for giving protection against dust, contamination, damp atmospheres and slight pressure differentials. Sealing washers are used, for example, in maintenance-free bearings with grease filling. The sealing washer design RSR made from acrylonitrile butadiene rubber (NBR), normally used in deep groove ball bearings, is located under radial contact pressure against a cylindrically ground inner ring rib. Multi-lip seals are also used. Double lip seals made from NBR are used, for example, in plummer block housings, while single lip and multi-lip
	Further information: see Schaeffler catalogue HR 1, Rolling Bearings.
Products – overview	This section shows an excerpt from the Schaeffler product range of rotary rolling bearings in the Industrial Division.
	The products are also used to a significant extent – once designed and matched in accordance with the specific requirements – in applications in the Automotive Division.
	The product descriptions are, in accordance with the philosophy of this publication, presented in a condensed form and are essentially intended as an overview. While they highlight important characteristics of the products and will in many cases allow preliminary assessment of a particular bearing for its suitability in a bearing arrangement, they cannot be used directly for the design of bearing arrangements. The specific application is always the decisive factor in the use of products. In addition, the information in the specific product descriptions must always be taken into consideration.
Product information documents	The comprehensive technical product information documents (catalogues, Technical Product Information, datasheets, mounting manuals, operating manuals, etc.) can be requested from Schaeffler.
	Schaeffler can, upon request, provide support in the selection of bearings and the design of bearing arrangements.
Electronic product catalogue medias	The standard range is described in detail in the online version medias . In addition, this tool for the design of bearing arrangements provides means of assistance such as a lubricant database, a calculation tool for determining rating life and other features.
	Link to electronic product catalogue The following link will take you to the Schaeffler electronic product catalogue: https://medias.schaeffler.com.

bearings

Compilation The following table shows a compilation of standardised bearings of standardised with their names and standard numbers (excerpt from DIN 623-1).

Name/design	Image	Standard number
Radial deep groove ball bearing, single row, without filling slot	0	DIN 625-1
Radial deep groove ball bearing, double row, with or without filling slot	00	DIN 625-3
Radial deep groove ball bearing, with flanged outer ring	0	DIN 625-4
Radial magneto bearing	0	DIN 615
Radial angular contact ball bearing, single row, without filling slot, non-separable	Ø	DIN 628-1
Radial angular contact ball bearing, single row, contact angle 15° and 25°	Φ	DIN 628-6
Radial angular contact ball bearing, double row, with or without filling slot	ØQ	DIN 628-3
Angular contact ball bearing, four point contact bearing with split inner ring	\bigotimes	DIN 628-4
Radial self-aligning ball bearing, double row	8	DIN 630
Radial insert ball bearing with inner ring extended on one side, curved outer ring outside surface and eccentric locking collar		DIN 626-1
Radial insert ball bearing with inner ring extended on both sides, curved outer ring outside surface and eccentric locking collar		DIN 626-1
Radial insert ball bearing with inner ring extended on both sides, curved outer ring outside surface and grub screw		DIN 626-1

Continuation of table, see Page 648.

Continuation of table, Compilation of standardised bearings, from Page 647.

Name/design	Image	Standard number
Radial cylindrical roller bearing, single row, two rigid ribs on inner ring, ribless outer ring		DIN 5412-1
Radial cylindrical roller bearing, single row, two rigid ribs on outer ring, ribless inner ring		DIN 5412-1
Radial cylindrical roller bearing, single row, two rigid ribs on outer ring, one rigid rib on inner ring		DIN 5412-1
Radial cylindrical roller bearing, single row, two rigid ribs on outer ring, one rigid rib and one loose rib washer on inner ring		DIN 5412-1
L-section ring for cylindrical roller bearings		DIN 5412-1
Radial cylindrical roller bearing, double row, three rigid ribs on inner ring, ribless outer ring		DIN 5412-4
Radial cylindrical roller bearing, double row, three rigid ribs on outer ring, ribless inner ring		DIN 5412-4
Tapered roller bearing, single row		DIN 720
Radial spherical roller bearing, single row, barrel roller bearing		DIN 635-1
Radial spherical roller bearing, double row		DIN 635-2
Radial needle roller and cage assembly, single row		DIN 5405-1
Drawn cup needle roller bearing with open ends, single row		DIN 618
Drawn cup needle roller bearing with closed end, single row		DIN 618

Continuation of table, see Page 649.

Continuation of table, Compilation of standardised bearings, from Page 648.

Name/design	Image	Standard number
Radial needle roller bearing, single row, without inner ring		DIN 617
Radial needle roller bearing, single row, two rigid ribs on outer ring, ribless inner ring		DIN 617
Combined radial needle roller bearing/ axial deep groove ball bearing		DIN 5429-1
Combined radial needle roller bearing/ axial cylindrical roller bearing		DIN 5429-1
Combined radial needle roller bearing/ angular contact ball bearing	t to the second se	DIN 5429-2
Axial deep groove ball bearing, single direction, with flat housing locating washer		DIN 711
Axial deep groove ball bearing, single direction, with curved housing locating washer		DIN 711
Support washer for axial ball bearings		DIN 711
Axial deep groove ball bearing, double direction, with flat housing locating washer		DIN 715
Axial deep groove ball bearing, double direction, with curved housing locating washer		DIN 715
Axial needle roller and cage assembly, single row		DIN 5405-2
Axial bearing washer		DIN 5405-3
Axial cylindrical roller bearing, single direction		DIN 722
Axial spherical roller bearing, asymmetrical rollers		DIN 728

Basic structure Ro of rotary rolling in bearings

Rotary rolling bearings generally consist of the components in accordance with Figure 89:

- rolling elements (balls, ball rollers, rollers); see table Rolling element type
- inner and outer ring with rolling element raceways
- cage, see Page 618
- seals or sealing shields on one side or both sides of the bearing
- Iubricant in the case of grease lubrication

Figure 89 shows standard parts of ball and roller bearings.

Figure 89

Structure of standard ball and roller bearings

> 1 Ball bearing
> 2 Roller bearing
> 3 Outer ring
> 4 Inner ring
> 6 Rolling elements
> (ball, cylindrical roller)
> 6 Cage (metal, polyamide)

Rolling elements

Rolling elements are the connecting elements and contact elements between the stationary and the moving part of the rolling bearing. As the basis of the rolling element type, they essentially determine the characteristics of the bearing. Types of rolling elements, and the type of rolling bearing as derived from them, are shown in the following table.

Rolling elem	ient type	Bearing type
\bigcirc	Ball	Ball bearing
	Cylindrical roller	Cylindrical roller bearing
	Needle roller	Needle roller bearing, drawn cup needle roller bearing with open ends, drawn cup needle roller bearing with closed end, needle roller and cage assembly
	Tapered roller	Tapered roller bearing

Continuation of table, see Page 651.

Rolling elem	ient type	Bearing type
	Symmetrical barrel roller	Barrel roller bearing, spherical roller bearing
	Long, slightly curved barrel roller	Toroidal roller bearing
	Asymmetrical barrel roller	Axial spherical roller bearing

Continuation of table, Rolling element type, from Page 650.

Radial ball bearings Radial ball bearings have balls as rolling elements, an operating contact angle between 0° and 45° and can support axial loads as well as radial loads.

Deep groove ball bearings are versatile, self-retaining bearings with solid ball bearings outer rings, inner rings and ball and cage assemblies, see Figure 90. These products, which are of simple design, robust in operation and easy to maintain, are available in single and double row designs and in open and sealed variants. Due to their very low frictional torque, deep groove ball bearings are suitable for high and very high speeds.

Figure 90

Deep groove ball bearings, single row

① Bearing with sheet metal cage ② Bearing with plastic cage

Combined load (axial and radial)

Due to the raceway geometry and the balls, the bearings can support axial loads in both directions as well as radial loads.

Single row deep groove ball bearings

Single row deep groove ball bearings are the most frequently used type of rolling bearing, see Figure 90. They are produced in numerous sizes and designs and are particularly economical. Open bearings are suitable for high to very high speeds, designs with gap seals are suitable for high speeds.

Double row deep groove ball bearings

Double row deep groove ball bearings correspond in their structure to a pair of single row deep groove ball bearings but have two raceway grooves each with one row of balls, see Figure 91. Due to the larger number of rolling elements, they can be subjected to higher loads than single row deep groove ball bearings.

Double row bearings are suitable for high to very high speeds and are used where the load carrying capacity of single row deep groove ball bearings is not sufficient.

Fiaure 91 Deep aroove ball bearing. double row

M = tilting moment load

Magneto bearings Magneto bearings correspond substantially to deep groove ball bearings without a slot (the slot is used to fill the bearing with the rolling elements). They have a shoulder on the outer ring and can therefore support axial forces in one direction only, see Figure 92. For axial guidance of the shaft, two bearings in a mirror image arrangement are always necessary. Magneto bearings are normally mounted with a small axial clearance: in this way. changes in length of the shaft and housing can be compensated.

Since the bearings are separable, it is possible to mount the outer ring separately from the inner ring with the ball and cage assembly.

Angular contact The optimum load direction and the best flow of force can only be ensured using deep groove ball bearings if the active force acts in a vertical direction through the radial plane. In practice, it is frequently the case that the loads acting in a bearing arrangement are not purely radial but combined, where the loads comprise both radial and axial forces. In contrast to deep groove ball bearings, the raceways on the inner and outer rings of angular contact ball bearings are offset from each other along the bearing axis, see Figure 93.

As a result, the forces are transmitted from one raceway to the other at a specific contact angle (oblique to the radial plane). They are therefore suitable for radial and axial loads acting simultaneously.

Contact angle

The contact angle is normally 15°, 25°, 30° or 40°. The axial load carrying capacity of the bearing increases with the contact angle. As a result, angular contact ball bearings are more suitable than deep groove ball bearings for supporting higher axial forces.

Angular contact ball bearing, single row

```
\alpha = contact angle
```


Spindle bearings

Spindle bearings are self-retaining, single row angular contact ball bearings of a high precision design with contact angles of 15°, 20° or 25°. Bearings with a contact angle of 15° are particularly suitable for high radial loads, while those with a contact angle of 25° are more suitable for combined loads.

At high speeds, large centrifugal forces act on the balls which are superimposed on the operating loads and thus have a significant influence on the speed capacity of the bearings. In order to reduce the centrifugal forces and increase the speeds, bearings can be used that have smaller balls while retaining the normal external dimensions.

Due to special contact conditions between the balls and raceways, the friction and operating temperature of the bearing remain low. For even higher speeds, hybrid bearings (bearings with ceramic balls) can be used.

Double row angular contact ball bearings

Double row angular contact ball bearings correspond in their structure to a pair of single row angular contact ball bearings in an O arrangement, see Figure 94. They can support high radial and axial loads and are therefore particularly suitable for the rigid axial guidance of shafts.

Smaller double row angular contact ball bearings do not have a filling slot and therefore have the same axial load carrying capacity on both sides. In the case of larger double row bearings, the position of the filling slot determines the load direction. The axial force should always be supported by the ball row without a filling slot.

Where high, alternating axial forces must be supported, double row angular contact ball bearings with a split inner ring can be used. These bearings have a larger contact angle and do not have a filling slot.

α = contact angle

 Bearing with split inner ring, large contact angle
 Bearing with unsplit inner ring, small contact angle

Four point contact bearings

Four point contact bearings are similar in their structure to double row angular contact ball bearings, see Figure 95. Since the centres of curvature of the arc-shaped raceways on the inner ring and outer ring are offset relative to each other, however, the balls are in contact with the bearing rings at four points under radial load. For this reason, four point contact bearings are only used under predominantly axial load. One of the two bearing rings, normally the inner ring, is split in order to allow filling with the balls.

Figure 95 Four point contact bearing

```
\label{eq:alpha} \begin{array}{l} \alpha = \text{contact angle} \\ \text{M}_1, \text{M}_2 = \text{centres} \\ \text{of curvature} \\ \text{of outer ring raceway} \end{array}
```

 (1) Four point contact bearing with retaining slot and split inner ring
 (2) Raceway geometry

For axial loads

The bearings can support alternating, pure axial or predominantly axial loads. Due to the large contact angle (usually 35°), four point contact bearings are suitable for high axial forces in alternating directions.

If predominantly radial load is present, four point contact bearings should not be used due to the higher friction in the four point contact.

Self-aligning ball bearings

In the self-aligning ball bearing, two rows of rolling elements are held in two raceway grooves on the inner ring, see Figure 96. The raceway on the outer ring has a curved form. The cage combines the two rows of balls and the inner ring to form a unit that can align itself by swivelling relative to the outer ring.

Self-aligning ball bearings

Curved raceway of outer ring

 Bearing with cylindrical bore
 Bearing with extended inner ring and locating slot

Tolerant of misalignment

Due to the curved raceway on the outer ring, self-aligning ball bearings are tolerant of misalignment between the shaft and housing and deflections of the shaft. They can thus compensate static and dynamic angular defects within certain angular limits in a rotating shaft system.

They are used particularly in sectors such as agricultural machinery, conveying equipment, simple woodworking machinery and ventilators.

Thin section bearings Thin section bearings have very small cross-sections relative to their diameters, see Figure 97. This allows designs with smaller design envelope and lower mass, while achieving high rigidity and running accuracy.

In contrast to the rolling bearing series standardised in accordance with DIN ISO, in which the cross-section increases with the bearing diameter, all sizes of bearing in one series have the same cross-section.

Deep groove ball bearings, four point contact bearings and angular contact ball bearings

Thin section bearings are available as deep groove ball bearings, four point contact bearings and angular contact ball bearings. The preferred diameter ranges are between 25 mm and 1000 mm.

Figure 97 Thin section bearings

> Curved raceway of outer ring

 Deep groove ball bearing type
 Angular contact ball bearing type

Radial insert ball bearings

Radial insert ball bearings are based on deep groove ball bearings of series 60, 62 and 63. The numerals identify the rolling element set and therefore the load carrying capacity. The inner ring is extended on one or both sides.

In conjunction with the corresponding housing, radial insert ball bearings allow the use of basic adjacent constructions. They are particularly easy to fit and are suitable for drawn shafts of grade h6 to h9 . For non-locating bearings, shafts of tolerance classes h5 to h7 are recommended.

Location and designs

Axial location can be carried out using eccentric locking collars, grub screws or integrated adapter sleeves, see Figure 98. Certain series can be located by means of a fit on the shaft.

The extended inner ring on both sides provides a seal running surface and prevents significant tilting of the inner ring.

Figure 98

Location methods for radial insert ball bearings

 Location by means of eccentric locking collar
 Location by means of integral adapter sleeve
 Location by means of grub screws in inner ring

Seals matched to application, numerous series with relubrication facility

A further, characteristic feature of radial insert ball bearings is the type of sealing used. The bearing is protected against contamination and the loss of lubricant by means of contact seals of a multi-piece design on both sides of the bearing. Additional protection of the seals can be provided by means of sheet steel flinger shields mounted in front of the lip seals.

The bearings can normally be relubricated via holes in the outer ring.

Compensation of static angular misalignments

Radial insert ball bearings are available in numerous designs with a curved or cylindrical outside surface of the outer ring. Bearings with a curved outside surface can, through adjusting motion of the outer ring in a curved bore, support angular misalignments ($\pm 2,5^{\circ}$ with relubrication, $\pm 5^{\circ}$ without relubrication). Aligning rings with a curved bearing locating bore allow mounting of the bearings in housings with a cylindrical bore. The angular adjustment facility is thus maintained.

Radial insert ball bearings cannot be used for the compensation of dynamic angular misalignments.

Housing units For radial insert ball bearings, Schaeffler can supply suitable plummer block and flanged housings that are made from flake graphite cast iron or sheet steel, see Figure 99. The housings can – like the radial insert ball bearings themselves – also be provided in a corrosion-resistant design. Cast iron housings are always one-piece units and can support high loads. Sheet steel housings are always two-piece units and are used where the priority is not the load carrying capacity of the housing but the low mass of the unit.

The housing units comprise radial insert ball bearings with a curved outer ring and a housing with a curved bore to form ready-to-fit units. The user is thus spared the need for costly production of the mounting environment required for these bearings. The areas of application correspond to those of the radial insert ball bearings. Bearings with a curved outside surface of the outer ring, when mounted in housings with a curved bore, can compensate static misalignments of the shaft, see section Compensation of static angular misalignments, Page 657.

Figure 99 Plummer block housing unit

Flake graphite cast iron housing with integrated radial insert ball bearing

Radial roller bearings Radial roller bearings are rolling bearings with cylindrical, needle, tapered or barrel rollers as rolling elements.

Cylindrical Cylindrical roller bearings are used as non-locating, semi-locating and locating bearings. They are available with a full complement of rollers, with a cage or with spacers.

Axial load carrying capacity

The axial load carrying capacity of a cylindrical roller bearing is dependent on:

- the size of the sliding surfaces between the ribs and the end faces of the rolling elements
- the sliding velocity at the ribs
- the lubrication of the contact surfaces
- tilting of the bearing

Ribs subjected to load must be supported across their entire height.

Cylindrical roller bearings must not be continuously subjected to pure axial loads. In order to prevent impermissibly high edge stresses on the rolling elements and raceways due to insufficient contact between the rolling elements and the raceways, a minimum radial load must always be present. The ratio F_a/F_r should not exceed 0,4. Cylindrical roller bearings with an optimised contact geometry allow a ratio F_a/F_r up to a value of 0,6.

Further information on the minimum radial load is given in the Schaeffler rolling bearing catalogues.

Cylindrical roller bearings with cage Cylindrical roller bearings with cage are available in numerous designs, sizes and dimension series. In all standard designs, however, the cylindrical rollers are guided between rigid ribs by at least one bearing ring. Together with the cage and rollers, this forms a ready-to-fit unit. The other bearing ring can be removed. As a result, the inner ring and outer ring can be mounted separately. Tight fits can thus be achieved on both rings.

Tight fits increase the rigidity of the bearing arrangement and give precise radial guidance of the shaft.

Non-locating bearings

Cylindrical roller bearings N and NU as well as NN and NNU are non-locating bearings and can support radial forces only, see Figure 100. In the case of series NU and NNU, the outer ring has ribs while the inner ring has no ribs. Bearings of the designs N and NN have ribs on the inner ring and an outer ring without ribs. The ring without ribs serves to compensate variations in the length of the shaft, for example as a result of temperature differentials.

Non-locating bearings NU can be combined with an L-section ring HJ to form a semi-locating bearing unit.

Semi-locating bearings

Cylindrical roller bearings NJ are semi-locating bearings, see Figure 101. They can support not only high radial forces but also axial forces in one direction and can therefore guide shafts axially in one direction. In the opposite direction, they act as non-locating bearings.

The outer ring with its two ribs provides axial guidance of the rollers. The L-shaped inner ring supports the rolling elements on one side against axial forces.

Semi-locating bearings NJ can be combined with an L-section ring HJ to form a locating bearing unit.

Locating bearings

Cylindrical roller bearings NUP are locating bearings, see Figure 101. They can support not only high radial forces but also axial forces in both directions and can therefore guide shafts axially in both directions.

The outer ring has two ribs, while the L-shaped inner ring has one rigid rib and one loose rib washer.

Figure 101 Semi-locating and locating bearings

 Cylindrical roller bearing NJ (semi-locating bearing)
 Q:Cylindrical roller bearing NUP with rib washer (locating bearing)
 Q:Cylindrical roller bearing NJ with L-section ring HJ (locating bearing)

Disc cage or spacers

Figure 102 shows a semi-locating bearing of dimension series 23 with a space-saving disc cage. The flat brass disc cage and the plastic spacers prevent the cylindrical rollers from coming into contact with each other during rolling.

In the case of the disc cage, the rolling elements are guided between the ribs on the outer ring. Due to its low mass, the cage is subjected to only minimal load under acceleration.

The spacers are guided axially between the two outer ring ribs, see Figure 102. They are designed such that the rolling element set is self-retaining, so the bearing and inner ring can be mounted separately from each other. This gives easier mounting of the cylindrical roller bearings.

In comparison with conventional cage type bearings with roller retention, these cage designs allow a larger number of rolling elements to be accommodated in the bearing. Due to the lower frictional torques in comparison with full complement cylindrical roller bearings, less heat is generated in the bearing and higher speeds can thus be achieved.

Figure 102

Cylindrical roller bearings with disc cage or spacers

 Cylindrical roller bearing with disc cage
 Cylindrical roller bearing with spacers
 Retaining ring

Full complement cylindrical roller bearings

Full complement roller bearings are available as non-locating, semi-locating and locating bearings. They are of a single row or double row design and do not have a cage, see Figure 103.

Due to the lack of a cage, the bearing can accommodate more rolling elements. Since these bearings have the largest possible number of rolling elements, they have extremely high radial load carrying capacity, high rigidity and are suitable for particularly compact designs. Due to the kinematic conditions, however, they do not achieve the high speeds that are possible when using cylindrical roller bearings with cage.

Rope sheave bearings

Special bearing types are available for special applications. For example, double row full complement cylindrical roller bearings with annular slots in the outer ring are used in bearing arrangements for the support of rope sheaves, see Figure 103. These locating bearings have high rigidity and can support moderate axial forces in both directions as well as high radial forces.

Rope sheave bearings comprise solid outer and inner rings with ribs and rib-guided cylindrical rollers. Axial location of the bearings is achieved by means of retaining rings in the annular slots in the outer ring.

Sealing rings on both sides protect the bearing against contamination, moisture and the loss of grease.

Super precision
cylindricalThe single and double row bearings are used when the very highest
precision is required under very high radial load. Typical areas of appli-
cation include machine tools and printing machinery. In these cases,
they facilitate bearing arrangements with very high precision, high radial
rigidity and very high load carrying capacity. In machine tool building,
they provide radial support for the main spindle, see Figure 124, Page 675.
Super precision cylindrical roller bearings N, NN and NNU are
in the accuracy classes SP and UP.

Since variations in length during rotary motion can be compensated between the rollers and the ribless raceway without constraining forces, the cylindrical roller bearings are highly suitable as non-locating bearings. Axial forces are supported by axial bearings, such as double direction axial angular contact ball bearings, see Figure 124, Page 675.

 (1) Single row
 (2) Double row, with annular slots in outer ring, sealed (rope sheave bearings)

Tapered roller bearings

Tapered roller bearings are single row or multi-row units comprising a ribless outer ring, an inner ring with two ribs of different heights and a cage, see Figure 104. The cage contains truncated conical rollers.

Cages, ribs, roller profile, projected lines of contact

Pressed and stamped sheet steel cages are used as the standard cage. Cages made from glass fibre reinforced polyamide are also available. The lower rib retains – in conjunction with the cage – the rollers on the inner ring raceway. The high rib supports the axial force component arising from the tapered form of the rollers.

The sliding surfaces on the large rib and on the large roller end face are designed such that a lubricant film capable of supporting load is formed at the contact points between the roller and rib. The logarithmic profile induces the optimum distribution of stress at the contact between the rolling element and raceway and prevents stress peaks. The projected lines of contact of the tapered rollers intersect the projected raceways of the inner and outer ring at a point on the bearing axis, see Figure 104. This prevents any kinematic forced slippage at the rolling contact.

Open bearings are not self-retaining, so the outer ring can be removed in the case of these bearings. The outer ring and the inner ring with the roller and cage assembly can thus be mounted separately from each other.

Figure 104

Single row tapered roller bearing, projected lines of contact of tapered rollers

 α = contact angle

Load carrying capacity, adjustment, setting of clearance, preload

Single row tapered roller bearings can support radial loads, axial loads in one direction and combined loads (simultaneous radial and axial loads), while tapered roller bearings in an O or X arrangement can support high radial loads, axial loads in both directions and combined loads.

Due to the oblique position of the raceways, a single tapered roller bearing must not be subjected to pure radial load; an axial load or axial abutment must always be applied simultaneously. This is normally achieved by means of a second bearing mounted in a mirror image O or X arrangement.

In order to set the bearing clearance or preload, the bearings in bearing arrangements with two single row tapered roller bearings are adjusted against each other until the required value is achieved.

Nominal contact angle and axial load carrying capacity

The axial load carrying capacity is dependent on the nominal contact angle, i.e. the larger the angle, the higher the axial load to which the tapered roller bearing can be subjected. The size of the contact angle and thus the magnitude of the axial load carrying capacity – is indicated by the bearing-specific value e in the product tables included in the rolling bearing catalogues.

Barrel roller bearings Barrel roller bearings are included in the group of self-aligning bearings. see Figure 105.

Barrel roller bearings have a concave outer ring raceway in the same way as self-aligning ball bearings and spherical roller bearings. As a result, the roller and cage assembly can align itself on the raceway by swivelling (in either a static or dynamic manner), such that the bearing can respond to misalignment and deflections of the shaft without problems.

The inner ring has a cylindrical or tapered bore and the bearings are not separable. They have only a low axial load carrying capacity.

Fiaure 105 Barrel roller bearings

(1) Bearing with cylindrical bore (2) Bearing with tapered bore. adapter sleeve. tab washer and locknut

Spherical

roller bearings

Figure 106

Spherical roller bearings

1) Bearing with three rigid ribs on inner ring ② Spherical roller bearing E (increased capacity design without rigid ribs) (3) Axially split spherical roller bearing

Spherical roller bearings have two rows of barrel rollers whose axes are inclined towards the rotational axis of the bearing, see Figure 106. The outer ring has a curved raceway in the same way as barrel roller bearings. The profile of the raceways is closely matched to the profile of the barrel rollers.

For the supply of lubricant, the outer ring normally has a circumferential groove with radial holes between the rows of rollers. This gives improved lubrication of the bearing.

Load carrying capacity, dynamic compensation of angular misalignments Spherical roller bearings have a very high radial load carrying capacity and a higher axial load carrying capacity than barrel roller bearings. Due to the concave design of the outer ring, the barrel rollers align themselves by swivelling on the outer ring raceway in the case of misalignments and shaft deflection.

In order to ensure problem-free operation, the bearings must be subjected to a minimum load. Values for this load are given in the Schaeffler rolling bearing catalogues.

Spherical roller bearings are used where high, shock type radial loads must be dynamically supported and misalignments or more pronounced deflections of the shaft are anticipated.

Toroidal Toroidal roller bearings have elongated barrel rollers and raceways that are matched to the lines of contact of the rolling elements, see Figure 107. The centre point of the outer ring raceway radius lies under the central axis of the bearing. The design of the bearing rings allows skewing between the rings within certain limits. At the same time, changes in the length of the shaft relative to the housing can be compensated.

This design combines the dynamic self-alignment capacity of the spherical roller bearing with the axial displacement facility of cylindrical roller bearings. It is thus equally suitable for the dynamic and static compensation of misalignments.

Toroidal bearings are exclusively non-locating bearings and can support radial forces only.

The permissible skewing and axial displacement facility are restricted.

Figure 107 Toroidal roller bearing

R = raceway radius

Radial needle	Radial needle roller bearings have a range of common characteristics,	
roller bearings	Needle roller bearings have needle rollers as rolling elements. In terms of rolling bearing technology, cylindrical rolling elements are classified as needle rollers if the rolling element diameter is ≤ 6 mm and the ratio of the rolling element diameter to the rolling element length is $< 1:3$.	
	Due to the small diameter of the rolling elements, all needle roller bearings have the common feature of a low radial section height. Due to the line contact, they are particularly suitable for bearing arrangements with high radial load carrying capacity and rigidity in a restricted radial design envelope.	
	Radial needle roller bearings can only be used as non-locating bearings. The defined axial displacement value in the case of bearings with inner rings allows axial motion between the shaft and housing. Where necessary, wider inner rings are available for larger displacement values.	
	In order to ensure slippage-free operation, a minimum radial load is necessary. This applies in particular to bearings running at high speeds since, if the radial load is not present, damaging sliding motion may occur between the rolling elements and raceways. Values for the minimum radial load are given in the Schaeffler rolling bearing catalogues.	
Needle roller and cage assemblies	Apart from full complement needle roller sets, the needle roller and cage assembly is the simplest type of needle roller bearing, see Figure 108, Page 665. Needle roller and cage assemblies are of single or double row design and comprise a cage and needle rollers. Since they do not have an outer ring or inner ring, they run directly on the shaft and in the housing. The raceways must therefore be hardened and ground.	
	Since their radial section height corresponds directly to the diameter of the needle rollers, needle roller and cage assemblies allow bearing arrangements requiring only a very small radial design envelope. If the raceways are produced to high geometrical accuracy, high radial run-out accuracy can be achieved. The radial internal clearance is influenced by the shaft and housing tolerances as well as the grade of the needle rollers.	
	Needle roller and cage assemblies must be located axially by means of snap rings or an appropriate design of the adjacent construction with abutment shoulders.	
Figure 108 Needle roller and cage assemblies	Fr Fr	
① Single row		

1

Ъ

2

Drawn cup needle roller bearings with open ends and with closed end Drawn cup needle roller bearings with open ends and with closed end are needle roller bearings with a very small radial section height. They comprise thin-walled, drawn cup outer rings and needle roller and cage assemblies which together form a complete unit. see Figure 109.

The thin-walled outer rings adopt the dimensional and geometrical accuracy of the housing bore.

Drawn cup needle roller bearings are available either with both ends open or with one end closed. Drawn cup needle roller bearings with closed end are thus suitable for closing off the end of shafts in bearing positions. Where a rotating shaft is present, they give protection against injury, prevent the escape of lubricant and protect the rolling element system against contamination and moisture.

If the shaft cannot be produced as a raceway, the bearings can be combined with inner rings.

If axial locating elements such as shoulders and snap rings are not used, the housing bore can be produced easily and particularly economically. This also gives simpler mounting and dismounting of the bearings.

1 Drawn cup needle roller bearing with open ends, lip seal (2) Drawn cup needle roller bearing with closed end. lip seal

IF. IF, Т 2

In comparison with drawn cup needle roller bearings with open ends and with closed end, the bearing rings of needle roller bearings are thicker. more rigid and are produced by machining methods. They place lower requirements on the dimensional accuracy, geometrical accuracy and hardness of the adjacent construction.

Needle roller bearings are subdivided into:

- needle roller bearings with ribs, with or without inner ring
- needle roller bearings without ribs, with or without inner ring
- aligning needle roller bearings
- combined needle roller bearings
Needle roller bearings with ribs

In these needle roller bearings, the outer ring and the needle roller and cage assembly form self-retaining, single or double row complete units, see Figure 110. The cage assembly is guided axially by ribs on the outer ring.

The bearings are available with and without a removable inner ring and in both sealed and open versions.

Figure 110

Needle roller bearings with ribs, single row

Without inner ring
 With inner ring

Needle roller bearings without ribs

These complete units comprise outer rings without ribs, needle roller and cage assemblies and removable inner rings, see Figure 111.

Since the bearings are not self-retaining, the outer ring, needle roller and cage assembly and inner ring can be mounted independently of each other.

The bearings are available with and without an inner ring and in single and double row designs. The cage assembly is guided axially by thrust washers.

Without inner ring
 With inner ring

Aligning needle roller bearings

Due to their internal construction, needle roller bearings of the types described previously only allow slight misalignment of the bearing axis. Aligning needle roller bearings have a raceway ring with a curved outside surface and a curved support ring and can compensate static misalignments of the bearing axis of up to 3°.

The bearings cannot support swivel or wobble type motion.

Without inner ring
 With inner ring

Combined needle roller bearings

Radial needle roller bearings can support radial forces only. Combined needle roller bearings (radial needle roller bearings combined with a rolling element system capable of supporting axial loads) can additionally support axial forces.

Needle roller/axial deep groove ball bearings, needle roller/axial cylindrical roller bearings

Figure 113

Needle roller/axial ball bearing, needle roller/axial cylindrical roller bearing

 Needle roller/axial deep groove ball bearing with end cap, without inner ring
 Needle roller/axial cylindrical roller bearing, without inner ring

Needle roller/angular contact ball bearings

Needle roller/axial ball bearings and needle roller/axial cylindrical roller bearings can support axial forces in one direction as well as high radial forces, see Figure 113. In order to support axial forces, the axial bearing component must be preloaded to 1% of the basic static axial load rating. Misalignments between the shaft and housing are not possible.

Needle roller/angular contact ball bearings can support axial forces in one or both directions, see Figure 114. Needle roller/angular contact ball bearings capable of supporting axial loads in one direction can be used as semi-locating bearings, while bearings capable of supporting axial loads in both directions can be used as semi-locating or locating bearings.

If the design capable of supporting axial loads in one direction is to support axial forces from alternating directions, two bearings must be adjusted against each other.

Where axial forces and misalignment between the shaft and housing are to be supported, the information in the section Needle roller/axial deep groove ball bearings, needle roller/axial cylindrical roller bearings must be observed.

Figure 114 Needle roller/angular contact ball bearinas

① Capable of supporting axial loads in one direction, unsplit inner ring ② Capable of supporting axial loads in both directions, split inner ring

Bearings for screw drives

The essential requirements placed on bearings for screw drives are high axial run-out accuracy, axial and tilting rigidity as well as high load carrying capacity. The bearings that have proven effective in this area of application are single row and multi-row axial angular contact ball bearings and double direction needle roller/axial cylindrical roller bearings.

Single row axial angular contact ball bearings

The bearings can be universally combined in various bearing sets. Since the bearings are supplied already matched, a defined rolling bearing preload is achieved after mounting of the bearings that ensures clearancefree operation with high axial run-out accuracy and high axial rigidity. This bearing design can be used for a wide range of load requirements and is available in most cases in a greased and sealed design.

Single row axial angular contact ball bearings are particularly suitable for bearing arrangements for ball screw drives in machine tools, see Figure 115.

Double row axial angular contact ball bearings

Double row axial angular contact ball bearings are ready-to-fit, selfretaining, greased and sealed precision bearings in an O arrangement with a contact angle of 60°, see Figure 116. The bearing rings are matched to each other such that a defined preload is achieved when the rings are clamped in place using a precision locknut. The rolling element system is protected against contamination by means of contact seals on both sides of the bearing. For high speeds, minimal gap seals are available. Double row bearings are also available in matched pairs, so four-row bearing assemblies can be created. This gives an additional increase in the load carrying capacity and rigidity of the bearing arrangement.

The bearings are available with and without fixing holes in the outer ring, see Figure 116. Bearings with holes are screw mounted directly on the adjacent construction. This solution is particularly economical since there is then no need for the locating bore that would otherwise be required or for the bearing cover with the associated matching work.

Figure 116 Axial angular contact ball bearings

ball bearings, double row

 Double row, for mounting in locating bore
 Double row, for screw mounting to adjacent construction

Triple row axial angular contact ball bearings

Triple row designs have, in addition to two rows of balls with a 60° contact angle in an O arrangement, a third row of balls, see Figure 117, Page 671. This additional row allows higher loads in one direction. Due to the stepped outer ring, the bearings can be easily flange mounted on the adjacent construction. In order to reduce the radial design envelope required, the flange is flattened on two sides.

In order to make full use of the load carrying capacity, the bearings must be subjected continuously to load in the main load direction. They are therefore used mainly in screw drives with a locating/locating bearing arrangement and tensioned spindles or in vertically arranged screw drive bearing arrangements.

Figure 117 Axial angular contact ball bearing, triple row

For screw mounting to adjacent construction

Needle roller/axial cylindrical roller bearings

These bearings are double direction, precision cylindrical roller bearings with a radial bearing component and are not self-retaining. They comprise an outer ring with radial and axial raceways, a shaft locating washer, an inner ring, a radial needle roller and cage assembly and two axial cylindrical roller and cage assemblies, see Figure 118. The bearings are available in versions for screw mounting on the adjacent construction and for location in a housing bore. Since the outer ring can be screw mounted, there is no need for the cover that would otherwise be required and the associated matching work.

Needle roller/axial cylindrical roller bearings can support not only high radial forces but also axial forces in both directions and tilting moments. The outer ring, inner ring and axial cages are matched to each other such that the bearings are axially clearance-free after preloading by means of a precision locknut.

In comparison with axial angular contact ball bearings, they have higher load carrying capacity, rigidity and accuracy. For higher loads, bearings are available with a larger cross-section – and thus higher basic load ratings – as a heavy series.

If the axial abutment of the shaft locating washer is not sufficient or a seal raceway is required, bearings with a stepped shaft locating washer extended on one side are suitable, see Figure 118.

Figure 118 Needle roller/axial cylindrical roller bearings

 For mounting in housing bores
 For flange mounting, with stepped, extended shaft locating washer

Yoke type, stud type and ball bearing track rollers Rotary rolling bearings are normally mounted in a housing bore. In this case, the outer ring supports the loads originating from the shaft and transmits these into the surrounding housing. In the case of yoke type, stud type and ball bearing track rollers, the outer ring runs freely on a flat or curved mating track (such as a rail, guideway or cam plate).

The characteristic feature of this rolling bearing type is the particularly thick-walled outer rings. These rings replace the housing and support deflections and stresses.

In practice, yoke type, stud type and ball bearing track rollers with a crowned outside surface are predominantly used, since tilting relative to the mating track often occurs and edge stresses must be avoided. The load carrying capacity of the bearing is increased by optimised profiles on the outer ring.

Yoke type track rollers Yoke type track rollers are ready-to-fit needle or cylindrical roller bearings with a particularly thick-walled outer ring, see Figure 119. Yoke type track rollers are available with and without axial guidance of the outer ring and in both sealed and open versions. The outer rings have a crowned or cylindrical outside surface. They are mounted on shafts or studs and are supplied with or without an inner ring. They can support high radial loads. Yoke type track rollers with axial guidance can also tolerate axial loads resulting from slight misalignment defects, skewed running or brief contact running impacts.

Bearings without an inner ring require a raceway on the shaft or stud corresponding to the quality of a rolling bearing raceway.

The bearings are used in applications including cam gears, bedways, conveying equipment and linear guidance systems.

 Without axial guidance, with cage, open design
 With axial guidance, with cage, gap seals
 With axial guidance, full complement roller set, lip seals

Stud type track rollers

Stud type track rollers correspond in their design to yoke type track rollers with axial guidance but, in place of the inner ring, they have a heavy-section roller stud, see Figure 120. The stud has a fixing thread and, in many cases, a hexagonal socket on both sides for mounting of the stud type track rollers and adjustment in designs with an eccentric collar. The eccentric collar allows adjustment of the outer ring outside surface to match the mating track on the adjacent construction.

Stud type track rollers are available with various seals (such as labyrinth, gap or contact seals). The outer ring has a crowned or cylindrical outside surface.

Figure 120 Stud type track roller, double row, full complement roller set, with eccentric collar

Labyrinth seal

1 Eccentric collar

Ball bearing track rollers

Ball bearing track rollers correspond in their design to sealed deep groove or angular contact ball bearings but have thick-walled outer rings with a crowned or cylindrical outside surface. They can support axial forces in both directions as well as high radial forces. Designs with a crowned outside surface are used where misalignments occur relative to the mating track.

Ball bearing track rollers are available with and without a stud, with a plastic tyre and with a profiled outer ring, see Figure 121.

Bearings without a stud are mounted on shafts or studs. Ball bearing track rollers with a plastic tyre can be used if particularly quiet running is required. Bearings with a profiled concave outer raceway are suitable for the design of robust shaft guidance systems, see Figure 147, Page 700.

Figure 121 Ball bearing track rollers without stud

Single row, sealed
 Double row, sealed
 With plastic tyre, sealed

Axial ball bearings

Axial deep groove ball bearings Axial ball bearings are pure axial bearings, which means that they may only be subjected to axial load.

Axial deep groove ball bearings are single direction or double direction units that can support high axial forces and are not self-retaining.

Single direction bearings comprise a shaft locating washer and a housing locating washer between which a ball and cage assembly is arranged, see Figure 122, Page 674. They can support axial forces in one direction and support the shaft on one side.

Double direction bearings comprise a shaft locating washer, two housing locating washers and two ball and cage assemblies, see Figure 122. This design can support axial forces in both directions and can therefore guide the shaft on both sides.

Figure 122 Axial deep groove ball bearings

 Single direction
 Single direction, curved housing locating washer and support washer
 Double direction

Angular adjustment facility

In addition to the series with flat housing locating washers, axial bearings with curved locating surfaces are also available for the compensation of static angular defects. These designs are normally used in conjunction with support washers and tolerate static misalignments of the shaft relative to the housing. They are not suitable, however, for wobble type motions of the shaft, since the friction on the curved locating surfaces is too high.

Axial angular contact ball bearings

For axially rigid spindle bearing arrangements in machine tools, single row and double row axial angular contact ball bearings with increased accuracy are used, see Figure 123. The bearings can support axial forces in both directions.

Axial angular contact ball bearings transmit the forces from one raceway to the other by means of a defined contact angle. The ribs are sufficiently high that the contact ellipse does not contact or extend beyond the edge of the raceway even under the centrifugal force effect of high speeds and in axially preloaded bearings at high loads.

Figure 123 Axial angular contact ball bearings

> Contact angle normally 60°

 Double direction, with spacer ring
 Double direction

Double row axial angular contact ball bearings

Double row axial angular contact ball bearings have a ball-guided solid brass cage for each row of balls. A spacer ring is inserted between the shaft locating washers with a fit such that the bearing has the necessary preload once it is mounted and axially located.

In bearing arrangements for main spindles in machine tools, the radial forces are generally supported by a cylindrical roller bearing arranged adjacent to the axial angular contact ball bearing, see Figure 124.

Figure 124

Cylindrical roller bearing for support of radial forces

 Double direction axial angular contact ball bearing 2344
 Super precision cylindrical roller bearing NN30, double row

Axial roller bearings

Axial bearings of this type are single direction or double direction axial bearings based on cylindrical rollers or needle rollers.

Axial cylindrical roller bearings, axial needle roller bearings These axial bearings comprise flat, ribless washers between which axial needle roller and cage assemblies or axial cylindrical roller and cage assemblies are arranged, see Figure 125. Their axial section height corresponds to the diameter of the rolling elements plus the washer thickness values. They have high axial load carrying capacity, are extremely rigid and can support axial forces in one direction. The bearings can support axial forces only. Radial forces must be supported by an additional, suitable bearing.

For particularly low axial section heights, the cage assemblies can be integrated directly in the adjacent construction. The running surfaces for the rolling elements must therefore be produced as rolling bearing raceways.

Figure 125 Axial needle and axial

cylindrical roller bearings

 Axial needle roller bearing
 Axial needle roller bearing with centring spigot
 Axial cylindrical roller bearing, single row
 Axial cylindrical roller bearing, double row

Axial cylindrical roller bearings and axial needle roller bearings are used where the load carrying capacity of axial deep groove ball bearings is not sufficient. Axial needle roller bearings are suitable for particularly low axial section heights, while axial cylindrical roller bearings can support higher loads. Misalignments between the shaft and housing are not permissible, but the bearings can align themselves radially.

Axial tapered roller bearings

The most frequently used type of axial tapered roller bearings has a shaft locating washer with a tapered raceway and a housing locating washer with a flat raceway, see Figure 126.

Figure 126 Axial tapered roller bearings

 Single direction, with flat housing locating washer
 Single direction, with two tapered raceways
 Double direction

The rollers are guided by the rib of the shaft locating washer and are normally retained by a solid brass cage.

The bearings are used, for example, in rolling mill construction.

Axial spherical roller bearings

Axial spherical roller bearings comprise a housing locating washer, a shaft locating washer and asymmetrical barrel rollers, see Figure 127.

The barrel rollers abut the high rib of the inner ring and can align themselves on the curved raceway of the outer ring. As a result, the bearing is similar to other self-aligning bearings in being unaffected by misalignments and shaft deflections. The roller and cage assembly and the shaft locating washer are held together by solid brass cages or sheet steel cages.

oller bearings Figure 127 Avial sphorical

Axial spherical roller bearing

Since the loads are transmitted from one raceway to the other at an angle inclined to the bearing axis, the bearings are also suitable for supporting additional radial loads ($F_{rmax} = 0.55 \cdot F_a$) while an axial load is present.

In order to ensure problem-free operation, a minimum axial load is necessary. This applies particularly in the case of bearings running at high speeds with high accelerations and rapid load reversals. Due to the inertia forces of the rolling elements and cages, and the increasing frictional power, impermissible wear may occur between the rolling elements and raceways. In many cases (for example, in vertical bearing arrangements), the inherent mass of the bearing arrangement is sufficient, however, to apply the necessary minimum axial load.

Crossed roller bearings, dimension series 18

Crossed roller bearings of this type are open bearings for high precision applications, see Figure 128. The spacing between the cylindrical rollers is maintained by plastic spacers. The outer ring is split and is held together by retaining rings. The highly rigid bearings have high running accuracy and are supplied with normal clearance, low clearance or preload. The outer rings are fixed in the adjacent construction by means of clamping rings. Sealing of the bearing position can be freely designed as necessary.

The dimensions of the crossed roller bearings conform to ISO dimension series 18 in accordance with DIN 616.

Due to the X arrangement of the cylindrical rollers, these bearings can support axial forces in both directions, radial forces and any combination of loads as well as tilting moments by means of a single bearing position. As a result, designs with two bearing positions can in many cases be reduced to a single bearing position.

Figure 128 Crossed roller bearing

```
F<sub>r</sub> = radial load
F<sub>a</sub> = axial load
M = tilting moment load
```

1 Retaining ring

Swivel bearingsSlewing rings are large size bearings with high load carrying capacity(slewing rings)for oscillating and slow rotary motions, see Figure 129. The bearing rings
are available without teeth, with internal teeth or with external teeth and
are generally screw mounted directly to the immediate parts of the
adjacent construction.

Swivel bearings are predominantly mounted in a horizontal position and are used to support axial forces and large tilting moments. In the applications, radial loads only occur to a subordinate extent.

Slewing rings are normally subjected to load during infrequent rotary motion, slow swivel motion, slow rotation, or while stationary, and are preferably dimensioned on the basis of their static load carrying capacity.

Four point contact bearings and crossed roller bearings Swivel bearings can be designed in the form of ball or roller bearings. The cage comprises segments or spacers. These maintain the spacing between the rolling elements. In swivel bearings with a diameter of several metres, the rings are often split into segments for transport and mounting reasons. The raceways are subjected to induction or flame hardening. Figure 129 shows sealed four point contact bearings (designs without teeth and with internal teeth).

Crossed roller bearings can be used in joints for industrial robots and in bearing positions that make demands beyond the load carrying capacity, rigidity and accuracy of ball bearings. The rolling elements on the raceways comprise rollers arranged with a roller axis that is alternately offset by 90°. Crossed roller bearings have segment cages or a full complement of rollers. The inner or outer ring can be provided with teeth to facilitate drive solutions.

Figure 129 Four point contact bearings

M = tilting moment load

 Without teeth, sealed
 With internal teeth, sealed

Rotary table bearings (bearings for combined loads) Rotary table bearings can support axial loads in both directions and radial loads as well as tilting moments without clearance. Due to the fixing holes in the bearing rings, mounting of the units is very simple. After mounting, the bearings are radially and axially preloaded. They are particularly suitable for bearing arrangements requiring high running accuracy, such as rotary tables, reversible clamps, face plates and milling heads.

 Axial angular contact
 Axial angular contact ball bearings are ready-to-fit and greased bearing units with particularly low friction, with high accuracy for very high speeds, high axial and radial loads and high demands on tilting rigidity. They comprise a one-piece outer ring, a two-piece inner ring and two ball and cage assemblies, see Figure 130. The contact angle is 60°. The outer ring and inner ring holes for screw mounting of the bearing on the adjacent construction. The unit is secured by means of retaining screws for transport and safe handling.

Axial/radial Axial/radial bearings are double direction axial bearings with a radial guidance bearing that are suitable for screw mounting, see Figure 130. These ready-to-fit, greased units are very rigid, have high load carrying capacity and run with particularly high accuracy. Designs with an integrated angular measuring system can measure the angular position of the rotary axis to an accuracy of a few angular seconds.

Figure 130

High precision bearings for combined loads

M = tilting moment load

 Axial angular contact ball bearing
 Axial/radial bearing

Guiding elements in a rotary direction - plain bearings

In contrast to rolling bearings, where low friction is achieved through the rolling of rolling elements between the raceways, plain bearings exhibit pure sliding motion between the shaft and bearing cup. Friction is minimised by the sliding contact surface, surface modification or suitable lubrication. While there is a wide range of different plain bearings, only dry running plain bearings are covered here in brief.

In addition to the metal/polymer composite plain bearings described below, the medium performance segment can be served using plain bearings with ELGOTEX and the upper performance segment using plain bearings with ELGOGLIDE.

Metal/polymer composite plain bearings

Plain bearings are bearings for very small radial and axial design envelopes. They have a steel or bronze backing and are available as bushes, flanged bushes, thrust washers and strips, see Figure 131 and Figure 132. Designs with a bronze backing are highly resistant to corrosion, have very good thermal conductivity and are antimagnetic.

Materials E40, E40-B, E50

The material used in metal/polymer composite plain bearings is the maintenance-free E40 (with steel backing), E40-B (with bronze backing) or the low-maintenance E50. The dry lubricant is based on polytetrafluoroethylene PTFE with embedded chemically non-reactive additives. The materials fulfil the regulations on lead-free plain bearings and thus the Directive 2000/53/EC (End-Of-Life Vehicles Directive) and the Directive 2011/65/EU (RoHS-II).

Figure 132

Metal/polymer composite plain bearings (bush)

E50, low-maintenance
 E40, maintenance-free

Maintenance-free plain bearing material

The maintenance-free plain bearing material E40, see Figure 133, is intended for dry running due to the use of PTFE as a dry lubricant. These bearings are thus particularly suitable where the bearing position must be maintenance-free, there is a risk of lubricant starvation or where lubricant is unacceptable or undesirable. The material E40 can be used not only for rotary and oscillating motion but also for short stroke linear motions. Typical areas of application can be found, for example, in fluid technology, in sports gear, in medical or electrical equipment as well as in automotive engineering.

Figure 133

Structure of maintenance-free plain bearing material E40 – three-layered, with steel backing

Running-in layer
 Sliding layer
 Steel backing
 Tin layer as surface protection

Low-maintenance plain bearing material

The low-maintenance plain bearing material E50, see Figure 134, is a lowwear material with good damping characteristics and long relubrication intervals. The sliding layer is made from polyoxymethylene POM. E50 can be used for rotary and oscillating motion and is recommended for long stroke linear motions. It is only slightly sensitive to edge loads and is insensitive to shocks. Application examples can be found in particular in the area of production machinery, construction and agricultural equipment as well as commercial vehicles.

Figure 134

Structure of low-maintenance plain bearing material E50 – three-layered, with steel backing

Sliding layer
 Intermediate layer
 Steel backing
 Tin layer as surface protection
 Lubrication pocket

Plain bearing range from Schaeffler

The complete range is described in the Schaeffler catalogue HG 1, Plain Bearings, in Technical Product Information TPI 211 and in the online version **medias**: *https://medias.schaeffler.com*.

Spherical plain bearings

Guiding elements in a rotary direction - spherical plain bearings

Spherical plain bearings are ready-to-fit, standardised machine elements. Due to the concave outer ring bore and the curved inner ring geometry, they allow spatial adjustment motions. The bearings can support static loads and are suitable for tilting and swivel motion. They can compensate for shaft misalignment, are not subject to edge stresses under misalignment and permit substantial manufacturing tolerances in the adjacent construction.

Figure 135

Types and designs of spherical plain bearings – overview

Maintenance-free spherical plain bearings

Maintenance-free spherical plain bearings are available as radial, axial and angular contact spherical plain bearings, see Figure 136. The sliding layer between the inner ring and outer ring is ELGOGLIDE, PTFE composite or PTFE film.

Radial spherical plain bearings are preferably used to support radial forces. Certain series are also suitable for alternating loads up to a contact pressure of $p = 300 \text{ N/mm}^2$. The bearings are used where particular requirements for operating life apply in conjunction with maintenance-free operation or where, for reasons of lubrication, bearings with metallic sliding contact surfaces are not suitable, for example under unilateral load. Radial spherical plain bearings are available in open and sealed designs.

Figure 136

Maintenance-free spherical plain bearings, sliding layer ELGOGLIDE

 Radial spherical plain bearing, lip seal on both sides
 Angular contact spherical plain bearing, open design

	Angular contact spherical plain bearings conform to DIN ISO 12240-2. They have inner rings with a curved outer slideway and outer rings with a concave inner slideway to which an ELGOGLIDE sliding layer is attached by adhesive. The bearings can support radial and axial forces and are suitable for alternating dynamic loads. Preloaded units can be achieved using paired arrangements. Angular contact spherical plain bearings are used to support high loads in conjunction with small motions. In this case, they are an alternative to tapered roller bearings. Axial spherical plain bearings conform to DIN ISO 12240-3. In these units, the shaft locating washer is supported in the ball socket-shaped sliding zone of the housing locating washer. The sliding material on the housing locating washer is ELGOGLIDE. The bearings are preferably used to support axial forces. They are suitable as support or base bearings and can also be combined with radial spherical plain bearings of dimension series E to DIN ISO 12240-1.
Spherical plain bearings requiring maintenance	Spherical plain bearings requiring maintenance can be designed as radial, axial and angular contact spherical plain bearings and must be lubricated using oil or grease via the outer or inner ring or the housing locating washer as appropriate. The bearings comprise inner rings and outer rings with a steel/steel or steel/bronze sliding contact surface. The inner rings have a cylindrical bore and a curved outer slideway. The outer rings have a cylindrical outside surface and a concave inner slideway.
	Radial spherical plain bearings can support radial forces, transmit motion and loads with low moment levels and thus keep bending stresses away from the construction elements. They are particularly suitable for alter- nating loads with impact and shock type stresses and support axial loads in both directions. The bearings are available in open and sealed designs.
	Angular contact spherical plain bearings conform to DIN ISO 12240-2. The sliding contact surface is steel/steel. For a further description, see section Maintenance-free spherical plain bearings, Page 682, and Schaeffler catalogue HG 1, Plain Bearings.
	Axial spherical plain bearings conform to DIN ISO 12240-3. The sliding contact surface is steel/steel. For a further description, see section Maintenance-free spherical plain bearings, Page 682, and Schaeffler catalogue HG 1, Plain Bearings.
Rod ends	Rod ends are spherical plain bearing units. They comprise a housing and integral shank, into which a spherical plain bearing is integrated, and have an external or internal thread. They are used as connecting levers and connecting rods and as connecting elements between cylinders and their adjacent parts in hydraulic and pneumatic cylinders.
Spherical plain bearing range from Schaeffler	The complete range is described in the Schaeffler catalogue HG 1, Plain Bearings, and in the online version medias : https://medias.schaeffler.com.

Guiding elements in a translational direction - linear rolling element guidance systems

Linear rolling element guidance systems, also known as linear guidance systems, are translational guidance systems. They are based on the principle of the rolling of rolling elements (balls, rollers, needle rollers) between moving guidance elements.

Such guidance systems ensure the translation with particularly low friction of one or more movable subassemblies while maintaining a direction of motion on a linear track (profiled guideway, guideway, cylindrical shaft).

Linear guidance systems are responsible for the guidance and transmission of force between machine parts moving in a translational direction and exert a substantial influence on the performance capability and accuracy of a machine.

An overview of common linear rolling element guidance systems is shown in Figure 137:

Rolling element quidance systems for linear motion overview

Linear rolling element guidance systems are available in numerous designs, for example:

element guidance 🔳 flat cage guidance system

of linear rolling ement guidance systems

Differentiation

- linear roller bearing
- monorail guidance system (linear recirculating ball bearing unit, linear recirculating roller or ball guidance system)
- shaft guidance system
- track roller guidance system
- miniature guidance system
- driven linear unit

Guidance systems with balls or rollers contain balls or rollers running between the moving component and stationary component, while track roller guidance systems contain profiled track rollers supported by rolling bearings.

Linear rolling element guidance systems can be differentiated in terms of:

- the type of rolling element motion (with/without recirculation of the rolling elements)
- the type of rolling contact on the raceways (point contact or line contact)

Linear rolling element guidance systems without rolling element recirculation In the case of linear rolling element guidance systems without rolling element recirculation, the rolling elements are guided between the moving table and the stationary guideway in a normally rigid cage. The stroke length of the moving component is therefore restricted by the difference in length between the table and the rolling element cage (based on the motion of the cage relative to the two raceways).

Flat cage guidance systems Flat cage guidance systems are linear bearings without rolling element recirculation. The rolling elements move at half the velocity of the table and thus cover only half the distance.

Areas of application

Due to their design, flat cage guidance systems are particularly suitable for oscillating motion and where linear locating or non-locating bearings with extremely high load carrying capacity, restricted stroke length and very smooth running are required. Bearing arrangements with these guidance elements have high rigidity, high accuracy, low friction and a smaller design envelope relative to comparable linear guidance systems.

Guideway/cage combinations

Flat cage guidance systems comprise a pair of guideways between which angled needle roller flat cages, angled cylindrical roller flat cages or needle roller flat cages are arranged. The guideways are available in various profiles, examples of which are shown in M/V and J/S combinations in Figure 138.

Guideways with an adjusting gib are suitable for setting of preload, and guideways with an integral toothed rack for positive control of the angled flat cage are suitable where there is a risk of cage creep.

End pieces at the ends of the guideways hold the cage in its nominal position at the ends of the stroke length to prevent the cage from creeping out of the load zone.

The cages have a basic component made from light metal, steel, brass or plastic. A large number of rolling elements are guided by precise cage pockets.

Figure 138 Flat cage guidance systems

F_v, F_z = load directions

 M/V guideways
 J/S guideways
 Angled needle roller flat cage
 Needle roller flat cage

Linear rolling element guidance systems with rolling element recirculation In the case of guidance systems with rolling element recirculation, the rolling elements in the carriage are recirculated by means of channels and special return elements, see Figure 139. This does not restrict the stroke length of these guidance systems, which is generally limited by the length of the guideways.

Areas of application

Such guidance systems are designed on the basis of balls or rollers and intended for applications with unlimited stroke length. This functional principle applies to linear roller bearings and monorail guidance systems.

Linear roller bearings with guideways for linear locating/non-locating bearing arrangements comprise linear roller bearings with cylindrical rollers and guideways that have up to four raceways for the linear roller bearings, see Figure 139. Guideways with four raceways can support forces in the main load direction, together with forces in the opposing direction if a counterstay is fitted, as well as lateral forces in two directions.

In a closed arrangement, they can support forces from all directions and moments about the axis. They run with high precision, have low friction and allow compact designs.

In a preloaded design, guidance systems with linear roller bearings achieve extremely high rigidity values. Adjusting gibs are suitable for preloading. These transmit the defined values uniformly to the whole length of the linear roller bearing.

Figure 139

Linear roller bearing with rolling element recirculation

 (1) Carriage
 (2) Rolling element
 (3) Rolling element in return zone
 (4) Rolling element in load zone
 (5) Guideway

Monorail guidance systems

Monorail guidance systems are among the most important designs of linear rolling element guidance system. As high performance components, they are almost indispensable in general machine building.

Dimensioning – load carrying capacity and life The size of a monorail guidance system is determined by the demands made on its load carrying capacity, life and operational security.

Load carrying capacity

The load carrying capacity is described in terms of the basic dynamic load rating C, the basic static load rating C_0 and the static moment ratings M_{0x} , M_{0y} and M_{0z} , see Figure 140.

Calculation of basic load ratings according to ISO

The calculation of the basic dynamic and static load ratings given in the product tables of Schaeffler catalogues is based on DIN ISO 14728-1 and 2. The information on the basic dynamic load rating C in the product tables corresponds to the basic dynamic load rating C_{100} .

Suppliers from the Far East frequently calculate basic load ratings using a basic rating life based on a displacement distance of only 50 km in contrast to 100 km in accordance with DIN.

The basic load ratings C_{50} , C_{100} for linear recirculating ball bearing and guideway assemblies can be converted using the following equations:

Equation 74

 $C_{50} = 1,26 \cdot C_{100}$

Equation 75

$$C_{100} = 0,79 \cdot C_{50}$$

Figure 140 Load carrying capacity and load directions

	For linear recirculating roller bearing and guideway assemblies, conversion is as follows:		
Equation 76	$C_{50} = 1,23 \cdot C_{100}$		
Equation 77	$C_{100} = 0.81 \cdot C_{50}$		
Legend	I C ₁₀₀ N C ₅₀ N Basic dynamic load rating C Basic dynamic load rating C Basic dynamic load rating C for displacement distance of 100 km - definition according to DIN ISO 14728-1 DIN ISO 14728-1. DIN ISO 14728-1.		
Dynamic load carrying capacity and life	The dynamic load carrying capacity is described in terms of the basic dynamic load rating and the basic rating life. The basic dynamic load rating is the load in N at which the guidance system achieves a displacement distance of 100 km (C_{100}) with a survival probability of 90%.		
Basic rating life	The basic rating life L and L_h is achieved or exceeded by 90% of a sufficiently large group of apparently identical bearings before the first evidence of material fatigue occurs (for an explanation of the symbols used, see Page 691).		
Equation 78	$L = \left(\frac{C_{100}}{P}\right)^p \cdot 100$		
Equation 79	$L_{h} = \frac{833}{H \cdot n_{osc}} \cdot \left(\frac{C_{100}}{P}\right)^{p}$		
Equation 80	$L_{h} = \frac{1666}{v_{m}} \cdot \left(\frac{C_{100}}{P}\right)^{p}$		
	According to DIN ISO 14728-1, the ec not exceed the value 0,5 · C.	quivalent dynamic load P should	

Equivalent load and velocity

The equations for calculating the basic rating life assume that the load P and the velocity v_m are constant. Non-constant operating conditions can be taken into consideration by means of equivalent operating values. These have the same effect as the loads occurring in practice.

Equivalent dynamic load

Where the load varies in steps and the velocity varies in steps, the equivalent dynamic load is calculated as follows:

Equation 81

$$\mathsf{P} = \Pr \! \left[\frac{\mathsf{q}_1 \cdot \mathsf{v}_1 \cdot \mathsf{F}_1^p + \mathsf{q}_2 \cdot \mathsf{v}_2 \cdot \mathsf{F}_2^p + ... + \mathsf{q}_z \cdot \mathsf{v}_z \cdot \mathsf{F}_z^p}{\mathsf{q}_1 \cdot \mathsf{v}_1 + \mathsf{q}_2 \cdot \mathsf{v}_2 + ... + \mathsf{q}_z \cdot \mathsf{v}_z} \right]$$

Mean velocity

Where the velocity varies in steps, the mean velocity is calculated as follows:

Equation 82

$$v_{m} = \frac{q_{1} \cdot v_{1} + q_{2} \cdot v_{2} + \dots + q_{z} \cdot v_{z}}{100}$$

Combined load

If the direction of the load acting on an element does not coincide with one of the main load directions, an approximate value for the equivalent load is calculated as follows:

Equation 83

 $\mathsf{P} = \left|\mathsf{F}_{\mathsf{y}}\right| + \left|\mathsf{F}_{\mathsf{z}}\right|$

If an element is simultaneously subjected to a force F and a moment M, an approximate value for the equivalent dynamic load is calculated as follows:

Equation 84

$$\mathsf{P} = \left|\mathsf{F}\right| + \left|\mathsf{M}\right| \cdot \frac{\mathsf{C}_{\mathsf{0}}}{\mathsf{M}_{\mathsf{0}}}$$

Symbols, units and definitions

The following values are used in calculation of the equivalent load and velocity as well as the basic rating life:

Legend	C ₁₀₀ N Basic dynamic load rating C for displacement distance of 100 km – definition according to DIN ISO 14728-1	M ₀ Nm Static moment rating
	C ₀ N Basic static load rating in the direction of the force acting on the element	n _{osc} min ⁻¹ Number of return strokes per minute
	F N Force acting on the element	P N Equivalent dynamic bearing load
	F _y N Vertical component F _z N Horizontal component	p — Life exponent: Monorail guidance systems based on balls: p = 3 Monorail guidance systems based
	H m Single stroke length for oscillating motion	on rollers: $p = 10/3$ q_z % Duration as a proportion of the total operating time
	L, L _h km, h Basic rating life for a distance of 100 km or in operating hours	v _z m/min Variable velocity
	M Nm Acting moment	v _m m/min Mean velocity.
ating life	The operating life is defined as the lif	e actually achieved by monorail

Operating life The operating life is defined as the life actually achieved by monorail guidance systems. It may differ significantly from the calculated life.

The following influences can lead to premature failure through wear or fatigue:

- excess load due to misalignment as a result of temperature differences and manufacturing tolerances (elasticity of the adjacent construction)
- contamination of the guidance systems
- inadequate lubrication
- scillating motion with very small stroke length (false brinelling)
- vibration while stationary (false brinelling)
- overloading of the guidance system (even for short periods)
- plastic deformation

Static load The static load carrying capacity of the monorail guidance system is carrying capacity limited by:

- the permissible load on the monorail guidance system
- the load carrying capacity of the raceway
- the permissible load on the screw connection between the upper and lower components
- the permissible load on the adjacent construction

For design purposes, the static load safety factor S₀ required for the application must be observed, see tables starting Page 693.

Basic static load ratings and moment ratings

The basic static load ratings and moment ratings are those loads under which the raceways and rolling elements undergo permanent deformation equivalent to one tenth of a thousandth of the rolling element diameter.

Static load safety factor

The static load safety factor S_0 is the security against permanent deformation at the rolling contact:

Equation 85

$$S_0 = \frac{C_0}{P_0}$$

 Equation 86
 $S_0 = \frac{M_0}{M}$

 Legend
 $S_0 = -$

 Static load safety factor
 M_0 Nm

 Static moment rating in the load direction (M_{0x}, M_{0y}, M_{02}) according to the product tables in the Schaeffler catalogues

 M Nm
 Equivalent static load rating in the load direction

 P_0 N
 N

 Equivalent static bearing load in the load direction.
 M Nm

 Equivalent static bearing load is determined in approximate terms from the maximum loads:
 P_0 = F_{max}

 Equation 88
 $M_0 = M_{max}$

Application-oriented static load safety factor

In machine tool applications, the static load safety factor S_0 is in accordance with the following tables. The data given in the tables are subject to the precondition that the specifications for the strength of the connection as given in Schaeffler catalogues are fulfilled.

Preconditions		
Critical case High dynamic loading with one axis stationary Severe contamination Actual load parameters are not defined.		
Normal case Not all load parameters are completely known. or: Loads are estimated from the performance data of the machine.		
All load parameters are known.	4 to 5	
All load parameters are known (and definitely correspond to reality)	3 to 4	

In machine tool applications, safety factors of $S_0 > 10$ are normally required for reasons of rigidity. For the precise design of the guidance system, Schaeffler offers \rightarrow Bearinx-online or design by the "Schaeffler Technology Center" in conjunction with Application Engineering facilities. In the precise design process, the displacement of the tool point can also be analysed.

In general applications, the static load safety factor S_0 is in accordance with the following table:

Preconditions		S ₀
	Predominantly oscillating load with stationary guidance system	20
•	All load parameters are completely known, running is smooth and free from vibrations.	3 to 4

In general applications with a suspended arrangement (where a suspended arrangement is present, a drop guard is recommended), S_0 is in accordance with the following table:

Preconditions		
Not all load parameters are known and a coherent weight is supported by fewer than 4 carriages.	20	
 Not all load parameters are known and a coherent weight is supported by at least 4 carriages. or: All load parameters are known and a coherent weight is supported by fewer than 4 carriages. 	8 to 12	
All load parameters are known and a coherent weight is supported by at least 4 carriages.	5 to 8	

If the fixing screw threads are of a sufficient size, monorail guidance Fracture strength of guidance systems systems can be subjected to loads up to the static load carrying capacity Co and Mo according to the product tables. The load must be transmitted via locating surfaces. The basic load ratings can only be achieved when utilising the full thread lengths. Lubrication Monorail guidance systems must be lubricated. Technical, economic and - oil or grease ecological factors will determine whether oil or grease should be used and lubrication which lubrication method should be applied. A significant factor in selecting the type of lubrication is the environmental conditions (such as contamination) acting on the guidance system. Suitable lubricants Monorail guidance systems are supplied with preservative or with initial greasing. The guidance systems run exclusively under mixed friction conditions. As a result, doped lubricants (type P to DIN 51502) should be used in preference. Design of a monorail Monorail guidance systems comprise one or more carriages running

guidance system guidance system on a profiled guideway. Depending on the type of rolling element, monorail guidance systems are differentiated into linear recirculating ball bearing and guideway assemblies or linear recirculating roller bearing and guideway assemblies.

The technical characteristics and area of application of the monorail guidance system are determined by the number, arrangement and contact geometry of the rolling element rows.

The carriage comprises the functional components of the saddle plate, end pieces, rolling elements, end seals and sealing strips, see Figure 141. The rolling elements in the carriage are guided by a rolling element recirculation system comprising a forward section and reverse section.

Figure 141

Monorail guidance system (linear recirculating ball guidance system)

 Guideway with raceway profile
 Rolling elements (balls)
 Saddle plate (steel part)
 End piece with outer return device
 End seal
 Load zone (raceway)
 Recirculation channel
 Inner return device

The saddle plates and guideways are made from hardened rolling bearing steel and have ground raceways. The rolling elements are in point or line contact with the guideway and carriage (depending on the rolling element type).

The end pieces of the carriage contain return devices that direct the rolling elements from the forward section into the reverse section. They also support the end seals.

The rolling element system is protected against contamination by sealing elements. The guidance systems are lubricated via lubrication connectors in the end pieces and/or lubrication pockets within the carriages.

Nominal contact angle The load carrying capacity and rigidity of the monorail guidance system are influenced by the arrangement of the rolling element raceways. The raceways and contact points are therefore arranged at a specific angle, the nominal contact angle. The nominal contact angle specifies the direction of force flow relative to the horizontal plane of the guidance system and is stated for loads in the main load direction. In two-row and four-row linear recirculating ball bearing and guideway assemblies, it is normally 45°.

Arrangement of rolling element rows – X or O arrangement Linear recirculating ball bearing and guideway assemblies can be designed with 2, 4 or 6 rows of rolling elements. Linear recirculating roller bearing and guideway assemblies predominantly have 4 rows of rolling elements.

Four-row systems are constructed in an X or O arrangement, see Figure 142, and table Monorail guidance system, Page 696. Guidance systems in an O arrangement have a higher moment rigidity about the guidance system axis than systems in an X arrangement.

In the case of linear recirculating roller bearing and guideway assemblies, the cylindrical rollers are in an X or O arrangement on the raceways.

Two-row linear recirculating ball bearing and guideway assemblies have an O arrangement, four-row systems an X or O arrangement and six-row systems an X and O arrangement.

The higher the rigidity of the guidance system, the greater the effect of very small tilting, as a result of inaccuracies in the adjacent construction for example, in exerting very high internal constraining forces on the rolling elements.

Units in an X arrangement permit greater skewing about the guidance system axis. The rigidity in a compressive, tensile and lateral direction is not influenced by the X or O arrangement.

- H = support distance S = lever arm
 - (1) X arrangement (2) O arrangement

Typical arrangements of rolling elements and contact geometries in monorail guidance systems are shown in the following table. This presents a selection of commonly available monorail guidance systems.

Monorail guidance system	Rolling contact	Number of rolling element rows	Arrangement
45° 45°	Ball, 4 point	2	0
	Ball, 2 point	4	Х
Contraction of the second seco	Ball, 2 point	4	0
	Ball, 2 point	6	X and O
× ×	Roller, line	4	Х
	Roller, line	4	0

Running accuracy/ accuracy classes

Monorail guidance systems are divided into various accuracy classes. The specific class is defined by the different tolerances for the maximum deviations in height and lateral dimensions.

The accuracy requirements placed on the linear elements used increase with the requirements for the accuracy of an application. The accuracy class is determined by the application conditions of the guidance system.

Preload	Monorail guidance systems are predominantly preloaded. As a result, significantly greater rigidity is achieved than in clearance-free systems (increasing preload leads to an increase in static rigidity). The preload is induced by specific sorting of the rolling elements with oversize and the spring rate at the rolling contact is set.	
	When selecting the preload class, it must be taken into consideration that a high preload induces additional loads on the rolling element set and leads to a reduction in the basic rating life. It must therefore be critically assessed whether it is always advisable to select very high preload classes.	
Rigidity of monorail guidance systems	Rigidity is an important characteristic of monorail guidance systems. The rigidity is dependent on the type and size of the guidance system. Rigidity is defined as the ratio of load to deflection. A distinction is drawn between the compressive, tensile and lateral rigidity of a guidance system.	
Factors influencing the rigidity	 The rigidity is influenced by: the rolling element type (ball or roller) the arrangement of the rolling elements (number of rows, nominal contact angle) the osculation the carriage design (normal, long, low, narrow, high) the size of the guidance system (size 5 to 100) the load direction (compressive, tensile, lateral load) the preload class 	
Friction	The frictional force F_R is influenced by the load, preload, travel velocity, design of the rolling element recirculation channels, lubricant (quantity and viscosity), temperature, misalignment and sliding motion components of the seals. It is the product of the normal force F_N and the friction coefficient μ . The friction coefficient is dependent on the system used (ball or roller guidance system) and differs in magnitude.	
Linear recirculating roller bearing and guideway assemblies	The units have a full complement roller set, see Figure 143, Page 698. Since they have the maximum possible number of rolling elements, bearings with a full complement of rollers have extremely high load carrying capacity and particularly high rigidity.	

Linear recirculating roller bearing and guideway assemblies are used wherever linear guidance systems must support extremely heavy loads, where particularly high rigidity is required and where very precise travel is also necessary. In preloaded form, they are particularly suitable for machine tools.

Figure 143

Full complement linear recirculating roller bearing and guideway assembly

 F_y , F_z = load-bearing component in y and z direction M_x , M_y , M_z = moment about x, y and z axis

Two-row linear recirculating ball bearing and guideway assemblies

These linear recirculating ball bearing and guideway assemblies have two rows of balls and a full complement ball rolling element system, see Figure 144. The rolling elements are in four point contact with the raceways.

Since the load carrying capacity and rigidity are lower than that of the other linear recirculating ball bearing and guideway assemblies, they are used where there are lower requirements for load carrying capacity and rigidity of the guidance system. Two-row units can be used to achieve economical linear guidance systems in the lower and medium range of load carrying capacity.

Figure 144 Two-row linear recirculating ball bearing and guideway assembly

Four-row linear recirculating ball bearing and guideway assemblies

Four-row linear recirculating ball bearing and guideway assemblies with a full complement ball set represent the most extensive and complex group within the range of monorail guidance systems, see Figure 145. Since they have the maximum possible number of rolling elements, bearings with a full complement of balls have extremely high load carrying capacity and particularly high rigidity.

Linear recirculating ball bearing and guideway assemblies are used where linear guidance systems with high load carrying capacity and rigidity must move heavy loads with high running and positional accuracy as well as low friction. The guidance systems are preloaded and – depending on the application – can be used at accelerations up to 150 m/s² and velocities up to 360 m/min.

Six-row linear recirculating ball bearing and guideway assemblies

The rolling elements are in two point contact with the raceways, see Figure 146, Page 700. Four outer rows of balls support compressive loads while the inner rows of balls support tensile loads and all the rows support lateral loads. The guidance systems are preloaded in order to increase their rigidity.

Due to their six rows of balls, these recirculating guidance systems are the ball monorail guidance systems with the highest load carrying capacity and rigidity.

Figure 146 Six-row linear recirculating ball bearing and guideway assembly

Track roller guidance systems

Track roller guidance systems in accordance with Figure 147 are highly suitable, due to their lightweight construction, for applications in handling systems where low-noise running, high velocities and long displacement distances are required together with low, uniform displacement resistance. The guidance systems can support forces from all directions, except in the direction of motion, and moments about all axes (in the case of track roller guidance systems with non-locating bearing carriages, the load directions are restricted).

The system elements, namely carriages, composite guideways and track rollers, can be combined to achieve economical designs that are precisely matched to the application.

 F_y , F_z = load-bearing component in y and z direction M_x , M_y , M_z = moment about x, y and z axis

 Guideway with hollow section profile
 Profiled track roller
 Hollow section carriage

The carriages are available as lightweight hollow section carriages, open carriages for high performance guidance systems of a simple design, closed carriages for guidance systems in contaminated environments, non-locating bearing carriages for locating and non-locating bearing applications with two guideways in parallel and as bogie carriages for curved tracks or guidance systems in the form of closed oval or circular tracks.

Composite guideways are available as solid and hollow section guideways, with a support rail of high bending rigidity, as a half guideway, a curved guideway element or a flat type. Guideways are also available with slots for toothed racks or toothed belts.

Profiled track rollers are used for the guidance of carriages and support of forces. These double row angular contact ball bearings have an outer ring with a gothic arch profile raceway, are sealed on both sides and are greased for life. They can support axial loads from both sides and high radial forces due to the thick-walled outer ring.

Under static loading, both the permissible radial load of the bearing and the permissible radial load of the mating track must be taken into consideration.

In order to ensure that the outer ring is driven, that no slippage occurs and that the track roller does not lift from the mating track, the track rollers must be subjected to a minimum load in dynamic operation. Values are indicated in the Schaeffler product catalogues.

Dimensioning – load carrying capacity and life

ning The loads present in track roller guidance systems differ from those in supported, rotary rolling bearings. When calculating their load carrying d life capacity, additional parameters must therefore be taken into consideration.

Permissible radial loads

The thick-walled outer rings of the track rollers can support high radial loads. If these track rollers are used against a shaft as a raceway, the outer rings undergo elastic deformation.

Compared to rolling bearings supported in a housing bore, track rollers have the following characteristics:

- Modified load distribution in the bearing. This is taken into consideration by means of the basic load ratings C_{rw} and C_{0rw} that play a definitive role in rating life calculation.
- Bending stress in the outer ring.

This is taken into consideration by means of the permissible radial loads $F_{r\,per}$ and $F_{0r\,per}$. The bending stresses must not exceed the permissible strength values of the material (due to the risk of fracture).

Permissible radial load under dynamic loading

For rotating bearings under dynamic load, the effective basic dynamic load rating C_{rw} is used. C_{rw} is used to calculate the basic rating life. The permissible dynamic radial load $F_{r\,per}$ must not be exceeded. If the basic static load rating C_{0rw} is lower than the basic dynamic load rating C_{rw} , then C_{0rw} applies.

Permissible radial load under static loading

For bearings under static load, when stationary or with only infrequent motion, the effective basic static load rating C_{0rw} is used. The value C_{0rw} is used to calculate the static load safety factor S_0 . The permissible static radial load $F_{0r,per}$ must not be exceeded. In addition to the permissible radial load of the bearing, the permissible radial load of the mating track must also be taken into consideration. The basic load ratings stated are valid only in conjunction with a shaft as a mating track that is hardened (to at least 670 HV) and ground (Ra = 0,3 μ m).

Fatigue limit load

The fatigue limit load C_{urw} is defined as the load below which – under laboratory conditions – no fatigue occurs in the material.

Calculation of the rating life

The general methods for calculating the rating life are: the basic rating life in accordance with DIN ISO 281

- the adjusted rating life in accordance with DIN ISO 281
- the expanded calculation of the adjusted reference rating life in accordance with DIN ISO 281-4

These methods are described in the Schaeffler catalogues and the Technical Pocket Guide STT, see Page 703.

Rating life of track rollers

In comparison with the Schaeffler catalogue data, the following values must be replaced:

- $C_r = C_{rw}$
- $\Box C_{0r} = C_{0rw}$

$$\Box C_{ur} = C_{urw}$$

The carriages LFCL, LFL..-SF, LFLL, LFKL and the bogie carriage LFDL contain four track rollers LFR.

The equivalent principle applies here. The corresponding parameters are taken into consideration in the basic load ratings C_y, C_{0y}, C_z, C_{0z} and the permissible moment ratings M_{0x} , M_{0y} and M_{0z} .

Legend	C _y N Basic dynamic load rating in y direction	M _{0x} Nm Static moment rating about x axis
	C _{Oy} N Basic static load rating in y direction	M _{0y} Nm Static moment rating about y axis
	C _z N Basic dynamic load rating in z direction	M _{0z} Nm Static moment rating about z axis.
	C _{Oz} N Basic static load rating in z direction	

In the case of track rollers with a profiled outer ring, calculation is carried out exclusively by means of the basic rating life in accordance with DIN ISO 281.
Equations for the basic rating life

Equation 89

$$L_{s} = 0.0314 \cdot D_{a} \left(\frac{C_{rw}}{P_{r}} \right)^{p}$$

Equation 90

$$L_{h} = 26,18 \cdot \frac{D_{a}}{H \cdot n_{osc}} \left(\frac{C_{rw}}{P_{r}} \right)^{p} \qquad L_{h} = 52,36 \cdot \frac{D_{a}}{v_{m}} \left(\frac{C_{rw}}{P_{r}} \right)^{p}$$

Rating life for carriages with four track rollers

Equation 91

Equation 92 $L_h = \frac{1666}{\cdot}$ $\frac{C_y, C_z}{P}$ 833 $L_h = \frac{1}{H \cdot n_h}$ 10⁵ m Leaend Ls Da mm Basic rating life in 10⁵ metres Rolling contact diameter of track roller, see product table in Schaeffler catalogue LF 1, Track Roller Guidance Systems н Lh h m Basic rating life in operating hours Single stroke length for oscillating motion C_{rw}, C_v, C_z min⁻¹ Ν nosc Effective basic dynamic load rating Number of return strokes per minute Pr m/min Ν vm Equivalent dynamic bearing load Mean travel velocity (radial load) Р Ν р Equivalent dynamic bearing load Ball: p = 3;in corresponding load direction Needle roller (non-locating bearing track

roller or carriage): p = 10/3.

Operating life

The operating life is defined as the life actually achieved by a track roller. It may differ significantly from the calculated life.

This may be due to wear or fatigue as a result of:

- deviations in the operating data
- insufficient or excessive operating clearance (roller, guideway)
- contamination, inadequate lubrication, operating temperature too high or too low
- overloading of the guidance system
- vibration stress false brinelling; oscillating bearing motion with very small stroke length, which can lead to false brinelling.
- very high shock loads
- prior damage during installation

Due to the variety of possible mounting and operating conditions, the operating life cannot be precisely calculated in advance. The most reliable way of arriving at a close estimate is by comparison with similar applications.

Static load safety factor

The parameter for the static load is the static load safety factor S_0 . This indicates the security against impermissible permanent deformations in the bearing and is determined by means of the following equation:

Equation 93

 $S_0 = \frac{C_{0rw}}{F_{0r}}$

Static load safety factor for carriages with four track rollers

Equation 94	$S_0 = \frac{C_{0r}}{F_0}$	$S_0 = \frac{M_0}{M}$
Legend	S ₀ N Static load safety factor	F ₀ N Static force acting in y and z direction
	C _{orw} N Effective radial basic static load rating of track roller, in accordance with product table in Schaeffler catalogue LF 1, Track Roller Guidance Systems	M ₀ Nm Permissible static moment rating in x, y, z direction
	F _{Or} N Static force acting in a radial direction	M Nm Moment acting in load direction
	C _{or} N Basic static load rating in accordance with product table in Schaeffler catalogue LF 1, Track Roller Guidance Systems	(M _x , M _y , M ₂).

At a static load safety factor of $\rm S_0 <$ 4, track rollers are regarded as highly loaded. For applications with normal operating conditions, a value $\rm S_0 >$ 4 is required.

When using individual track rollers, for example in conjunction with guideways, the permissible load of the guideway should be taken as decisive where necessary.

Static load safety factors $S_0 < 1$ cause plastic deformation of the rolling elements and the raceway, which can impair smooth running. This is only permissible for bearings with small rotary motions or in secondary applications.

Minimum load

In order to ensure that the outer ring is driven, that no slippage occurs and that the track roller does not lift from the mating track, the track rollers must be subjected to a minimum load in dynamic operation.

In general, the ratio for the minimum load is $C_{0rw}/F_r < 60$.

Lower hardness of raceway

If shafts with a lower surface hardness are used (such as X46, X90), a hardness factor (reduction factor) must be applied, see following equations and Figure 148, Page 706.

Equation 95

$$C_H = f_H \cdot C$$

 Equation 96
 $C_{OH} = f_{HO} \cdot C_O$

 Legend
 C
 N

 Basic dynamic load rating
 $C_{OH} = N$
 C_0
 N
 Effective basic static load rating

 C_0
 N
 Effective basic static load rating

 C_H
 N
 Effective basic dynamic load rating

 F_{HO}
 -
 Static hardness factor (reduction factor), see Figure 148, Page 706

 f_{HO}
 -
 Static hardness factor (reduction factor), see Figure 148, Page 706.

$$\label{eq:holescale} \begin{split} f_{H0} &= \text{static hardness} \\ f_{H} &= \text{dynamic hardness} \\ f_{H} &= \text{dynamic hardness} \\ \text{HV, HRC} &= \text{surface} \\ \text{hardness} \end{split}$$

LubricationThe guideway raceways must be lubricated (even before first use).of racewaysLubrication can be carried out by means of lubrication and wiper units.

These units are already integrated in the compact carriage LFKL..-SF. For carriages LFL..-SF and LFCL, the lubrication and wiper unit AB is available as an accessory.

The guideway raceway is lubricated by an oil-soaked felt insert. Oil can be fed to the felt inserts via lubrication nipples in the end faces. At delivery, the felt inserts are already soaked with oil (H1 approval for the food industry). For relubrication, an oil of viscosity $\nu = 460 \text{ mm}^2/\text{s}$ is recommended.

Lubrication intervals

The lubrication intervals for guideway raceways are dependent on the environmental influences. The cleaner the environment, the smaller the quantity of lubricant required. The time and quantity can only be determined precisely under operating conditions since it is not possible to determine all the influences by calculation. An observation period of adequate length must be allowed.

Fretting corrosion is a consequence of inadequate lubrication and is visible as a reddish discolouration of the mating track or outer ring. Inadequate lubrication can lead to permanent system damage and therefore to failure of the linear unit. It must be ensured that the lubrication intervals are reduced accordingly in order to prevent fretting corrosion.

In general, a thin film of oil should always be present on the guideway.

Lubrication of track rollers

Track rollers LFR have an initial greasing of a high quality lithium soap grease. Track rollers of smaller diameters are lubricated for life.

Design of bearing arrangements The accuracy of the guidance system as achieved by the manufacturer can only be properly utilised if the adjacent construction fulfils certain requirements.

Requirements for the adjacent construction

The running accuracy of the linear guidance system is essentially dependent on the straightness, accuracy and rigidity of the mounting surfaces.

The higher the requirements for accuracy and smooth running of a track roller guidance system, the more attention must be paid to the geometrical and positional accuracy of the adjacent construction. The adjacent surfaces should be flat and have parallel faces.

If two guideways are present, parallelism in accordance with Figure 149 is recommended.

Displacement force

The displacement force is dependent on the preload, the lubrication and the particular application.

Location of carriages and guideways

If lateral loads are present, it is recommended that the guideways and carriages should be located against locating surfaces. In the case of guideways comprising multiple sections joined together, it is recommended that the guideways should be aligned by means of the shaft. If necessary, the guideways should be located on the adjacent construction by means of dowels.

If two guideways are arranged in parallel, the first guideway should be clamped against a stop, see Figure 149. The second guideway should then be aligned accordingly. Any gaps between the guideway and the adjacent construction should be filled with resin.

Shaft guidance systems, linear ball bearings

Shaft and round guidance systems with linear ball bearings are among the oldest guidance systems based on rolling elements. Such guidance systems comprise a hardened and ground shaft and one or more lowfriction linear bearings, see Figure 150.

In shaft guidance systems, linear ball bearings are used for the support and transmission of forces. These bearings can support high radial loads while having a relatively low mass and allow the construction of linear guidance systems with unlimited travel.

The shaft is generally mounted on a support rail. The shafts can be either solid or hollow shafts, while the support rails are solid. Bearings and units are available in various series (light, heavy duty, compact, etc.).

Figure 150

Shaft guidance system, closed housing

 $F_y = load-bearing$ component in y direction

 Linear ball bearing in closed housing
 Closed linear ball bearing
 Shaft guidance system with linear ball bearing and solid shaft

Linear ball bearings

The structure of linear ball bearings is shown in Figure 151. While rotary ball bearings perform rotary motion, linear ball bearings run back and forth on the shaft as linear motion elements. The unlimited stroke length and return of the balls from the loaded zone to the unloaded zone is facilitated by the cage.

Figure 151

Linear ball bearings with tangential and radial return

A = tangential return B = radial return

 Steel sleeve or load plates
 Balls made
 from rolling bearing steel
 Sealing rings
 Plastic or steel cage

Linear ball bearings without compensation of shaft deflection and misalignments

Linear ball bearings of series 1 in accordance with ISO 10285 are also designated, due to the very small radial section height, as sleeve type linear motion ball bearings, see Figure 152 (1), Page 710. They comprise a formed and hardened outer sleeve with an integrated plastic cage. The balls undergo return travel along the openings in the outer sleeve.

Linear ball bearings of series 3 in accordance with ISO 10285 have larger radial section heights than series 1. The best known is the machined series, the so-called linear ball bearing with a solid housing, see Figure 152 ②, Page 710.

Linear ball bushings comprise solid, ground and hardened outer rings with a plastic cage in which the rolling elements circulate.

Sleeve type linear ball bearings and linear ball bushings of these designs cannot compensate for deflections and misalignments of the shaft or misalignments of the bearings. This must be taken into consideration in the design of bearing arrangements.

Linear ball bearings with compensation of shaft deflection and misalignments

Linear ball bearings of ISO series 3 (linear ball bushings with single row adjustable load plate) have several load plate segments distributed around the circumference arranged such that they can swivel in an axial direction, see Figure 152 ③. This facilitates self-alignment of the bearing by up to ± 30 angular minutes. Each load plate has a ball raceway that is deflected in each case by a return channel made from plastic in the stationary part of the housing.

The segments are supported centrally on a retaining ring. Their common contact point is also the centre point of the rocking motion.

Linear ball bearings of this design are intended for moderate loads.

The linear ball bearing design in ISO series 3 with the highest load carrying capacity allows self-alignment by up to ± 40 angular minutes by means of several segments arranged around the circumference that themselves constitute independent linear bearings, see Figure 153, Page 711. Each segment has its own housing sections, return areas and recirculation channels. In contrast to the design described above for moderate loads, the segments in this case have two rows of balls, see Figure 152 (4).

In contrast to conventional linear ball bearings, the self-alignment function has the advantage that, even if misalignments are present, constraining forces are prevented from acting on the bearing and thus reducing the rating life. Due to the self-alignment function, the balls run without difficulty into the load zone. At the same time, load is more uniformly distributed over the entire ball row. This leads to smoother running, allows higher accelerations and prevents overloading of the individual balls.

Figure 152 Cross-sections of the type series in accordance with ISO 10285

 Series 1, sleeve type linear ball bearing
 Series 3, machined linear ball bushing
 Series 3, linear ball bushing for moderate load and self-alignment
 Series 3, linear ball bushing for very high load carrying capacity and self-alignment

Figure 153

Angular compensation (self-alignment) in linear ball bushing, ISO series 3

Angular compensation \pm 40 angular minutes F = load

Open and closed design of linear ball bearings

Linear ball bearings of all type series are available in open and closed designs. While the closed variant completely encloses the circumference of the shaft, the open design covers only a part thereof. In the case of the open design, a recess (segment cutout) allows underpinning or support of the shaft in this area. With the aid of this support, it is possible to prevent – particularly at higher operating loads – sagging of the shaft. Open bearings are designed for applications incorporating a supported shaft.

In addition to the designs for supported shafts, complete housing units are also available for open and closed bearings. In this case, the bearing is integrated in a strong, rigid housing. The housings are available in closed, open, slotted and tandem versions. Due to their low total mass, the units are particularly suitable for reduced mass designs with high loads and where higher accelerations and travel velocities are required.

Dimensioning – load carrying capacity and life

The size of a linear ball bearing is determined by the demands made in terms of load carrying capacity, rating life and operational security.

The load carrying capacity is described in terms of:

- the basic dynamic load rating C
- the basic static load rating C₀

The calculation of the basic dynamic and static load ratings given in the product tables of Schaeffler catalogues is based on DIN ISO 14728-1 and 2.

Basic rating life

The basic rating life L is reached or exceeded by 90% of a sufficiently large group of apparently identical bearings before the first evidence of material fatigue occurs.

Operating life

The operating life is defined as the life actually achieved by a shaft guidance system. It may differ significantly from the calculated life.

The following influences can lead to premature failure through wear or fatigue:

- misalignment between the shafts or guidance elements
- contamination
- inadequate lubrication
- oscillating motion with very small stroke length (false brinelling)
- vibration during stoppage (false brinelling)

Due to the wide variety of mounting and operating conditions, it is not possible to precisely predetermine the operating life of a shaft guidance system. The safest way to arrive at an appropriate estimate of the operating life is comparison with similar applications.

Static load safety factor

The static load safety factor S₀ indicates the security against impermissible permanent deformations in the bearing and is determined in accordance with the following equation:

 $S_0 =$

P₀

Legend

Sn Static load safety factor Ν

Equivalent static load

Co Ν Basic static load rating.

For linear ball bearings KH and KN..-B, the value must be $S_0 \ge 4$.

In relation to guidance accuracy and smooth running, the value $S_0 \ge 2$ is regarded as permissible. If $S_0 < 2$, please contact us.

Influence of the shaft raceway on basic load ratings

The basic load ratings are only valid if a ground ($Ra = 0.3 \mu m$) and hardened shaft (at least 670 HV) is provided as a raceway.

Lower hardness of raceway

If shafts with a surface hardness lower than 670 HV are used (such as shafts made from X46 or X90), a hardness factor (reduction factor) must be applied, see Figure 148, Page 706:

Equation 101

 $C_{\mu} = f_{\mu} \cdot C$

Eauation 102

 $C_{OH} = f_{HO} \cdot C_{O}$

Leaend Basic dynamic load rating

 C_0 Ν Basic static load rating

Ν

Сн Ν Effective basic dynamic load rating C_{OH} Ν Effective basic static load rating

fн Dynamic hardness factor (reduction factor), see Figure 148, Page 706

f_{H0} Static hardness factor (reduction factor). see Figure 148, Page 706.

Load direction and orientation of the ball rows

The effective load rating of a linear ball bearing is dependent on the position of the load direction in relation to the orientation of the ball rows:

- The lowest basic load rating C_{min} and C_{0 min} will occur in the apex orientation, see Figure 154.
- The highest basic load rating C_{max} and C_{0 max} will occur in the symmetrical orientation, see Figure 154.

If the bearings are mounted in correct alignment, the maximum basic load rating can be used. If mounting in correct alignment is not possible or the load direction is not defined, the minimum basic load ratings must be assumed.

Main load direction

For linear ball bearings and linear ball bearing and housing units, where the fitting position of the ball rows is defined, the basic load ratings C and C_0 in the main load direction are stated, see Figure 155. For other load directions, the effective basic load ratings can be determined using the load direction factors in the Schaeffler catalogue WF 1, Shaft Guidance Systems.

If the mounting position of the ball rows is not defined, the minimum basic load ratings are stated.

Figure 154

Load carrying capacity as a function of the orientation of the ball rows

```
C<sub>min</sub>, C<sub>0 min</sub> = lowest
basic dynamic or
static load rating
C<sub>max</sub>, C<sub>0 max</sub> = highest
basic dynamic or
static load rating
```

Apex orientation
 Symmetrical orientation

Figure 155 Main load direction for bearings and units

1 Main load direction

Lubrication Open linear ball bearings are supplied with a wet or dry preservative and can be lubricated using either grease or oil. The oil-based preservative is compatible and miscible with lubricants with a mineral oil base, which means that it is not generally necessary to wash out the bearings before mounting. Bearings with a dry preservative must be greased or oiled immediately after they are removed from the packaging (due to the risk of corrosion).

Grease lubrication

Grease lubrication should be used in preference to oil lubrication, since the grease adheres to the inside of the bearing and thus prevents the ingress of contamination. This sealing effect protects the rolling elements against corrosion.

In addition, the design work involved in providing grease lubrication is less than that for providing oil, since design of the sealing arrangement is less demanding.

Composition of suitable greases

The greases for linear ball bearings have the following composition:

- lithium or lithium complex soap
- base oil: mineral oil or poly-alpha-olefin (PAO)
- special anti-wear additives for loads C/P < 8, indicated by "P" in the DIN designation KP2K-30
- consistency to NLGI grade 2 in accordance with DIN 51818

Initial greasing and operating life

Based on experience, the operating life is achieved with the initial greasing when bearings are operated in normal ambient conditions (C/P > 10), at room temperature and with v \leq 0,6 \cdot v_{max}. If it is not possible to achieve these conditions, relubrication must be carried out.

Sealed linear ball bearings are already adequately greased when delivered and are therefore maintenance-free in many applications.

Influence of the adjacent construction on the running accuracy of the guidance system

The good running characteristics of shaft guidance systems are dependent
 not only on the bearings. They are also influenced to a large extent by
 the geometrical and positional tolerances of the adjacent construction
 as well as the mounting of the guidance systems. The higher the accuracy
 to which the adjacent construction is produced and assembled, the better
 the running characteristics.

	Applications
Examples of the design of bearing arrangements	The design and layout of bearing arrangements for widely varying areas of engineering requires fundamental and extensive knowledge and experience of the application of the corresponding bearings. This section describes applications as examples to show designers and students how bearing arrangement tasks can be realised.
Bearing selection	The issues to be clarified in preparing a design solution for a bearing arrangement are derived from the type of machine and its working conditions. The designers must therefore clarify first the tasks for the bearings as a result of the operational function of the machine, plant, etc. and the operating conditions. They must therefore know the direction and magnitude of the forces to be supported. This will then give reference points to indicate the type of bearing.
Dimensioning	The correct bearing size is generally defined by the calculation of the fatigue life L_{10h} . Initially, the focus here is on bearing arrangements that have already proved successful in practice. When dimensioning linear guidance systems, a sufficiently high static load safety factor must be taken into account, which is dependent on the application.
Internal clearance and running accuracy	The design of the bearing in relation to radial or axial internal clearance and the running accuracy is dependent not only on the operating conditions but also on how closely the bearing arrangement should guide the rotating part.
Accuracy and preload	With linear guidance systems, the accuracy class must be selected with regard to the running accuracy and the tolerances of the external dimensions. By choosing the appropriate preload, the rigidity required for the application can be achieved.
Design of the adjacent construction	Once the bearing type, bearing size and bearing design have been defined, the next task is the design of the bearing position. This includes the design of the adjacent parts and the selection of the fits.
Lubrication, sealing	The operating conditions determine the type of lubrication and sealing. Since a high percentage of bearing failures can be attributed to defects in lubrication and sealing, these components must be selected with particular care. The use of lubrication monitoring systems can significantly extend the operating life of the bearing.
Mounting and dismounting	When considering all the aspects described above, attention must also be paid to the correct mounting and dismounting of the bearing.

Special requirements	There are cases in which certain requirements acquire particular importance and therefore move to being the starting point for the considerations. In this way, a decisive influence from the very beginning may be exerted by high speeds or temperatures, unusual load conditions or accuracy requirements, etc. In order to fulfil these special requirements, Schaeffler offers an extensive range of variants and accessories, enabling the selection of special coatings, materials, sealing concepts, lubricants and additional elements, for example.
Electronic selection system	As a means of support to designers, Schaeffler offers a bearing selection system in the form of the software program medias , see section medias – knowledge database, electronic selection and information system, Page 744, and: https://medias.schaeffler.com.
Bearinx calculation software	The Schaeffler calculation software \rightarrow Bearinx facilitates the detailed analysis and design of rolling bearing arrangements, see section Bearinx calculation software from Schaeffler, Page 739.
Monitoring	The appropriate condition monitoring system regularly checks parameters such as movements, loads and lubricant quality during operation and detects incipient changes or damage to the bearings at an early stage, thus allowing maintenance to be carried out at the optimum time.
Examples describing typical bearing arrangement issues	The following examples are taken from various areas of application. The selection was made in such a way that typical issues relating to bearing arrangements can be discussed. The examples are not provided for the purpose of giving designers specific advice for their own areas of work beyond these issues; they are intended rather to convey knowledge of bearing technology in numerous areas, in order that designers can draw on these to develop suggestions for their own work.
Equations for calculation	The equations for calculating the rating life of rotational rolling bearings are given in the section Dimensioning – load carrying capacity and life, starting Page 571. The rating life equations for translational rolling bearings are given in the section Guiding elements in a translational direction – linear rolling element guidance systems, starting Page 684.
Attention	The applications provide example solutions only. Their content is exclusively for the purposes of information and cannot replace technical advice on the application of bearings in individual cases. In practice, the specifications of the actual application and the information provided by bearing manufacturers must always be observed.
	The publisher assumes no liability for compliance between the content and any legal regulations.

Bearing arrangement for the rotor shaft in a threephase motor Electric motors transform electrical energy into mechanical energy. They convert the force that is exerted by a magnetic field on the wire in a coil carrying current into rotary motion.

The quality of the motor is assessed to a significant extent on the basis of its quiet running in operation. For electrical machinery, the noise limit values are defined in VDE 0530 and the maximum permissible mechanical vibrations are specified in DIN ISO 2373.

Noise and vibration are influenced principally by the rolling bearings fitted. In addition to the geometrical accuracy of the rolling bearing raceways once mounted, the radial internal clearance of the bearings has a decisive effect on the running noise. The best results are achieved with bearing arrangements that are almost clearance-free when warm from operation. Due to the tolerances of the joined parts, however, this is only possible with considerable effort. Such bearing arrangements are therefore frequently fitted with an axial spring element to achieve clearance-free adjustment. This is situated between the housing cover and the outer ring of the non-locating bearing.

Application data The technical data of the motor are as follows:

- drive power of the belt drive 3 kW
- mass of the rotor m_L = 8 kg
- nominal speed n = 2 800 min⁻¹
- size 100L
- surface cooling in accordance with 42673, page 1, type B3, protection class IP44, insulation class F
- requisite rating life 20 000 h

A, B = bearing positions

 Deep groove ball bearing 6206-2Z
 Rotor

Bearing selection	The bearing arrangement should be simple, economical, maintenance- free and quiet. These requirements are best fulfilled by deep groove ball bearings. In DIN 42673, size 100L is defined as having a shaft end diameter of 28 mm. A bore diameter of 30 mm is thus specified.
	For the bearing arrangement, a bearing of series 62 is suitable for both bearing positions (bearing position A and B). These bearings guide the rotor shaft on the output side and ventilation side. The spring element on the ventilation side (bearing position B) gives clearance-free adjust- ment of the bearing arrangement and also provides the axial counter- guidance of the rotor shaft. The clearance-free adjustment of the bearings prevents the internal clearance from having a deleterious effect on the noise behaviour.
Dimensioning	Further calculation of the bearing arrangement is carried out in a slightly different way from normal practice. The magnitude of the load on the shaft end is not known to the manufacturer of the motors, hence the permissible radial load is indicated in the manufacturer's catalogues. In order to determine the radial load carrying capacity, the deep groove ball bearing on the output side is considered. The calculation is based on a requisite rating life L_{10h} of 20 000 hours. The rotor mass, the unilateral magnetic attraction and the imbalance must also be taken into consideration.
	Since the latter two criteria are not known, the rotor mass is multiplied by a safety factor of 1,5. As a result, a permissible radial load of 1 kN is calculated for the centre of the shaft end.
	Since the operating load is less than the permissible load in most cases, this gives an achievable rating life of more than 20 000 hours: $L_{10h} = (16666/n) \cdot (C/P)^3$. The operating life is thus normally determined by the grease operating life and not by the material fatigue.
Machining tolerances	The inner rings are subjected to circumferential load. They therefore have a tight fit on the shaft seats machined to k5. The outer rings are fitted in end cap bores machined to H6. The outer ring on the non-locating bearing side (bearing position B) can therefore be axially displaced in the bore and compensate thermal expansion under spring preload.
Internal clearance	Since the inner ring has a tight fit on the shaft, the radial clearance is reduced. Due to heating of the rotor, the inner ring is at a higher temperature during operation than the outer ring. This also gives a reduction in the radial internal clearance. In order to prevent distortion of the bearings, the radial internal clearance C3 is selected.

- Lubrication The grease filling as supplied is sufficient for the entire operating life of the bearings. Since increased temperatures must be taken into consideration as a result of the insulation class F, a high temperature grease is used.
 - Sealing In small to medium-sized electric motors, bearings with sealing shields (non-contact seals) on both sides have proved effective. The sealing shields prevent the escape of grease and also protect the rolling element system from foreign bodies in the motor body. In order to prevent the ingress of dust and moisture, the shaft opening on the drive side is designed as an extended gap and covered by a protective cap. This fulfils the requirements of protection class IP44.
- Mounting and dismounting
 The thermal method using a suitable induction heating device, for example from the HEATER series, is recommended for the mounting of bearings. Smaller bearings can be mounted by mechanical means using a mounting sleeve set such as the IMPACT-33. In dismounting, the shaft is driven out and the bearing is removed at the opposite bearing position using a mechanical or hydraulically supported extractor.
 - Monitoring The use of a vibration-based condition monitoring system (e.g. OPTIME) allows incipient damage to the bearings to be detected at an early stage. The use of one sensor per bearing position is recommended, positioned in the respective load zone of the bearing arrangement.

Bearing arrangement for the main spindle in a CNC lathe

The heart of a machine tool is the main or work spindle and its bearing arrangement. The quality of the main spindle bearing arrangement is measured in terms of the cutting volume and machining precision.

The only bearings used as main spindle bearings are rolling bearings with increased accuracy; these are mainly angular contact ball bearings or spindle bearings (radial angular contact ball bearings with contact angles of 15° and 25°), double direction axial angular contact ball bearings, radial and axial cylindrical roller bearings and occasionally tapered roller bearings.

Application data The technical data of the application are as follows:

- drive power P = 25 kW
- maximum spindle speed n = 5 000 min⁻¹

Figure 157 Load diagram and bearing arrangement

A, B = bearing positions

 Cylindrical roller bearing N1016-K-M1-SP
 Spindle bearing set in tandem 0 arrangement B7018E-T-P4S-TB-TL

Bearing selection

Depending on the requisite performance data of the machine tool, the spindle bearing arrangement is designed with ball or roller bearings in accordance with the criteria of rigidity, friction behaviour, accuracy, speed capacity, lubrication and sealing.

The bearings must give precise radial and axial guidance of the spindle and must exhibit high rigidity. This is achieved by using the largest possible shaft diameter and a corresponding bearing arrangement, see Figure 157. The bearings are additionally preloaded to increase the rigidity and have increased accuracy.

Dimensioning The bearing size is determined principally by the requisite rigidity of the spindle. While the fatigue life is included as a factor in dimensioning, it plays only a subordinate role in practice.

The decisive factors for the operating duration of the bearings are the Hertzian pressure p_0 and the grease operating life t_{fG} . For deep groove ball bearings with rolling elements made from the rolling bearing steel 100Cr6, the fatigue strength for example at p_0 is $\leq 2000 \text{ N/mm}^2$.

Main spindle bearings generally fail not as a result of material fatigue but of wear. The objective of the design is therefore to give rolling bearings that are fatigue-resistant at very high cleanliness and with a hydrodynamic lubricant film capable of supporting load at the contact points of the rolling contact parts (wear-free running).

Fatigue resistance can be ensured with a ratio $S_0^* = (C_0/P_0^*) \ge 8$. P_0^* is calculated from the dynamic load forces in accordance with the equation for the equivalent static load: $P_0 = F_{0r}$ at $F_{0a}/F_{0r} \le 1,3$. Since the ratio is $F_a/F_r \le 1,3$, P_0^* is assigned the value for F_r . Calculation shows that the bearings are fatigue-resistant under the stated operating conditions $(S_0^* \ge 8)$.

Design of the adjacent construction, machining tolerances

The table gives the machining tolerances of the bearing seats for the spindle bearings and cylindrical roller bearings in this application.

Bearing	Seat	Diameter tolerance	Cylindricity tolerance (DIN EN ISO 1101)	Total axial run-out tolerance of abutment shoulder
			μm	μm
Spindle	Shaft	+5/-5 μm	1,5	2,5
bearing	Housing	-4/+8 μm	3,5	5
Cylindrical	Shaft, tapered	Taper 1:12	1,5	2,5
roller bearing	Housing	-15/+3 μm	3,5	5

Bearing arrangement, preload The work side is fitted with a locating bearing comprising a spindle bearing set in a tandem O arrangement with slight preload. This preload fulfils the normal requirements.

A single row cylindrical roller bearing is fitted as a non-locating bearing on the drive side. Due to its conical inner ring bore, the bearing is set almost clearance-free when it is pressed axially onto the spindle.

The bearing combination and arrangement ensure the high speeds and cutting performance values required.

Lubrication	The spindle bearings and cylindrical roller bearings are greased for life with a high quality rolling bearing grease. The bearing interiors are filled with grease to approx. 35% in the case of the spindle bearings and approx. 20% in the case of the cylindrical roller bearings. Since the fatigue strength is ensured, the grease operating life $t_{\rm FG}$ is the decisive factor for the operating duration of the bearings.
Sealing	The bearings are protected against contamination by a labyrinth with defined narrow radial gaps.
Mounting and dismounting	The spindle bearing assembly is mounted in accordance with the thermal method using an induction heating device. Heating devices from the HEATER series or devices using medium frequency technology are suitable. A bearing-specific enveloping circle gauge, the appropriate hydraulic nut (HYDNUT) and a suitable pressure generator are needed to mount the cylindrical roller bearing. Depending on the design, mechanical or hydraulically supported dismounting equipment can be used for dismounting.
Monitoring	The use of carefully routed wired acceleration sensors in combination with an online condition monitoring system such as Schaeffler ProLink is recommended in order to monitor the main spindle bearing arrangement for damage. It is vital that sensor cables are routed securely to avoid potential interference or damage. The deployed sensors should also be resistant to the cooling lubricant used in order to ensure reliable and long-term functionality.

Bearing arrangement for radial support rollers in a rotary kiln Rotary kilns are manufactured in versions with direct and indirect heating and are used for process plant applications. Materials transport is carried out – in a longitudinal direction through the kiln with rotation of the drum – from the inlet side to the outlet side. The drum body is therefore slightly inclined in the longitudinal direction. The feed materials (such as solids, dusts, slurries) may vary widely in consistency and granularity.

Two opposing radial support rollers form a support angle ϕ and are incorporated in one station. Depending on the length of the drum body, support is provided using two or more stations. At each station, a support ring is arranged around the drum body that rolls on the support rollers as the drum rotates.

For axial guidance of the drum and support of the axial loads, the normal arrangement comprises two axial support rollers on one support ring.

Application data Rotary kiln:

- total weight (drum plus charge) G = 5100 kN
- number of stations Z = 2
- support angle of station $\varphi = 60^{\circ}$
- inclination angle of drum $\beta = 2^{\circ}$
- dimensions of support ring $D \times b = 6\,600 \text{ mm} \times 600 \text{ mm}$

Radial support rollers:

- dimensions of radial support rollers $D \times b = 1400 \text{ mm} \times 630 \text{ mm}$
- speed of radial support rollers n = 10 min⁻¹
- diameter of bearing seat for bearings in radial support rollers d = 320 mm
- requisite rating life 50 000 h to 110 000 h

Figure 158

Load diagram and bearing arrangement

A, B = bearing positions

 Radial support roller
 Spherical roller bearing 24164-E1

Bearing selection For th	e bearing arrangement of the radial support rollers, spherical roller
beari	ngs 24164-E1 are selected, whose basic rating life (load carrying
capar	itty) must be checked as a function of the bearing diameter. Spherical
roller	bearings are selected since, in this application, shaft deflections
can o	ccur and misalignments due to the adjacent construction must be
antici	pated. The bearings selected are highly suitable for compensation
of the	rse influences. In addition, they can support combined loads, since
not o	nly are high radial loads present (at low speed) but axial loads can
also o	becur due to displacement of the kiln.

The spherical roller bearing series 241 has a high radial and axial load carrying capacity. Shocks and vibrations are effectively compensated by the double row line contact in conjunction with a suitable grease. The bearings are catalogue products and thus available rapidly worldwide.

Dimensioning The strength specifications for the axis determine the shaft and journal diameters (and therefore the bearing sizes) for the bearings. However, the requisite rating life L_{10h} of the rolling bearings must be checked for the specified diameter d.

The bearing arrangement of the radial support rollers requires a basic rating life of 50 000 h to 110 000 h. After calculation of the radial, axial and tilting moment load F_r, F_a and F_k and the equivalent dynamic bearing load P, the rating life equation is used to check whether the spherical roller bearings defined by the strength specification for the shaft are sufficiently well dimensioned. The rating life is calculated: $L_{10h} = (16\,666/n) \cdot (C/P)^{10/3}$ and compared with the above value. With a value of 144 900 h, the bearings significantly exceed the requirement. This is due to the specified shaft diameter.

Design of the adjacent construction, machining tolerances and B are not in contact with each other. The bearing rings can therefore be axially displaced by 2 mm to 3 mm and are abutted on the relevant inner shoulders of the housings. The inner rings undergo circumferential load.

They therefore have a tight fit (interference fit) on the axis machined to n6 and are clamped in place using caps. The housings for the bearings are made from flake graphite cast iron.

- Lubrication The bearings in the radial support rollers are subjected to heavy load at low speeds. They are therefore lubricated using greases of high base oil viscosity and containing EP additives. Relubrication can be performed manually at regular intervals, however, the use of an automatic relubrication system is advantageous as it provides a constant supply of fresh lubricant, extends the life of the bearing and minimises maintenance outlay. The precise lubrication intervals must be determined by lubrication interval calculation.
 - **Sealing** The bearing arrangement is sealed by means of felt rings, in front of which are labyrinths with a relubrication facility.
- Mounting and dismounting higher during device, for example from the HEATER series. Hydraulically assisted extraction devices or the hydraulic method are used for dismounting, depending on the application design. The hydraulic method requires oil holes in the shaft.
 - Monitoring The use of wired acceleration sensors combined with an online condition monitoring system is recommended for monitoring radial support rollers in a rotary kiln. Due to the low speeds involved, the measurement technology used should offer high signal resolution and sensitivity. In addition, the sensors used should exhibit a high degree of resistance to the ambient conditions typically present in a rotary kiln, such as high temperatures, vibrations and contamination.

Bearing arrangement for connecting rods (crank pins) in piston compressors

Piston compressors operate on the displacement principle. Gases such as air or nitrogen can be used as the compression medium. The gas to be compressed is enclosed in a chamber where it is then compressed. Compression is carried out by means of pistons lubricated by oil or grease.

Piston pins supported by means of bearings connect the pistons to the connecting rods. The latter are supported on the crankshaft by means of the crank pin bearing arrangement. The connecting rods support the forces occurring and transmit these to the crankshaft in order to build up the torque. The crankshaft converts the oscillating linear motion of the piston into rotary motion with the aid of connecting rods and thus transmits the motor torque generated from the piston force to the drive.

Application data T

- The technical data of the crank pin bearing arrangement are as follows:
 offset of the crank pins = 180°
 - piston diameter D_K = 60 mm
 - nominal pressure p = 15 bar
 - operating speed (nominal speed) n = 660 min⁻¹
 - requisite rating life of the bearings 5 000 h to 35 000 h

Figure 159

Load diagram and bearing arrangement

A, B = bearing positions

 Drawn cup needle roller bearings with open ends
 Needle roller bearing NAO 30×47×16
 Deep groove ball bearing

Bearing selection	Connecting rod bearing arrangements are, due to their unusual force, motion and lubrication conditions, some of the most challenging bearing positions in automotive engineering and machine building. Due to the iner- tia forces, the mass of the connecting rod with the bearings and the piston mass must be as small as possible. The design envelope for the bearings is thus very small. For this reason, and due to the non-uniform rotary and swivel motion, crank pin and piston pin bearing arrangements in piston compressors are realised predominantly by means of needle roller bearings, in which the rolling elements run directly on the hardened crank pin or piston pin and in the hardened connecting rod eyes. In the piston compressor described here, the crankshaft and connecting rod are not necessarily hardened. A direct bearing arrangement is therefore not possible for the crank pin bearing arrangement. For this reason, ribless needle roller bearings NAO $30 \times 47 \times 16$ with an inner ring are selected. The connecting rod is to be guided axially on the bearing (crank end guidance). The outer ring is somewhat narrower than the inner ring. The outer ring, needle roller and cage assembly and the connecting rod eye run between hardened axial contact washers.
Dimensioning	For the compressor, the size and rating life of the crank pin bearings A should be checked. First, the nominal pressure p is used to determine the maximum piston force F_K . The radial load F_{rA} (bearing A) corresponds to the maximum piston force F_K ($F_{rA} = F_K$). The piston force F_K can vary with time.
	The load pattern varying with time can be summarised in its effect on the dynamic bearing load for bearing A in the equivalent dynamic load P. Since no axial load is present, the following applies to bearing A: $P = 0.55 \cdot F_{rA}$.
	In the low-speed piston compressor described here, the inertia forces can be disregarded; this means that calculation of the bearing load must only take account of the gas forces due to the equivalent dynamic load P. The needle roller bearing is thus subjected to a load $P = 2,33$ kN.
	The calculation results are used to check whether the needle roller bearing will achieve the requisite rating life. Checking is carried out by comparing the requisite rating life with the basic rating life: $L_{10h} = (16666/n) \cdot (C/P)^{10/3}$. The bearing size is suitable for the application, since the calculation gives 98 697 h.
Machining tolerances	The crank pin bearings are subjected to high levels of shocks and non-uniform loads. The inner and outer rings therefore have a tight fit. The bores in the connecting rod have a fit in accordance with N6, while the bearing seats on the crank pin have a fit in accordance with k5.
Internal clearance	A tight fit on the shaft and in the housing will reduce the radial internal clearance of the bearings. The needle roller bearings therefore have the internal clearance C3.

- Lubrication The open bearings are lubricated by the motor lubrication system. In order that the spray oil enters the bearings and reaches the lateral connecting rod surfaces, the axial contact washers have bowstring-shaped sections.
 - Sealing The crank pin bearings are sealed from the outside by the compressor housing.
- Mounting and dismounting from the HEATER series, is recommended for the mounting of bearings. Smaller bearings can be mounted by mechanical means using a mounting sleeve set such as the IMPACT-33. Dismounting is carried out using a mechanical or a hydraulically supported extractor.
 - Monitoring A continuous condition monitoring system with vibration and temperature sensors (such as Schaeffler ProLink CMS) regularly monitors connecting rod movements, crank pin load and lubricant quality.

The recorded vibration and temperature data are used to detect discrepancies at an early stage and prevent possible damage. Automated warnings enable timely maintenance and reduce unplanned downtime to ensure compressor reliability.

Bearing arrangement for paper guide rolls in web offset printing machines In web offset printing machines, the paper webs are fed – in contrast to the sheet offset process – through a system of rotating cylinders. The blanket cylinder transfers the image to the paper. This process is stabilised by an impression cylinder that is pressed against the paper and the blanket cylinder. Modern web offset printing machines run at more than 40 000 revolutions of the cylinders per hour.

Paper guide rolls guide the paper web on its path through the machine. The bearing arrangement must have low frictional torque, since there is a risk of slippage, especially at a small wrap angle. In this case, the paper web would slide over the roll surface to a greater or lesser degree and could no longer drive the paper guide roll by friction. This can in turn impair the quality of the print results or even lead to tearing of the paper web.

In order to prevent contamination of the paper by lubricant, the bearing arrangement must be well sealed and maintenance-free. A printing machine contains numerous paper guide rolls. The bearing arrangement must therefore be easy to mount and economical.

Application data The technical data of the example are as follows:

- operating speed (nominal speed) n = 2 000 min⁻¹
- total radial load F_r = 800 N
- diameter of the shaft stubs d = 40 mm
- operating temperature ϑ = +120 °C
- requisite rating life of the bearings 40 000 h

Figure 160

Load diagram and bearing arrangement

```
A, B = bearing positions
```

 Radial insert ball bearing with locking collar E40-KLL

Bearing selection

The requirement for the smallest possible frictional torque of the bearing can be fulfilled by the selection of a ball bearing with a small grease quantity and the use of a free-running grease. Since the sealing arrangement of the bearing has a considerable influence on the bearing frictional torque, a bearing with non-contact seals is selected. With this information and the application data, preliminary selection of a ball bearing can be made. As a result, the radial insert ball bearing with locking collar E40-KLL and integrated gap/labyrinth seals was selected.

Dimensioning	The axial load can be disregarded, since the paper web generates no axial load and the inherent mass of the paper guide roll acts only in a radial direction. The radial load F_r comprises the inherent mass of the roll and the maximum web tension in downward guidance of the web. It acts equally on both bearings.
	The equivalent dynamic load P is determined according to the same method as for deep groove ball bearings, since radial insert ball bearings are based on the same construction as deep groove ball bearings (series 60, 62 and 63). Since no axial load is present, P corresponds to the highest radial load F _r (F _{rA} , F _{rB}) for each bearing.
	The values determined can now be used to calculate the basic rating life: $L_{10h} = (16666/n) \cdot (C/P)^3$. The result (> 40 000 h) fulfils the requirement for basic rating life. The radial insert ball bearing is thus suitable for the bearing arrangement for the paper guide rolls.
Design of the adjacent construction, machining tolerances	The selected radial insert ball bearing places only slight requirements on the adjacent construction. Due to the circumferential load on the outer ring, this bearing ring must have a tight fit (transition fit). The bore in the cylinder is therefore produced in accordance with K7. For the shaft stubs, drawn shafts of the tolerance class h6 to h9 can be used.
	On the locating bearing side, the inner ring is located on the shaft by means of the locking collar and secured by means of grub screws. The bearing mounted in this way now acts as a locating bearing. In order to support the thermal expansion of the cylinder, the opposing bearing must be mounted as a non-locating bearing. The locking collar is therefore loosened from the inner ring by the amount of the cylinder expansion and not clamped on the shaft but instead fixed in place only by means of the grub screws. In this way, the inner ring can be displaced on the shaft if there is thermal expansion of the cylinder.
Lubrication	The bearings are greased with a grease optimised for friction (free-running grease). The grease quantity is selected such that maintenance-free operation is ensured for the entire operating life of the bearings. The grease operating life is 40 000 h.
Sealing	The non-contact seal in the bearing causes no seal friction and thus supports the requirement for a low-friction bearing arrangement. It reliably prevents the ingress of contamination and foreign matter into the bearing and the escape of lubricant from the bearing.
Mounting and dismounting	The radial insert ball bearing gives very easy mounting and simple location. The radial insert ball bearing can be pushed onto the shaft manually. As a result, no special tools are required for mounting and dismounting.
Monitoring	The early detection of bearing damage can be achieved by using a vibration-based condition monitoring system. The monitoring system used and the acceleration systems should be able to cover a high frequency bandwidth (e.g. Schaeffler ProLink).

Linear bearing arrangement in the main axes of machine tools	Modern multi-axis machining centres offer a variety of machining options which allow workpieces to be manufactured to the highest precision. The individual axes must therefore exhibit a high degree of accuracy and rigidity, which also reflects the demands on the linear guidance systems installed within them.
	There are also requirements governing the service life and robustness of the linear guidance system in terms of adaptation to the respective ambient conditions during machining. Such conditions include contamination with cooling lubricants, swarf or, in the case of dry machining, contact with abrasive material particles. The right lubrication is also of fundamental importance, as supply to the rolling contact must be ensured even under adverse conditions to avoid the risk of premature failure. The configuration of the main axes with their proximity to the machining point presents multiple challenges for the linear guidance systems.
Application data	The following requirements apply to the z-axis of the machine tool: ■ available installation space for 2 linear guidance systems: guideway spacing b = 400 mm, guideway length l = 1296 mm
	required stroke length H = 600 mm
	carriage spacing (carriage centre) on each guideway 500 mm
	operating point position TP (in the centre position of the z-axis): centred between the guideways, 600 mm below the lower carriages
	max. machining force at operating point F _{yV} = 13 kN
	weight force of z-axis G = 15 kN
	centre of mass position centred between the carriages, distance of 400 mm from the screw mounting surface of the z-axis guideways
	resistance to material particles

- maximum permissible displacement of the operating point:
 - during finishing (machining force F_{VS} = 4 kN): $\Delta TP \le 10 \ \mu m$
 - − at max. feed (machining force $F_{VV} = 13$ kN): ΔTP ≤ 20 µm
- requisite rating life of the carriages > 10 000 km

Selection of the guidance system

In order to ensure a high load capacity and rigidity of the axis, linear recirculating roller bearing and guideway assemblies should be used in preference in the main axes of machine tools. Unlike balls, rollers have line contact and are therefore capable of transmitting higher forces. Linear recirculating roller bearing and guideway assemblies are preloaded to a higher degree than ball guidance systems which, in combination with line contact, creates an extremely rigid linear guidance system. Linear recirculating roller bearing and guideway assemblies also meet the requirement for a long operating life courtesy of their high basic load ratings, additionally offer extensive sealing variants and can also be connected to a central lubrication facility.

Dimensioning The most heavily loaded carriage and the forces acting on it can be determined from the specified machining forces and the geometric arrangement of the carriages. The linear guidance systems used in machine tools often have a static load safety factor of approx. $S_0 = 8$ to 10, as this is the value at which the required rigidity and rating life is usually achieved. An approximate, initial determination of the size of the linear guidance system can therefore be carried out on this basis.

The loads on the individual carriages are calculated on the basis of the specified carriage arrangement and forces. In this application example, the carriages must support the following forces:

- upper carriages: F_{y1} = −13,8 kN in each case
- Iower carriages: F_{v2} = 20,3 kN in each case

The static equivalent force acting on the most heavily loaded carriage is used in initial dimensioning of the guidance system. $P_0 = F_{max}$ applies, therefore, in this case $P_0 = 20,3$ kN. With a static load safety factor $S_0 = 8$, the guidance system should therefore have a basic static load rating of approx. $8 \cdot 20,3$ kN = 162,4 kN. As a result, the first guidance system to be selected is linear recirculating roller bearing and guideway assembly RUE45-F with a basic static load rating $C_0 = 215$ kN.

To determine the rating life, the acting forces are converted into an equivalent force P. For only one load case and one load direction, $P = F_{max} = 20,3$ kN. Using the formula for calculating the basic rating life $L = (C/P)^{10/3} \cdot 100$, a rating life $L = (92 \text{ kN}/20,3 \text{ kN})^{10/3} \cdot 100 = 15400 \text{ km}$ is obtained here for linear recirculating roller bearing and guideway assembly RUE45-F (C = 92 kN). However, as only the rating life at the maximum machining force was taken into account here, the actual rating life is significantly higher. The requisite rating life is thus observed.

The deflections δ of the carriages, which can be found in the catalogue on deflection curves, are taken into account when determining the displacement of operating point Δ TP. Standard preload class V3 is usually used with linear recirculating roller bearing and guideway assemblies, however, a higher preload can be selected if required.

In the application described, only the displacements caused by the machining forces are relevant, as the displacement caused by weight force is a constant and can therefore be compensated. For this reason, the carriage loads F were additionally calculated for the load cases with and without machining forces and the displacements compared:

Calculation parameter			Load case		
			1	2	3
Active forces (weight force and machining forces)			G	G + F _{yS}	G + F _{yV}
		kN	15	15 + 4	15 + 12
Bottom carriage	Load F	kN	6	10,4	20,3
(preload V3)	Deflection δ	μm	3	6	11
Top carriage	Load F	kN	-6	-8,4	-13,8
(preload V3)	Deflection δ	μm	-3	-5	-9
Calculated displacement of operating point ΔTP		μm	10	19	30
Result: Displacement of operating point compared with load case 1		μm	-	+9	+20

The requirements governing rigidity of the axis are therefore met. Only the deflection of the linear guidance system was calculated, the adjacent structure was assumed to be completely rigid. The machine manufacturer can factor in deformation of the adjacent construction with the aid of an FEM calculation.

If a requirement criterion is not met, the analysis must be repeated with another linear recirculating roller bearing and guideway assembly. By the same token, overdimensioning should also be avoided. In such instances (e.g. $S_0 > 10$), a smaller size should be selected.

Accuracy When selecting the accuracy class for a monorail guidance system, not only the tolerances for height and for the distance dimension from the locating edge of the guideway to the locating edge of the carriage should be taken into account, but also the running accuracy of the carriage on the guideway. The higher accuracy classes G1 or G0 are generally used for the main axes of machine tools.

 Demands on the adjacent construction
 Strict requirements are defined for the adjacent construction in order to be able to maintain the precision of the linear guidance system in the application. Force stresses between the carriages, which would have a negative effect on the displacement resistance and life of the axis are also avoided as a result.

- Sealing The main axes come into contact with a wide variety of particles and media in the machining area of a machine tool, such as very fine swarf or cooling lubricant that splashes onto the guideways and carriages of the linear guidance systems. In order to select the appropriate sealing concept, it is necessary to know which method of shielding the customer intends to use for the linear guidance systems. If telescopic covers are planned for shielding the guidance systems, the standard wipers on the carriages will be sufficient. If no cover is envisaged for the guidance systems, additional wipers must be attached to the carriage. In the application under consideration, additional wipers made from NBR are used.
- Lubrication Schaeffler monorail guidance systems can be lubricated with grease, flowable grease or oil. The relubrication quantities and intervals must be calculated in accordance with the catalogue. The values apply under clean ambient conditions and must be adjusted in the event of heavy contamination.
- Monitoring The lubrication and condition of the linear guidance system can also be monitored using the Schaeffler DuraSense system, which allows the lubrication status of each carriage to be determined individually and lubrication to be initiated where required. In addition, data analysis provides an early means of identifying whether the condition of the carriages is deteriorating, thus enabling the timely planning of maintenance activities and avoiding unplanned machine downtimes. These features render the Schaeffler DuraSense system indispensable in applications where lubrication plays a critical role.

Bearing arrangement for a wheelset in rail vehicles Vehicles that run or are guided on one or more rails are known as rail vehicles (for example trains or trams). The rail and vehicle are closely matched to each other and are normally described as a wheel/rail system.

Application data The technical data of the wheelset bearing arrangement are as follows:

- proportion of the vehicle mass acting on the wheelset bearing, m_A = 21800 kg
- mass of the wheelset m_R = 2 465 kg
- wheel diameter (rolling diameter) D_R = 1250 mm
- diameter of the shaft journal d_{WS} = 130 mm
- number of bearings per axle i_R = 2
- maximum travel velocity v = 200 km/h
- ambient temperature ϑ = -50 °C to +50 °C
- requisite rating life of the bearings in travel kilometres 5 000 000 km

Figure 162

Load diagram and bearing arrangement

A, B = bearing positions

Wheelset shaft
 Wheel disc
 Hub seat
 Wheelset bearing unit
 F-801804.ZL-L055-M32AX

Bearing selection

Wheelset bearings are components with safety implications; the operational security of rail vehicles depends to a large extent on them.

Wheelset bearing units comprise a housing with integrated rolling bearings. Since the bearings are subjected to high loads and high operational security is required, the only bearings used are radial roller bearings (cylindrical and tapered roller bearings). The bearings transmit the forces from the vehicle or bogie frame to the wheelset and thus to the rail.

For the 6-axle locomotive with three bogies in this example, wheelset bearing units with cylindrical roller bearings, plastic cages, sheet metal caps and preset radial internal clearance are used. Cylindrical roller bearings are radial bearings but they can also support the axial forces present by means of the ribs. The greased and sealed units are readyto-mount and simply require pressing onto the wheelset shaft.

Dimensioning	The guidelines from the international railways association UIC envisage shaft journals from d = 120 mm to d = 130 mm. The bearing size is to be checked for wheelset bearing units with cylindrical roller bearings d = 130 mm. The axle load is taken as the basis for determining the bearing size. This is the proportion of the vehicle mass that is transmitted per wheelset to the rails. The static load on the wheelset bearings is calculated from the axle load m _A reduced by the wheelset mass m _R .
	In addition to the static load, the roller bearings must also support dynamic forces occurring during travel, for example when passing over points, crossings, etc. Additional, radial dynamic loads are taken into consideration by means of the safety factor f_z . This is now normally between 1,2 and 1,5. The radial load F_r on a roller bearing is calculated by splitting the total load uniformly over the number of roller bearings is ner axle
	In order to calculate the rating life L_{km} , the equivalent dynamic load P must be determined. The equivalent dynamic load P corresponds to the radial load F_r , since the factor f_a for the axial load is 1 (the axial forces have a not inconsiderable effect on the bearings).
	The basic rating life in travel kilometres is determined from the equivalent dynamic load P, the basic dynamic load rating C and the wheel diameter $D_{R^1} L_{km} = (C/P)^{10/3} \cdot D_R \cdot \pi$. The calculation gives a value of $5,44 \cdot 10^6$ km. Since the application requires a nominal operating life of 5 million kilometres, the wheelset bearing unit is adequately dimensioned.
Design of the adjacent construction, machining tolerances	The housing must, as a connecting part between the vehicle bogie frame and the wheelset, reliably transmit the forces present. The material for the housings is dependent essentially on the operating and application conditions. Vehicles for commuter transport are subjected to frequent acceleration and braking intervals. As a result, preference is given to the use of light metal housings. In other cases, the predominant choice is spheroidal graphite cast iron.
	Since the inner rings of the roller bearings are subjected to circumferential load, they have a tight fit on the shaft journals. For the shaft diameter > 105 mm, the tolerance p6 has proved successful. The outer rings are subjected to point load. The housing bore normally has the tolerance H7 or H6.

- Lubrication The wheelset bearing units are supplied already greased. The lubricants used are lithium soap greases of consistency grade (NLGI grade) 2 or 3 with suitable additives. The grease filling is normally renewed at the time of general inspection of the vehicle. The good running characteristics of the plastic cages increase the grease operating life and thus the maintenance intervals.
 - Sealing In addition to contact seals, the use of non-contact seals has proved effective for higher velocities and speeds. An arrangement of several gaps in the form of a labyrinth is also possible. In many cases – such as this application – gap seals by means of sheet metal caps are implemented.
- Mounting and dismounting
 The thermal method using a suitable induction heating device, for example from the HEATER series, is recommended for the mounting of bearings. Alternatively, the bearings can be mounted using a hydraulically assisted press-on unit (TOOL-RAILWAY tools). The bearings are dismounted using a hydraulically assisted extraction unit (TOOL-RAILWAY tools).
 - Monitoring An implemented monitoring system records vibrations, temperature and wheel load distribution. The condition of the bearing arrangement, the wheelset temperature and the wheel loads are continuously monitored by the system to enable the early detection of wear, overheating and irregularities.

Automated warnings ensure timely maintenance, thus extending the life of the wheelset. Proactive condition monitoring minimises downtimes and ensures the reliable and efficient operation of rail vehicles

Digitalisation Axlebox bearings are assigned a data matrix code (DMC), which is applied by laser. This allows product-specific data on the respective bearing to be recorded and facilitates the exchange of information between component suppliers, vehicle manufacturers and operators.

> Data are exchanged in database form via the GS1 EPCIS interface standard. The data matrix code supports precise condition monitoring diagnosis in the rail vehicle, as the data recorded in the monitoring system can be assigned to the individual axlebox bearings.
Bearinx calculation software from Schaeffler

→ Bearinx is one of the leading programs for the calculation of rolling bearings. It facilitates the detailed analysis of rolling bearing arrangements – from the individual bearing through complex shaft and linear guidance systems to complex transmissions. The complete calculation is carried out in a comprehensive calculation model. Even in the case of complex transmissions, the contact pressure on each individual rolling element is included in the calculation. → Bearinx takes account of factors including:

- the non-linear elastic deflection behaviour of the bearings
- the elasticity of shafts and housings
- the influences of fit, temperature and speed on the operating clearance or preload of the bearings and on the contact angle
- the profiling of rollers and raceways as well as raceway osculations
- the displacement of contact angles as a function of load in ball bearings
- the actual contact pressure taking account of the misalignment and profiling of rolling elements
- the influence of lubrication conditions, contamination and actual contact pressure on the fatigue life

The analysis of design variants is aided by the transparent documentation of results, the graphical representation of shaft reactions and the internal load distribution of bearings. Thanks to an online tutorial and a detailed help system, it is possible to utilise the full potential of \rightarrow Bearinx.

The uniform calculation of the fatigue life using computer-aided calculation methods corresponding to the state of the art is defined in ISO/TS 16281. This calculation method is of course also included in the online version.

Figure 163

Precise detail: even the contact pressure on each individual rolling element is included in the calculation

Customer version - Bearinx-online Rotative

Commonly available calculation tools normally use heavily simplified calculation methods. In these cases, the misalignment of bearings as a result of shaft deflection and the different deflection behaviour of various bearing types is largely disregarded. In general, the internal load distribution of bearings – which is decisive for the fatigue life – is generally determined only by means of approximation methods.

It is possible using Bearinx-online Rotative to determine the actual load taking account of shaft deflection and the deflection behaviour of the rolling bearings. The internal load distribution of the bearings is of course also calculated precisely – to the level of the contact pressure taking account of the actual rolling element profile.

The algorithms in Bearinx-online Rotative are identical to those applied in Bearinx, which is used at Schaeffler. Bearinx-online Rotative facilitates the calculation of single axis shaft systems supported at several points. Input of data is supported by a user-oriented interface. 3D visualisation and 2D representation with dimensioning simplify data control.

The component assembly data and the rolling bearing geometries are made available by the integrated Schaeffler catalogue. The actual calculation is then performed by the powerful Schaeffler calculation servers. The input files created using Bearinx-online Rotative are compatible with Bearinx. As a result, further communication with Schaeffler advisory engineers is easier and duplicate work is avoided.

Figure 164

Bearinx-online Rotative, shaft reactions presented in graphical form

The software is not provided with the intention of transferring advice and calculation services from Schaeffler to customers. The reality is the opposite: with this arrangement, Schaeffler wishes to work even more closely with its customers. The objective is to make a suitable preliminary selection of rolling bearings in the early design phase, in order to reduce development times at the customer.

Bearinx-online Rotative- an overview

- calculation of bearing rigidity at the operating point taking account of all relevant influences
- graphical representation of shaft reactions (shaft deflection and shaft inclination)
- rigid and elastic adjustment of bearings in the relevant shaft system
- calculation of fatigue life in accordance with ISO/TS 16281
- simple modelling of shaft systems by means of integrated wizards

The terms of use of the software and the access to additional necessary services such as training and support are defined in a mutual contractual agreement.

Training on Bearinx-online Rotative is available on payment of a fee. In the case of technical colleges, the introduction of software usage is free of charge.

Information about the customer version and the possibility of applying for registration/usage can be found on the Schaeffler Internet portal at: https://www.schaeffler.de/Calculation.

Other modules In addition to Bearinx-online, other specialised modules are also available from Schaeffler under the Easy series, which can be accessed free of charge:

- Bearinx-online Easy Linear
- Bearinx-online Easy LinearSystem
- Bearinx-online Easy Friction
- Bearinx-online Easy BallScrew
- Bearinx-online Easy RopeSheave
- Bearinx-online Easy EMachine
- Bearinx-online Easy Pump

Friction calculation with Easy Friction

The Easy Friction module can be used to determine the friction values of Schaeffler rolling bearings using a detailed method. The internal load distribution of the bearings and the contact pressures on the raceways and ribs together with the actual rolling element profile is of course taken into consideration. The calculation is based on a theory of friction calculation that employs physical algorithms and has been confirmed by means of extensive test values. The bearing rating life is calculated in accordance with ISO/TS 16281.

The algorithms in Bearinx-online Easy Friction take account in particular of the following parameters:

- losses in rolling and sliding contacts
- losses in the load-free zone
- splash losses
- seal friction

Since the module is seamlessly incorporated in the "parent software" Bearinx used at Schaeffler, other typical influencing factors are also taken into consideration:

- radial and axial load
- tilting of bearing rings
- Iubricant (viscosity class)
- temperature
- precise internal bearing geometry
- bearing clearance
- profiling of the bearing components
- rib geometry

Rapid comparison of friction between various bearing arrangement concepts Since bearings can be exchanged, different bearing arrangement concepts can be quickly and easily compared with each other. This makes it possible to achieve a bearing arrangement that is efficient and has optimised friction. All input data can be stored locally. As a result, modifications can be quickly made to an existing application case without the need for duplicated input of data. Furthermore, the stored file can be exchanged with the Schaeffler engineering service in order to achieve an optimum bearing design.

The most important results are displayed directly in a results window. In addition, the input data and the calculation results can be documented in a PDF file.

Bearing types suitable for calculation

Bearinx-online Easy Friction can be used for calculation of the following types:

- deep groove ball bearings
- angular contact ball bearings
- tapered roller bearings
- spherical roller bearings
- needle roller bearings
- cylindrical roller bearings

The calculation software is available only in an online format. Initial registration takes only a short period of time.

Information about the customer version and the possibility of applying for registration/usage can be found on the Schaeffler Internet portal at: https://www.schaeffler.de/Calculation.

	 medias – knowledge database, electronic selection and information system In addition to the Schaeffler product catalogue, the medias platform provides information on all product and service solutions including a knowledge database and online training. Calculation and configuration tools assist with product selection, while numerous industrial solutions are shown that link products with possible applications. medias is a comprehensive, reliable system to help you help yourself in answering practically all questions on bearing technology.
Digital product catalogue	Users of medias receive all product information from a single data source. The digital product catalogue contains e-commerce functions and has been expanded to include detailed technical information on products and service solutions in the form of a comprehensive knowledge database. CAD data relating to the products can be downloaded and imported into dedicated applications.
Engineering tools	 medias integrates numerous tools that assist with the calculation and needs-based configuration of the desired products. This saves time in selection of products and gives simpler handling. These tools include: Bearing Selection Assistant Housing Selection Assistant Linear configurators medias interchange Bearinx calculation modules (see Page 739 to Page 743) Heating Manager Bearing Frequency Calculator

Grease Selection Guide

Figure 166 medias Bearing Selection Assistant

medias The three-stage user model configuration of **medias** offers a suitable account for all users. All advisory functions and all product- and sector-specific content from Schaeffler Industrial are available in the public domain of **medias**.

medias PlusWith medias Plus, members receive access to exclusive additional content.medias BusinessWith medias Business, business customers can expect an expanded
product catalogue and even more efficient ordering and communication
processes.

The following link will take you to **medias**: *https://medias.schaeffler.com*.

A

ABS (anti-lock braking system)	205
Absolute positional measurement	209
Accuracy class 696,	735
Acoustics 148,	168
Active area	553
Actual size 405,	412
Actual size, local	405
Actuation mode	186
Actuator 192,	196
Actuator bearings	213
Addition theorem	. 50
Additional load, radial dynamic	737
Additional plate force	517
Additional screw force	517
Additive package	738
Adjustment screw	494
Adjustment, elastic	631
Airborne sound	168
Algebra	. 41
Algebraic equation of the 1st degree	. 42
Algebraic equation of the 2nd degree	. 41
Algebraic sum	. 40
Aligning needle roller bearings	668
Alphabet, Greek	. 35
Alternating loading	279
Altitude theorem	. 52
Aluminium alloy	324
Aluminium alloy, not precipitation hardened	324
Aluminium oxide (insulation coating)	566
Amount of substance	. 20
Amplification function	161
Amplitude modulation	219
Analysis	. 46
Anglo-American System of Units	. 31
Angular contact ball bearings 653,	721
Angular contact ball bearings, double row	654
Angular impulse	140
Angular joint	375
Angular misalignment	657
Angular momentum	137
Angular size, specification modifier	423

Angular size, tolerance 412
Angularity 461
Annealing colour 310
Anti-corrosion coating 557
Antiderivative, integral 48
Anti-lock braking system (ABS) 205
Anti-wear additives 611
Application716
Arc height, circle 53
Arc length, circle 53
Area dimension, German/English conversion 32
Area moment
Area moment, axial 242
Area, screw head/nut seating surface 516
Argument 44
Arithmetic 40
Arithmetic mean 40
Arithmetic progression 45
Arithmetic sequence 45
Arrow method
Associative law (arithmetic) 40
Astronomical unit 118
Astronomical value 118
Atom 108
Atomic building block 108
Atomic mass
Atomic number 94, 110
Atomic radius 110
Audible sound 168
Autocorrection 205
Autodiagnosis 205
Axial angular contact ball bearings 674, 679
Axial angular contact ball bearings,
double row
Axial angular contact ball bearings, single row 669
Axial angular contact ball bearings, triple row 670
Axial ball bearings 673
Axial bearings, bearing seat
Axial force, screw connection 516, 517
Axial load factor 572
Axial roller bearings 675
Axial spherical roller bearings
Axial stress 234

Axial support roller	724
Axial tapered roller bearings	676
Axial/radial bearings	679
Axonometric representation	352

В

Baffle plate 643
Bainitic hardening 307
Ball bearing track roller 672, 673
Ball pass frequency inner race (BPFI) 221, 222
Ball pass frequency outer race (BPFO) 220, 222
Ball spin frequency (BSF) 221, 222
Barlow's formula 234
Barrel 60
Barrel roller bearings
Baryon 109
Base unit (SI system) 18
Base value 18
Basic construction, geometric
Basic element, drawing 357
Basic geometric construction
Basic integral 48
Basic load rating, static 584
Basic series 358, 359
Bearing arrangement, adjusted 629
Bearing arrangement, connecting rod,
piston compressor 727
Bearing arrangement, design 625, 707, 716
Bearing arrangement, floating 631, 725
Bearing arrangement, main spindle, CNC lathe 721
Bearing arrangement, paper guide roll,
web offset printing machine
Bearing arrangement, radial support rollers,
rotary kiln
Bearing arrangement, rolling bearings
Bearing arrangement, rotor snaπ,
Inteepridse motor
Dearing have specification
Dearing component material
Dearing component, indendi
Dearing uandge patterns
Dediling udid

Bearing design, rolling bearings 57	0
Bearing designation 623, 62	4
Bearing factor f ₀ , f ₁ 59	1
Bearing factor f ₂ 59	7
Bearing load, equivalent 58	0
Bearing load, equivalent dynamic 57	2
Bearing load, equivalent static 584, 58	5
Bearing location, design guideline 64	2
Bearing material	6
Bearing motion, oscillating 58	1
Bearing reaction 251, 252, 25	6
Bearing seating surface 59	9
Bearing seating surface, accuracy 64	1
Bearing selection71	6
Bearing size, calculation 57	1
Bearing type, ISO dimension plan 62	0
Bearing type, rolling bearings 57	0
Bearing, combined loads 67	9
Bearing, screw drive 66	9
Bearing, seal 64	2
Bearing, TB design 59	17
Bearinx calculation software 73	9
Bearinx-online Rotative74	0
Bell curve 8	2
Bending 23	2
Bending due to transverse force 249, 25	2
Bending loading 28	1
Bending without transverse force 23	1
Bevel	0
Binary character 6	9
Binary number, conversion 7	3
Binary system 7	0
Binary system,	
fundamental arithmetic operations7	3
Binomial 4	0
Binomial coefficient 3	9
Bit 6	9
Black oxide coating 55	6
Block diagram 20	/1
Bore diameter 51	6
BPFI (ball pass frequency inner race) 221, 22	2
BPFO (ball pass frequency outer race) 220, 22	2
Brake 53	8
Break 35	3

Breaking force, screw thread	517
Breaking strength	227
Brinell hardness 288,	317
Broadcasting wave	115
BRS seal	644
BSF (ball spin frequency) 221,	222
Buckling load	236
Buckling stress	236
Buckling, in accordance with Euler	237
Building block, atomic	108
Butt joint	375
Butt seam	380
Byte	. 69

С

CAD (computer aided design) 342
CAD modelling 343
CAE (computer aided engineering) 342
Cage 618
Cage design 619
Calculating interest
Calculating solids 59
Calculating surfaces, geometric 55
Calculation software 739
CAM (computer aided manufacturing) 342
Camber seam 380
Candela 20
CAO (computer aided optimisation) 342
CAQ (computer aided quality) 342
Case hardening 274, 307
Case hardening steel 275
Case hardening steel, Brinell hardness 288
Case hardening, temperature 313
Cast aluminium alloy 324
Cast aluminium bronze 323
Cast copper-aluminium alloy 323
Cast copper-tin alloy 322
Cast copper-tin-lead alloy 322
Cast copper-tin-zinc-(lead) alloy 322
Cast copper-zinc alloy 322
Cast iron 295
Cast iron, with spheroidal graphite 297, 737
Cast magnesium alloy 325

Cast steel 295, 301, 302
Cast steel, creep-resistant 302
Cast tin bronze 322
Cast tin-lead bronze 322
Casting methods 326
Cathetus theorem 52
Central impulse 138
Centre of gravity, homogeneous solid 61
Centre of gravity, line 54
Centre of gravity, plane surface 57
Centrifugal moment 245
Ceramic hybrid spindle bearings 617
Ceramic material 617
Chain dimension
Chain rule 47
Chamfer 370
Characteristic (design element) 472
Characteristic value, dimensionless 120
Chassis technology IX
Chemical substances 105
Chemistry
Choke
Chord length, circle
Circuit, closed
Circuit, open
Circular function
Circular run-out, axial 463
Circular run-out, radial
Circular segment, area 53
Circulation index
Circumferential force
Circumferential load 633, 725, 731, 737
Clamping force 515, 516
Clamping length, screw connection 517
Class interval
Classification
Cleanliness
Clearance fit
Clearance seat
Cleavage fracture
Closed loop control
CNC lathe
Coarse pitch thread 501
Coating
Coating development process

Coating method
Coating system, Corrotect 562
Coating system, Durotect 563
Coating system, Insutect 566
Coating system, Sensotect 567
Coating system, Triondur 565
Coating, electroplated 555
Coating, tailored 554
Coating, tribological 555
Coaxiality 462
Code 69
Code system for tolerances, ISO 404
Coefficient of cubical expansion 117
Coefficient of friction 512
Coefficient of superficial thermal expansion 117
Coil spring, cylindrical 545
Collecting/storing/dispensing/converting
energy 542
Commercial data (rolling bearings) 570
Commercial name (chemical substances) 105
Commutative law (arithmetic) 40
Compact hydraulic transmission 180
Complex number 44
Complex number
Complex number
Complex number
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Component, interior 67 Compression 230 Compressive loading 230, 279
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided engineering (CAE) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided manufacturing (CAE) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided manufacturing (CAM) 342 Computer aided optimisation (CAO) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided engineering (CAE) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided engineering (CAE) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 242
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressor 188 Computer aided design (CAD) 342 Computer aided manufacturing (CAE) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Component, interior 67 Compression 230 Compression 230 Compression 230 Compression 230 Computer aided design (CAD) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer aided sprimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer aided sprimisation (CAO) 342 Computer aided quality (CAQ) 342 Concave seam 380 Concentricity 462
Complex number 44 Compliance ratio, relative 518 Compliance, elastic 518 Component surface 553 Component, interior 353 Component, interior 353 Component, interior 353 Component, interior 353 Comport 230, 279 Compression 230, 279 Compression 188 Computer aided design (CAD) 342 Computer aided engineering (CAE) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer seam 380 Concave seam 380 Concertricity 462 Condition monitoring 208, 212
Complex number 44 Compliance ratio, relative 518 Component surface 518 Component surface 553 Component surface 553 Component, interior 353 Component, interior 353 Compound interest 67 Compression 230 Compressive loading 230, 279 Compressive loading 230, 279 Computer aided design (CAD) 342 Computer aided dengineering (CAE) 342 Computer aided manufacturing (CAM) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Concave seam 380 Concentricity 462 Condition monitoring 208, 212 Condition monitoring system 208, 212
Complex number 44 Compliance ratio, relative 518 Component surface 518 Component surface 553 Component surface 553 Component, interior 353 Compound interest 67 Compression 230 Compression 230 Compression 230 Compression 242 Computer aided design (CAD) 342 Computer aided engineering (CAE) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer solded quality (CAQ) 342 Computer solded quality (CAQ) 342 Concentricity 214 Concave seam 380 Concentricity 208, 212 Condition monitoring 208, 212 Condition monitoring system
Complex number 44 Compliance ratio, relative 518 Component surface 518 Component surface 553 Component surface 553 Component surface 553 Component, interior 353 Component, interior 353 Compound interest 67 Compression 230 Computer aided design (CAD) 342 Computer aided dengineering (CAE) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Concentricity 462 Concentricity 462 Condition monitoring 208, 212 Condition monitoring 208, 212 Condition monitoring, vibration analysis
Complex number 44 Compliance ratio, relative 518 Component surface 518 Component surface 553 Component surface 553 Component, interior 353 Component, interior 353 Component, interior 353 Component, interior 230 Compression 230 Computer aided design (CAD) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer tomograph 214 Concave seam 380 Concentricity 462 Condition monitoring 208, 212 Condition monitoring system 720, 723, 726, 729, 731, 735, 738 Condition monitoring, vibration analysis </td
Complex number 44 Compliance ratio, relative 518 Component, interior 518 Component, interior 353 Compound interest 67 Compression 230 Computer aided design (CAD) 342 Computer aided optimisation (CAO) 342 Computer aided quality (CAQ) 342 Computer aided quality (CAQ) 342 Computer tomograph 214 Concentricity 462 Condition monitoring 208, 212 Condition monitoring system 720, 723, 726, 729, 731, 735, 738 Condition monitori

Confidence interval 81
Conjugation 44
Connecting elements 475
Connecting rod727, 728
Connecting rod bearing arrangement 728
Connection, form fit 476
Connection, frictional locking 484
Connection, material closure 532
Conservative force 128
Constant, physical 112
Contact area
Contact ellipse
Contact pair 263
Contact point, rolling contact partners
Contact pressure, head seating surface
Contact pressure, maximum, screw connection 527
Contact pressure, nut seating surface 530
Contact pressure, screw connection 518
Contact washer, axial 728
Continuous alternating stress,
screw connection 527
Continuous freehand line
Continuous line
Continuous zigzag line
Conversion method 555
Conversion, binary numbers73
Conversion, measures and units
Coordinate dimensioning
Copper alloy
Core diameter (thread) 371
Corner joint
Corner seam 380
Correlation
Corrotect coating system 562
Cosine law 51
Cosmic ray 114
Cost-efficiency (rolling bearings) 570
Countersink (dimensioning of feature)
Coupling
Covariance
Crank end guidance 728
Crank pin727
Crankshaft
Cronidur 617
Cronitect 617

Cross joint	375
Crossed roller bearings 677,	678
Crossing joint	376
Cross-sectional area of thread	511
Cross-sectional area, screw thread	516
Cross-sectional area, smallest	516
Cross-sectional value	256
Cube	. 59
Cuboid	. 59
Cumulative curve	. 78
Cumulative failure frequency	. 86
Cumulative function	. 76
Current insulation	566
Current passage	558
Current transfer	554
Current transmission	558
Curve, elastic	254
Customer version Bearinx-online Rotative	740
Cut representation	356
Cut, complete	353
Cut, indication	353
Cut, local	353
Cut, symmetrical parts	353
Cutting	402
Cutting plane	355
Cutting plane, change of direction	356
Cyber-physical system (CPS)	193
Cylinder	. 59
Cylindrical roller bearings	736
Cylindrical roller bearings with cage	658
Cylindrical roller bearings, full complement	660
Cylindricity	460

D

550
214
544
166
361
738
346
348
215

Data, commercial (rolling bearings) 570
Datum
Datum system 416
Decimal system 70
Decrease in length 230
Deep groove ball bearings
Deep groove ball bearings, double row
Deep groove ball bearings, single row
Deflection
Deformation 256
Deformation work, passive 256
Deformation zone 273
Deformation, elastic 224, 225
Deformation, plastic 224, 225, 517
Deformation, rubber spring 547
Delivery rate
Demodulation
Derivative (analysis) 46
Derived unit 21
Design element
Design of bearing arrangements 625, 716
Design of experiments (DOE) 87
Design of experiments (statistics) 87
Design of experiments,
Design of experiments, OFAT (one-factor-at-a-time)
Design of experiments, OFAT (one-factor-at-a-time)
Design of experiments, OFAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Design, full factorial 87 Determinant 42
Design of experiments, OFAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198
Design of experiments, OFAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design, fractional factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design, fractional factorial 87 Design, fractional factorial 87 Design, full factorial 87 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 379
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design, fractional factorial 87 Design, fractional factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 379 Diameter (dimensioning of feature) 369
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 379 Diameter (dimensioning of feature) 369 Diameter series 620
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHV seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamond Like Carbon (DLC) 555
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 369 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamond Like Carbon (DLC) 555 Dielectric polymer 213
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design phase 338 Design, fractional factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Device using medium frequency technology 723 DHY seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamotol Like Carbon (DLC) 555 Dielectric polymer 213 Differential (analysis) 46
Design of experiments, 0FAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design of experiments, screening 338 Design, fractional factorial 87 Design, full factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHY seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamond Like Carbon (DLC) 555 Dielectric polymer 213 Differential (analysis) 46
Design of experiments, OFAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, screening 87 Design of experiments, screening 378 Design, fractional factorial 87 Design, full factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamond Like Carbon (DLC) 555 Dielectric polymer 213 Differential (analysis) 46 Differential form of the basic functions 47 Differential quotient 46
Design of experiments, OFAT (one-factor-at-a-time) 89 Design of experiments, response surface 88 Design of experiments, response surface 37 Design of experiments, screening 87 Design of experiments, screening 87 Design fractional factorial 87 Design, fractional factorial 87 Determinant 42 Development process (mechatronics) 198 Deviation 404 Device using medium frequency technology 723 DHV seam 378, 380 DHY seam 379 Diameter (dimensioning of feature) 369 Diameter, screw head/nut seating surface 516 Diamond Like Carbon (DLC) 555 Differential (analysis) 46 Differential form of the basic functions 47 Differential quotient 46 Differential quotient 46

Distribution, Weibull	85
Division method	71
DLC (Diamond Like Carbon)	555
Double fillet seam	380
Double HV seam	378
Double T joint	375
Drawing guideline	348
Drawing indication	458
Drawing indication, deviation	413
Drawing indication, limit of size	413
Drawing indication, tolerance class	413
Drawing, basic element	357
Drawn cup needle roller bearing	
with closed end	666
Drawn cup needle roller bearing	
with open ends	666
Drip feed oil lubrication	612
Drive mode	186
Duplex steel	289
Durotect coating system	563
DV seam	380
DY seam	379
Dynamic equilibrium, d'Alembert	124
Dynamic loading	276
Dynamics	122

Ε

Earth, fundamental figure 119
Easy Friction, friction calculation 742
E-axle IX
Eddy current testing 212
Elastic compliance, apparent 529
Elastic curve 232
Elastomer, rubber spring 548
Elastomer, thermoplastic (TPE) 328
Electric mobility IX
Electric mobility D Electric motor
Electric mobility
Electric mobility D Electric motor 718 Electrolytic series 104 Electromagnetic radiation 113
Electric mobility D Electric motor 718 Electrolytic series 104 Electromagnetic radiation 113 Electronic product catalogue medias 646, 717, 744
Electric mobility D Electric motor 718 Electrolytic series 104 Electronagnetic radiation 113 Electronic product catalogue medias 646, 717, 744 Electronic stability program (ESP) 205
Electric mobility D Electric motor 718 Electrolytic series 104 Electronagnetic radiation 113 Electronic product catalogue medias 646, 717, 744 Electronic stability program (ESP) 205 Element, dimension indication 364

Ellipsoid 62
Elongation 230
Encoder 210
Energy controller 196
Energy converter 196
Energy flow 192
Energy loss 132
Energy supply 215
Energy transformer 196
Energy, kinetic 131, 152
Energy, law of conservation 130
Energy, potential 132, 152
Engineering materials 282
Enlargement scale
Enthalpy 25
Entropy 25
Envelope drives
Envelope requirement 464, 465
Envelope signal 219
Enveloping circle
EP additive
Equation of the 1st degree, algebra 42
Equation of the 2nd degree, algebra 41
Equilibrium problem 124
Equilibrium relationship 125
Equilibrium, dynamic, d'Alembert 124
Equivalent circuit diagram 202
Equivalent stress 272
Equivalent stress, screw connection 518
ESP (electronic stability program) 205
Euler buckling case 237
Euler range 236
Euler's buckling load 237
Euler's equation 44, 51
Euler's hyperbola 238
Eutectic point 311
Evaluation length 393
Evaluation method 340
Evaluation, statistical 76
Excitation function 160, 162
Expansion coefficient, linear, thermal 116
Experimental design 87
Exponential form
Extension line

F

Factor (design of experiments) 87
Factor K _c
Factor level (design of experiments) 87
Fatigue fracture 239, 495
Fatigue limit 277
Fatigue limit load 577, 702
Fatigue loading, screw 518
Fatigue resistance
Fatigue strength diagram, Smith 277
Fatigue strength under pulsating stresses 279
Fatigue strength under reversed stresses 277, 279
Fatigue theory
Feather key 479
Feather key connection 477
Feature, dimensioning 369
Feature, toleranced 458
Felt ring
Fillet seam
Filter
Fine pitch thread 502
First angle projection method 350
Fit
Fit screw connection 496
Fit size
Fit tolerance
Fit, criteria
Fit, loose
Fixed-point number 69
Fixing screw 494, 495
Fixing thread
Flake graphite cast iron 295
Flame hardening 274
Flanged seam
Flat cage guidance system
Flat seam
Flatness 459
Flinger shield
Floating-point number 69
Folding rule
Font
Force
Force (kinetics) 128

Force equilibrium 125
Force measurement 567
Force ratio
Force ratio, screw connection 518
Force, conservative 128
Force, dissipative 129
Form fit, direct
Form fit, indirect
Form tolerance
Formulae (chemical substances) 105
Four point contact bearings 654, 678
Fourier analysis149
Fractional factorial (design) 87
Fractional number 70
Fracture forms 240
Fracture strength
Free-cutting steel, mechanical properties 294
Freehand drawing
Free-running grease731
Frequency 22, 77, 148, 149
Frequency density function 76, 82
Frequency diagram 78
Frequency domain 218
Frequency spectrum 218
Frequency, kinematic 222
Frequency, relative 78
Friction 588, 697
Friction calculation, Easy Friction742
Friction coefficient, screw connection 518
Friction reduction
Frictional energy131
Frictional locking connection
Frictional power 588, 589
Frictional power loss 174
Frictional radius, screw connection 518
Frictional torque 511, 518
Frictional torque as a function of load 590
Frictional torque, actual 588
Frictional torque, as a function of speed 590
Frictional value 589
Front view
FTF (fundamental train frequency) 222
Fuel cell IX
Full factorial (design) 87

207
553
205
136
119
136
222

G

Gamma ray 12	14
Gap seal	38
Gaussian normal distribution 8	82
Gearbox	39
General rule 44	67
General tolerance 404, 40	68
Generating force	34
Generating motion	34
Geometric mean	40
Geometric progression	46
Geometric sequence	46
Geometrical Product Specification	
(ISO GPS) 406, 42	24
Geometrical stability 22	76
Geometrical tolerance, bearing seating surface 62	39
Geometrical tolerancing 40	04
Geometrical variation 40	04
Geometry	49
Golden section	37
GPS (Geometrical Product Specification) 406, 42	24
Grade, nuts 50	05
Grade, screws	04
Graphical symbol (profile surface texture) 38	81
Gravitational acceleration 22	26
Grease lubrication	06
Grease operating life	31
Growth	67
Guidance function	68
Guideway/cage combinations	86
Guiding elements in a rotary direction, plain bearings	80
Guiding elements in a rotary direction,	
rolling bearings	68

Guiding elements in a rotary direction,

spherical plain bearings	682
Guiding elements in a translational direction,	
linear rolling element guidance system	684
Gunmetal	322

Н

Half-life	110
Hardening depth 273,	274
Hardness curve	274
Hardness gradient	273
Hardness indication	403
Harmonic mean	. 40
Harmonic oscillation	148
Heat balance	600
Heat dissipation	589
Heat dissipation, lubricant	613
Heat transition coefficient	602
Heat treatment, process	314
Heat treatment, steel	306
Heating device 720, 723, 726, 729,	738
Heating facility	489
Helical torsion spring, cylindrical	545
Hertzian coefficient	265
Hertzian contact	263
Hertzian pressure 263,	273
Hertzian wave	115
Hexadecimal system	. 70
Hexagon head screw, seating surface	530
High Nitrogen Steel	616
High performance steel	617
High-performance polymer	329
Histogram	. 78
Hole basis	446
Homogenising	309
Hooke's Law	225
Housing tolerance	635
Housing tolerance, axial bearings	638
Housing tolerance, radial bearings	637
Housing unit	657
HV connection	514
HV seam 378,	380

Hydraulic directional control valve 182
Hydraulic flow control valve 183, 184
Hydraulic motor 173, 180
Hydraulic pipeline, accessories 185
Hydraulic pump 172, 180
Hydraulic shut-off valve 184
Hydraulic transmissions 172
Hydraulic valve actuation 182
Hydraulics 172
Hydrostatic stationary transmission 177
Hyperbolic function 51

I

l seam 376, 380
Idling friction
Imaginary part 44
Impact 219
Impact hypothesis, Newton's 142, 143
Impact law 138
Impact law, solid body 142
Impact period 143
Impact, direct, eccentric 145
Impact, oblique, central 144
Impulse wrench 521
Increase in length 230
Increase in temperature 588
Increment step 358
Incremental measurement 209
Induction hardening 274
Inertia force 152
Influence of size 278
Influence of surface 278
Influencing friction
Influencing wear 551
Information flow 192
Information processing 195
Initial greasing715
Installation position
Instantaneous centre of rotation MP 141
Insulation coating 558, 566
Insutect coating system 566
Integration, by parts 47

Integration, substitution	. 47
Interference fit 425,	446
Interior, component	353
Internal clearance, radial	614
Internal pressure, screw connection	518
Ion dose rate	. 26
Iron crystal lattice	311
Iron-carbon phase diagram	311
ISO code system for tolerances 404, 426,	427
ISO dimension plan	620
ISO fit	425
ISO fundamental deviation system	426
ISO fundamental deviation, external size	430
ISO fundamental deviation, internal size	432
ISO GPS 406,	424
ISO standard tolerance system	426
ISO system	404
ISO tolerance	425
ISO tolerance class 426, 427,	635
ISO tolerance zone 426,	427
ISO tolerance, hole	442
ISO tolerance, shaft	438
Isometric projection	352

J

Joining configuration	376
Joint	252
Joint type	375

Κ

378, 380
379
344
19
479
122
122, 128
344
400

L

Labyrinth seal	644
Lamellar ring	643
Latin Hypercube sampling	91
Law of conservation, energy	130
Leading angle	157
Learning method, machine	346
Least material limit of size (LMLS)	466
Length change, screw connection	517
Length dimension, German/English conversion	32
Lepton	109
Life adjustment factor 573,	574
Life adjustment factor, contamination	579
Life exponent	572
Light metal housing	737
Light ray	114
Limit contact pressure, screw connection	518
Limit deviation 404,	405
Limit deviation, external size of shaft	428
Limit deviation, internal size of hole	428
Limit of size 405,	412
Limit slenderness	238
Limiting speed	599
Line contact	270
Line group	362
Line profile	460
Line thickness	362
Line type	361
Linear ball bearings708,	709
Linear bearing arrangement, main axis,	
machine tool	732
Linear recirculating ball bearing and	
guideway assembly	688
Linear recirculating ball bearing and	
guideway assembly, rour-row	699
Linear recirculating ball bearing and	(00
guideway assembly, six-low	699
guideway assembly, two-row	608
Linear recirculating roller bearing and	070
guideway assembly	733
Linear roller bearing	687
Linear rolling element guidance system	684
J	

Linear rolling element guidance system,	
with rolling element recirculation	687
Linear rolling element guidance system,	
without rolling element recirculation	685
Linear size, specification modifier	420
Linear size, tolerance	412
Linear technology	. XI
Lip seal, axial sealing action	645
Liquid-borne sound	168
Lithium soap base grease	738
Load carrying capacity,	
dimensioning 688, 701,	711
Load carrying capacity, dynamic 571,	689
Load carrying capacity, static	274
Load case	279
Load direction, indeterminate	634
Load safety factor, static 584,	713
Load type	230
Load, combined	690
Load, equivalent dynamic	690
Load, rubber spring	547
Loading, dynamic	276
Loading, stationary	279
Locating bearing 625,	731
Locating bearing arrangement	625
Locating/non-locating bearing arrangement	625
Locating/non-locating bearing arrangement,	
example	626
Locking collar	731
Logarithm	42
Logarithm, common (Briggs')	43
Logarithm, conversion	43
Logarithmic law	42
Long-dashed dotted line	361
Long-dashed double-dotted line	362
Longitudinal press fit	491
Longitudinal section	354
Loosening torque	511
Loudness level	171
Low cycle fatigue strength	277
Lower limit of size	405
Lubricant film formation	577
Lubricant film, hydrodynamic	722
Lubricant, function	606
Lubricating grease	608

Lubrication606, 694,	715
Lubrication interval	706
Lubrication method	611
Lubrication, monitoring	735
Lubrication, raceway	706
Luminous intensity	. 20

Μ

Machine learning method 346
Machine tool732
Magnesium alloy 325
Magnet bearings 206
Magnetic coil 213
Magneto bearings
Magnetostriction 213
Main load direction714
Main spindle bearings 722
Main view 349
Maintenance unit 189
Major thread diameter 516
Malleable cast iron 303
Malleable cast iron, mechanical properties 304
Manufacturing position 349
Mass 28
Mass number 110
Mass plastic 329
Material characteristic 228
Material designation 282
Material fatigue 719, 722
Material flow 192
Material ratio (profile) 400
Material selection
Material strain 272
Material strength 272
Mathematical symbol 36
Mathematics
Matrix
Maximum fit 448
Maximum material limit of size (MMLS) 466
Maximum mounting preload force,
screw connection 524
Maximum stress 277
MBD (model-based definition)

Mean height 398	B
Mean pit depth 39	5
Mean roughness value 402	2
Mean stress 27	7
Mean value 76, 77	7
Mean, arithmetic 44	0
Mean, geometric 40	C
Mean, harmonic 44	0
Measured value of weight 28	8
Measurement initiative 208	8
Measurement purpose 209	9
Measurement value, physical 209	9
Measurement, incremental 209	9
Mechanical profile 392	3
Mechanical surface 392	3
Mechanics 122	2
Mechatronic system 192	2
Mechatronics 199	0
Mechatronics (rolling bearings) 202	7
medias 646, 717, 744	4
Melting point, salts 102	3
Meson 109	9
Metal salt in water, solubility 102	3
Metal/polymer composite plain bearings 68	0
Method, chemical 55	5
Method, electrochemical 55	5
Method, thermal 720, 723, 726, 729, 73	B
Micrometer screw 494	4
Minimum clamping force 510	5
Minimum clamping force, screw connection 52	3
Minimum fit 448	8
Minimum hardening depth 274	4
Minimum load70	5
Minimum mounting preload force,	
screw connection 524	4
Minimum screw depth 52	7
Minimum stress 27	7
Misalignment	5
Model-based definition (MBD) 348	B
Modelling 198, 199, 200	0
Modifier	
(specification modifier, ISO GPS) 410, 41	1
Modifier, datum 45	5
Modifier, ISO 1101 45:	2
Modular coating concept 558	З

Modular system 342
Modular system (product development) 342
Modulation 219
Module (product development) 342
Module strategy 342
Modulus of rigidity 225
Mole 20
Moment (strength theory) 224
Moment distribution 252
Moment equilibrium 125
Moment of momentum 137
Monitoring 717, 735
Monitoring system XI
Monorail guidance system 688, 735
Monorail guidance system, design 694
Monorail guidance system, rigidity 697
Monte-Carlo method 91
Motion equation 124, 154
Motion screw 494
Motion thread 496
Mounting preload force 516, 517
Mounting preload force,
screw connection 520, 525
Mounting stress, screw connection 524
Multiple joint
Multiple mass oscillator 149

Ν

Natural circular frequency 149, 156
Natural frequency 148
Natural oscillation 148
Natural scale
Needle roller and cage assembly 665
Needle roller bearings 666, 728
Needle roller bearings, combined
Needle roller bearings, ribless 728
Needle roller/angular contact ball bearings 668
Needle roller/axial cylindrical
roller bearings 668, 671
Needle roller/axial deep groove ball bearings 668
Nesting index 394
Newton's fundamental law 122, 124
Newton's impact hypothesis 142, 143

NF metal 319
Noise 604
Noise damper 189
Noise Index 604
Noise level 604
Nominal contact angle 695
Nominal diameter 516
Nominal size 404, 405
Nominal thread diameter 502
Nominal viscosity, oil 577
Non-ferrous metal 319
Non-locating bearing 731
Non-locating bearing arrangement 625
Non-locating bearings 625
Normal distribution, Gaussian 82
Normal equal-loudness-level contour 171
Normal form 41, 44
Normal stress 224
Normal stress hypothesis 240, 241
Normalising 309
Notched bar impact work 283
Nuclear radius 110
Number of sections 393
Number system 69, 70
Number system, conversion 71
Number, complex 44
Number, fractional 70
Number, frequently used 36
Number, Pythagorean 37
Numeral system, Roman 34
Numerics 69

0

0 arrangement 629, 6	<u>5</u> 95
Oblique (termination of dimension lines) 3	365
OFAT (design of experiments)	89
Oil bath lubrication 6	512
Oil change 6	613
Oil injection lubrication 6	613
Oil lubrication	ó10
One-factor-at-a-time (design of experiments)	89
Online measurement 2	208
Open loop control 192, 1	195

Operating clearance
Operating conditions (rolling bearings) 570
Operating conditions, severe
Operating force, screw connection 516
Operating life 570, 586, 691, 704, 719
Operating position
Operating speed, thermally safe 600
Operating stress, screw connection 526
Operating temperature 577
Operating value, equivalent
Operating viscosity 577
Opposing position (weld seam) 377
Orifice (valve) 183
Orthogonal projection
Oscillation, free 148
Oscillation, harmonic 148
Oscillation, undamped 148
Outside diameter, head seating surface 516
Overall efficiency 174
Overfitting
Overlap joint
Overrolling frequency

Ρ

PACVD method (Plasma Assisted
Chemical Vapor Deposition) 555
Painting 555
Paper guide roll730
Paraboloid 62
Parallel dimensioning 368
Parallel joint
Parallel projection, perpendicular
Parallelism
Parameter, statistical 74
Parting line, screw connection 518
Peak height 396
PECVD method (Plasma Enhanced
Chemical Vapor Deposition) 555
Period time 149
Periodic system of elements
Perpendicularity 461
Phase angle 157
Photon 109

Physical constant	112
Physical properties	. 96
Physical Vapor Deposition (PVD)	555
Physics	108
Piezo element 213,	215
Pin support	251
Piston compressor	727
Piston force	728
Piston pin	727
Pitch angle	581
Pitch diameter, screw thread	516
Pitch, thread	518
Pivoting bearing, fixed	251
Pivoting bearing, movable	251
Plain bearing material, low-maintenance	681
Plain bearing material, maintenance-free	681
Plain bearings	680
Planetary gearbox	XI
Plasma Assisted	
Chemical Vapor Deposition (PACVD)	555
Plasma Enhanced	
Chemical Vapor Deposition (PECVD)	555
Plasma spray coating	566
Plastic	327
Plastic, elastomer	327
Plastic, reinforced, thermoplastic	332
Plastic, technical	329
Plastic, thermosetting	328
Plastic, unreinforced, thermoplastic	331
Platform (product development)	342
Platform strategy	342
Plug seam	379
Plummer block housing unit	657
Pneumatic oil lubrication	612
Pneumatic pipeline	189
Pneumatic valve	188
Pneumatics 172,	188
Pneumatics, compressor	188
Pneumatics, motor	188
Point contact	269
Point load 633,	737
Poisson's ratio	225
Polyaddition compound	327
Polycondensation product	327
Polygon connection	483

Polymeride 327
Polytetrafluorethylene (PTFE) 555
Population74
Position 462
Position tolerance 416, 451
Positional notation system 69
Positional tolerance, bearing seating surface 639
Positional variation 404
Positioning (mechatronics) 214
Power 41
P-parameter 393
Precipitation hardening 309
Precision planetary gearboxes XI
Predictive quality
Preferred number 358
Preferred number series 358
Preferred parameter 383
Prefix (unit of measurement) 27
Prefix, international (unit of measurement) 27
Preload 697, 734
Preload force loss, screw connection 517, 523
Preload force, screw connection 517, 523
Press connection, cylindrical 488
Press fit, cylindrical, calculation
Press seat 425
Pressure capacity 607, 611
Primary flow throttle transmission 177
Primary profile
Primary surface profile 394
Prime number 38
Principal function (design element) 472
Principle of independence 464
Principle of linear momentum 136
Probability plot 80, 82
Problem-solving method 339
Product development 338
Product information document 646
Production process 402
Profile
Profile direction
Profile direction, feature
Profile position
Profile surface texture parameter 393
Profile, height
Profile, mechanical 393

Progression, arithmetic	¥5
Progression, geometric	46
Projection method 34	48
Projection, dimetric 3!	52
Projection, isometric 35	52
Proof stress, screw 52	18
Property (design element) 47	72
Protective coating (corrosion) 55	57
PTFE (polytetrafluoroethylene) 55	55
Pulsating loading 27	79
Pump moment 17	74
Puncture strength 50	66
PVD method (Physical Vapor Deposition) 55	55
Pyramid	59
Pythagorean number	37
Pythagorean theorem	52

Q

Quadratic equation	41
Quality characteristic (design of experiments)	87
Quenched and tempered steel,	
mechanical properties 285, 2	286
Quenching and tempering	306

R

Raceway, lubrication	706
Radial ball bearings	651
Radial bearings	736
Radial insert ball bearing, with locking collar	730
Radial insert ball bearings	656
Radial internal clearance	728
Radial load factor	572
Radial load, dynamic loading	701
Radial load, static loading	702
Radial needle roller bearings	665
Radial roller bearings 658,	736
Radial stress	234
Radiation, electromagnetic	113
Radius (dimensioning of feature)	369
Radius of gyration	238
Rail vehicle	736

Random experiment 90
Random sample 74
Rating life 571
Rating life, basic 572, 725, 728, 731, 734
Rating life, calculation 702
Rating life, dimensioning 688, 701, 711, 733
Rating life, dynamic 689
Rating life, expanded, adjusted 572
Rating life, requisite 583
Raw data list 74
Raw signal 219
Reaction force 224
Reading position
Real part 44
Recirculating oil lubrication 612
Recrystallisation annealing 309
Rectangle 55
Rectangular spring
Rectangular spring, thrust
Recycling
Reduction
Reduction coefficient, screw connection 517
Reduction scale
Reference architecture 192
Reference condition 599
Reference plane
Reference viscosity, calculation
Reference viscosity, lubricant
Reforming 402
Reforming (production process) 402
Regression
Reliability (rolling bearings) 570
Reliability function
Relief groove
Relief grooves
Repayment formula
Repeat frequency 219
Representation, axonometric
Requirements (rolling bearings)
Reset force 152
Residual clamping force 516
Residual clamping force,
minimum, screw connection 528
Resistance to motion, bearing friction 569
Resonance

Response surface (design of experiments)
Restraint, fixed 251
Restriction (toleranced feature) 458
Rheological liquid 213
Rigidity 586, 733
Rigidity parameter 587
Rigidity, influencing factors
Ring, runoff edge
Rockwell hardness 317
Rod end
Roller cone apex
Rolling bearing raceway 275
Rolling bearing steel, case hardening 315
Rolling bearing steel, through hardening
Rolling bearing tolerance 450
Rolling bearings
Rolling bearings, increased accuracy 721
Rolling bearings, rotary, basic structure
Rolling contact partners, contact point
Rolling element row, arrangement 695
Rolling elements
Roman numeral system 34
Root 41
Root (weld seam)
Rope sheave bearings 661
Rope sheave bearings
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172 Rotary kiln 724
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 675
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 675 Rotary table bearings 679 Rotative, Bearinx-online 740
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 675 Rotary table bearings 672 Rotary table bearings 672 Rotary table bearings 674 Rotative, Bearinx-online 740 Roughness depth, screw connection 518
Rope sheave bearings 661 Rotary bearings 566 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 675 Rotaty table bearings 676 Rotative, Bearinx-online 740 Roughness depth, screw connection 518 Roughness profile 393, 395
Rope sheave bearings 661 Rotary bearings 566 Rotary displacement machine 172 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 675 Rotative, Bearinx-online 740 Roughness depth, screw connection 518 Roughness profile 393, 395 Roughness profile parameter 381, 396
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 676 Rotaty kiln 740 Rotary shaft seal 644 Rotary table bearings 740 Roughness depth, screw connection 518 Roughness profile 393, 395 Roughness profile parameter 381, 396 Roughness, bearing seat 641
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 679 Rotative, Bearinx-online 746 Roughness depth, screw connection 518 Roughness profile 393, 392 Roughness, bearing seat 641 Roughness, bearing seat 641 Round guidance system 708
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 724 Rotary shaft seal 644 Rotary table bearings 679 Rotaty table bearings 679 Rotative, Bearinx-online 740 Roughness depth, screw connection 518 Roughness profile 393, 394 Roughness, bearing seat 641 Round guidance system 706 Roundness 455
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 724 Rotary shaft seal 644 Rotary shaft seal 644 Rotary table bearings 675 Rotative, Bearinx-online 740 Roughness depth, screw connection 518 Roughness profile 393, 394 Roughness, bearing seat 641 Round guidance system 706 Roundness 455 R-parameter 393, 396
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 722 Rotary shaft seal 644 Rotary table bearings 679 Rotative, Bearinx-online 740 Roughness depth, screw connection 516 Roughness profile 393, 395 Roughness, bearing seat 641 Round guidance system 708 Roundness 455 R-parameter 393, 396 Rubber spring 547
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 722 Rotary shaft seal 644 Rotary table bearings 679 Rotaty table bearings 679 Rotaty table bearings 679 Roughness depth, screw connection 518 Roughness profile parameter 381, 396 Roughness, bearing seat 641 Round guidance system 708 Roundness 455 R-parameter 393, 397 Rubber spring 547 Rubber spring, calculation 548
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 722 Rotary shaft seal 644 Rotary table bearings 679 Rotary table bearings 679 Rotary table bearings 679 Rotary table bearings 679 Roughness depth, screw connection 518 Roughness profile 393, 392 Roughness profile parameter 381, 396 Roundness schearing seat 641 Roundness 455 R-parameter 393, 392 Rubber spring 547 Rubber spring, calculation 548 Rubber spring, elastomer 548
Rope sheave bearings 661 Rotary bearings 568 Rotary displacement machine 177 Rotary kiln 722 Rotary shaft seal 644 Rotary table bearings 679 Rotative, Bearinx-online 740 Roughness depth, screw connection 518 Roughness profile 393, 392 Roughness profile parameter 381, 396 Round guidance system 706 Roundness 455 R-parameter 393, 392 Rubber spring, calculation 542 Rubber spring, elastomer 542 Ruber spring, elastomer 542 Rule of signs 400

S

Sampling	. 91
Scale	364
Scatter factor	. 76
Schaeffler Noise Index	604
Schaeffler sealing ring, springless	644
Screening (design of experiments)	. 87
Screw clamping triangle	514
Screw connection	493
Screw diameter	516
Screw fixing, general calculation	511
Screw force	517
Screw plug	494
Screw, standardised	497
Seal, bearing	642
Seal, contact 644,	738
Seal, non-contact 642, 731,	738
Sealing	533
Sealing ring, runoff edge	643
Sealing ring, Schaeffler, springless	644
Sealing shield	644
Sealing shield, axially sprung	645
Sealing surface, screw connection	516
Sealing washer 645,	646
Seam configuration	375
Seam symbol, butt seam	380
Seam symbol, corner seam	380
Seam type	376
Second mass moment of inertia,	
homogeneous solids	133
Second moment of area	245
Second moment of area, axial	242
Second moment of area, polar	245
Secondary flow throttle transmission	177
Section length	393
Section modulus	242
Section modulus, axial	242
Section modulus, polar	518
Section representation	356
Section, complete	353
Section, indication	353
Section, local	353
Section, symmetrical parts	353
Security, against sliding	528

Self-aligning ball bearings	655
Semi-locating bearings	659
Sensor 192,	193
Sensors (bearing)	208
Sensotect coating system	567
Sequence, arithmetic	. 45
Sequence, geometric	. 46
Series 104,	341
Series (product development)	341
Set theory	. 68
Setting class	393
Setting method, screw connection	520
Settling rate, screw connection 517,	523
Settling, screw connection 517,	523
SGI value	604
Shaft basis	446
Shaft guidance system	708
Shaft journal	737
Shaft tolerance	635
Shaft tolerance, axial bearings	637
Shaft tolerance, radial bearings	
with cylindrical bore	635
Shape memory alloy	213
Shear centre	249
Shear loading	230
Shear modulus of rigidity	225
Shear stress	224
Shear stress hypothesis 240, 241,	272
Shearing stress, screw connection	528
Sheet metal cage	618
Sheet size	363
Shock-type excitation	219
Short name, material	283
Shrinkage dimension	303
SI unit	. 21
Signal flow	192
Signal, periodic	212
Signal, raw signal	219
Simulation	200
Sine law	. 51
Size	417
Size, linear 407,	417
Size, local	418
Skewing	588
Skewness	398

Sleeve type spring, compression 547
Sleeve type spring, rotational thrust 547
Sleeve type spring, thrust 547
Slenderness ratio 238
Slewing ring
Slide control mechanism 173
Sliding sleeve
Slippage damage 556
Soft annealing
Solar System 119
Solid dot (termination of dimension lines)
Solid section cage 618
Sound
Sound absorption coefficient 170
Sound level
Sound pressure 168
Sound reduction index 170
Sound technology 168
Spacer 660
Special gearbox 542
Specification (ISO GPS) 406, 409
Specification modifier 407
Specification modifier, angular size 423
Specification modifier, linear sizes 420
Speed (interesting) 120
Speed rating, thermal 599
Speed ratio 602
Speed, thermally safe operating 589, 600
Sphere 60
Sphere (dimensioning of feature) 369
Spherical plain bearings 682
Spherical plain bearings,
maintenance-free
Spherical plain bearings,
Cabarias allochasings
Spherical roller bearings
Spineroludal graphille cast from
Spin nequency, ball (BSF)
Spiral spring
Spline chaft connection (22)
Spline Statt connection
Spat coam 270
Spray oil 720
Spraying thermal
opraying, mennat

Spring	. 543
Spring characteristic line 543	, 544
Spring constant	. 158
Spring force, static	. 154
Spring rate	. 587
Spring rate, elastic system	. 546
Spring rate, metallic springs	. 544
Spring rate, rubber spring	. 547
Spring rate, spring stiffness	. 544
Spring vibration	. 152
Square	55
Square form (dimensioning of feature)	. 370
Standard deviation 7	6,79
Standard font	. 357
Standard normal distribution	83
Standard tolerance	. 405
Start of yield	. 239
Statics, fundamental equations	. 124
Stationary transmission, hydrostatic	. 177
Statistical evaluation	76
Statistical parameter	74
Statistics	74
Steel	. 282
Steel grade	. 282
Steel, austenitic	. 289
Steel, austenitic-ferritic	. 289
Steel, corrosion-resistant	. 289
Steel, creep-resistant	. 289
Steel, ferritic	. 289
Steel, heat treatment	. 306
Steel, heat-resistant	. 289
Steel, induction hardening	. 275
Steel, martensitic	. 289
Steel, precipitation hardenable	. 289
Steel, stainless	. 289
Steel, through hardening	. 275
Stereometry	59
Straightness	. 459
Strength hypothesis	. 241
Strength of materials	. 224
Stress	. 224
Stress relief annealing	. 308
Stress state, uniaxial, multi-axial	. 239
Stripping force, thread	. 517
Stroke displacement machine	. 173

Stroke volume 172, 174
Structural steel, unalloyed, mechanical properties
Structure, body-centred cubic 311
Structure, face-centred cubic 311
Structure-borne sound 168
Structure-borne sound speed 168
Stud type track roller
Substitute diameter, main body 516
Substitution (integration) 47
Substrate 555
Sum, algebraic 40
Summand method 72
Super precision cylindrical roller bearings 661
Supercooling 490
Superposition, vibration 158
Support function 568
Support type, flat 251
Surface hardness 274
Surface imperfection 394
Surface layer hardening 273, 307
Surface loading 553
Surface loading, corrosive 554
Surface loading, electrical 554
Surface loading, tribological 553
Surface profile 460
Surface profile, primary 394
Surface symbol 386
Surface technology 553
Surface texture 381
Surface variation 404
Surface, mechanical 393
Survival function 85
Switching/controlling/regulating functional operation
Swivel angle 581
Swivel bearing
Swivel motor 173
Symbol, arrangement 391
Symbol, graphical (profile surface texture) 381
Symbol, mathematical 36
Symbol, seam type, seam configuration 376
Symbol, set theory 68
Symbol, surface
Symbol, surface, indications 382

Symbol, tolerance class	404
Symbol, toleranced characteristic 451,	459
Symbol, weld connection	375
Symmetry	462
System development	199
System of fits	446
System of units, physical	. 30
System of units, technical	. 30
System, conservative	131
System, cyber-physical (CPS)	193
System, ISO	404
System, ISO tolerance class	426
System, mechatronic	192

Т

T joint	375
Table of integrals	258
Tailored coating	554
Tangential stress	234
Taper (dimensioning of feature)	370
Tapered press connection	485
Tapered press joint, axially preloaded	486
Tapered roller bearings	662
Technical acoustics	168
Technical component	192
Technical drawing guideline	348
Technical product documentation (TPD)	348
Technical statistics	. 74
TED (theoretically exact dimension)	367
Temper colour	310
Temperature point	115
Tempering	306
Tensile loading 230,	279
Tensile strength 227,	317
Tensile stress, screw	518
Tensioning diagram	514
Tensioning screw	494
Termination of dimension lines	365
Terrestrial value	118
Tetmajer's line	238
Theoretically exact dimension (TED)	367
Thermal expansion	213
Thermal expansion (solid, gas)	115

Thermal expansion,	
influence in O arrangement	629
Thermal expansion,	
influence in X arrangement	629
Thermal stress	233
Thermoelectric series	104
Thermoplastic	327
Thin section bearings	655
Third angle projection method	351
Thread	496
Thread limit	371
Thread pitch	518
Thread root	371
Thread runout	508
Thread torque	518
Thread undercut	508
Thread, base form	496
Thread, dimensioning	371
Threaded blind hole	510
Three-hinged support	251
Threephase motor	718
Through hardening	273
Through screw connection	495
Thrust motor	173
Thrust motor	173 520
Thrust motor	173 520 520
Thrust motor	173 520 520 511
Thrust motor	173 520 520 511 528
Thrust motor	173 520 520 511 528 588
Thrust motor	173 520 520 511 528 588 218
Thrust motor	173 520 520 511 528 588 218 364
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tightening torque, screw c	173 520 520 511 528 588 218 364 405
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tightening torque, screw c	173 520 520 511 528 588 218 364 405
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilthe screw Time domain Title block Jolerance (form, orientation, location, run-out)	173 520 520 511 528 588 218 364 405 451
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilte block Tolerance (form, orientation, location, run-out) Tolerance acceptance rule 382,	173 520 520 511 528 588 218 364 405 451 395
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block Jolerance (form, orientation, location, run-out) Tolerance acceptance rule Jolerance class 404, 427,	173 520 520 511 528 588 218 364 405 451 395 635
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block Jolerance (form, orientation, location, run-out) Tolerance class 404, 427, Tolerance class, symbol	173 520 520 511 528 218 364 405 451 395 635 404
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block Add, Tolerance (form, orientation, location, run-out) Tolerance class Yolerance class, symbol Tolerance class, symbol	173 520 520 511 528 218 364 405 451 395 635 404 426
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block Addy Tolerance (form, orientation, location, run-out) Tolerance class Tolerance class, symbol Tolerance field Tolerance indicator	173 520 520 511 528 588 218 364 405 451 395 635 404 426 456
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block Addy Tolerance (form, orientation, location, run-out) Tolerance class Tolerance class Tolerance field Tolerance field Tolerance indicator Tolerance interval	173 520 520 511 528 588 218 364 405 451 395 635 404 426 426 426
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Time domain Title block 350, Tolerance (form, orientation, location, run-out) Tolerance class Tolerance class, symbol Tolerance field Tolerance indicator Tolerance interval Tolerance interval	173 520 521 528 588 218 364 405 451 395 635 404 426 456 456 460
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilte block 350, Tolerance (form, orientation, location, run-out) Tolerance acceptance rule 382, Tolerance class. 404, 427, Tolerance field Tolerance indicator Tolerance indicator Tolerance zone 415, 426, 427, 428, 459, Tolerance, angular size	173 520 520 511 528 218 364 405 451 395 635 404 426 426 426 426 426 426 421
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilt block S50, Tolerance (form, orientation, location, run-out) Tolerance class Tolerance class Yolerance class, symbol Tolerance field Tolerance indicator Tolerance interval Tolerance, angular size Tolerance, linear size	173 520 520 511 528 588 218 364 405 451 395 635 404 426 426 426 426 426 426 413 413
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilte block 350, Tolerance (form, orientation, location, run-out) Tolerance acceptance rule 382, Tolerance class 404, 427, Tolerance field Tolerance field Tolerance indicator Tolerance nodicator Tolerance angular size Tolerance, linear size Tolerance, principle	173 520 520 511 528 588 364 405 451 395 635 404 426 426 426 426 426 426 426 426 426 42
Thrust motor Tightening factor, screw connection Tightening method, screw connection Tightening torque Tightening torque, screw connection Tilte block 350, Tolerance (form, orientation, location, run-out) Tolerance acceptance rule 382, Tolerance class 10erance field Tolerance field Tolerance interval Tolerance, angular size Tolerance, angular size Tolerance, principle 404, 404,	173 520 520 511 528 588 218 364 405 451 395 635 404 426 426 426 426 413 413 464 404

Tolerancing, geometrical 404
Tooth set gearbox
Toroidal roller bearings
Torque measurement 211, 567
Torque motor
Torque, screw axis 518
Torque, transmissible 478
Torsion 232, 256
Torsion bar spring
Torsional area moment 247
Torsional loading 280
Torsional section modulus 247
Torsional shear strain 225, 230
Torsional stress, thread 518
Total axial run-out
Total frictional torque 589
Total radial run-out
TPD (technical product documentation) 348
Traced length
Traced section
Transition fit 425, 446
Transition seat
Translational force 152
Transmitting rotary motion
Transverse compression 230
Transverse contraction 230
Transverse force centre 249
Transverse force distribution 252
Transverse force, screw connection 517, 523
Transverse press fit 491
Triangle 55
Triangle, plane 51
Triangle, right-angled triangle 52
Triangular spring
Tribochemistry
Trigonometric function 49, 52
Triondur coating system 565
Tube, thick-walled
Tube, thin-walled
Twist
Type letter 508
Type of failure
Type of lubrication, selection
Type of section

U

U seam	378, 380
Underfitting	
Unit (fps system/Anglo-American)	31
Unit (SI system)	21
Unit circle	49
Unit force	256
Unit moment	256
Unit of measurement	18
Unit of measurement, prefix	27
Unit of temperature, conversion	33
Unit system	18
Unit, astronomical	118
Unit, derived	21
Upper limit of size	405

V

V model 198, 199
V model, product development 340
V seam
V seam, flat 379
Vacuum pump 188
Value frequency 83
Value used in nuclear physics 110
Valve control mechanism 173
Vane cell pump 172
Variance
Variance, regression 93
Velocity, mean 690
Verification (ISO GPS) 406
Vibration amplitude 148
Vibration analysis 216
Vibration condition monitoring 216
Vibration velocity 168
Vibration, coupled 149
Vibration, damped 148, 159
Vibration, forced 149
Vibration, free 159
Vibration, mechanical 148
Vibration, superposition 158
Vibration, undamped 159
Vickers hardness 317

Viscosity ratio	577
Viscosity, influence of temperature	611
Viscosity, kinematic	577
Volume dimension,	
German/English conversion	. 32

W

Waviness profile 393,	395
Way valve	182
Wear	722
Wear (tribochemistry)	560
Wear protection	563
Wear type	560
Wear, abrasive 555,	560
Wear, adhesive 556,	560
Web offset printing machine	730
Wedge	. 61
Weibull cumulative function	. 85
Weibull distribution	. 85
Weight force 29,	154
Weighting factor	. 78
Weld connection, symbol	375
Welding of thin sheet metal	376
Wheelset bearing arrangement	736
Width across flats (dimensioning of feature)	370
Width series	620
Wipers	735
Wöhler's diagram	277
Woodruff key, compression	547
Working principle (sensor)	211
W-parameter	393
Wrought aluminium alloy,	
not precipitation hardened	324
Wrought aluminium alloy,	
precipitation hardenable	324
Wrought copper-aluminium alloy	321
Wrought copper-nickel alloy	321
Wrought copper-tin alloy	320
Wrought copper-zinc alloy	319
Wrought copper-zinc based	
multiple element alloy	320
Wrought copper-zinc-lead alloy	320
Wrought magnesium alloy	325

Х

X arrangement	629,	695
X seam	377,	380
X-radiation		114

Y

Y seam	377
Y seam, worked out root	379
Yield point	227
Yield strength, screw connection	524
Yoke type track roller	672

Schaeffler Technical Pocket Guide

Contents

- Units of measurement and scripts
- Mathematics
- Technical statistics
- Chemistry
- Physics
- Mechanics
- Mechanical vibrations and acoustics

- Hydraulics and pneumatics
- Mechatronics
- Strength of materials
- Engineering materials
- Product development
- Technical drawing guideline
- Tolerances and fits
- Design elements

In line with the philosophy of a structured reference work, the chapters are composed in a comprehensive yet concise form and are oriented towards direct, practical usability. With its compact and succinct manner of presentation, the Schaeffler Technical Pocket Guide thus successfully bridges the gap between a comprehensive textbook and purely tabular work.

Target groups

On the basis of its concept, the STT is aimed primarily at students attending technical universities, colleges and technical colleges as well as students at technical institutes specialising in mechanical engineering. Due to its didactic concept, the book is suitable both for teaching purposes and for independent study. In addition, the compendium is a proven and reliable companion for experienced designers in the fields of vehicle, mechanical, instrument and plant engineering.

Publisher

Schaeffler is a leading global manufacturer of rolling bearings and a renowned supplier to the automotive industry. This preeminent position is also evidenced by the large number of patent applications filed each year.

